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A Torsional Contact Problem for 
an Indented Half-Space 
This paper is concerned with the torsion of  a rigid disk bonded to the bottom of  a 
cylindrical indentation on an elastic half-space. By virtue o f  Fourier sine and cosine 
transforms, the mixed boundary value problem in classical elastostatics is shown to 
be reducible to a pair of  integral equations, o f  which one possesses a generalized 
Cauchy singular kernel. With the aid o f  the theory of  analytic functions, the inherent 
fractional-order singularity in the contact problem is rendered explicit. Illustrative 
results on the torsional stiffness o f  the base of  the indentation and the corresponding 
contact stress distribution are presented for  engineering applications. 

1 Introduction 

The determination of the response of an elastic medium under 
the torsional action of a bonded rigid disk has been the subject 
of numerous investigations owing to its relevance to foundation 
engineering, soil-structure interaction, mechanical and struc- 
tural designs, and contact mechanics. As a prominent example 
of mixed boundary value problems in the theory of elasticity, 
it has attracted the attention of Reissner and Sagoci (1944), 
Sagoci (1944), Rostovtsev (1955), Collins (1962), Sneddon 
(1947, 1966), Gladwell (1969), Erguven (1988), and Pak and 
Saphores (1991). In these studies, the supporting solid is ideal- 
ized as either an elastic half-space or a finite stratum with 
smooth planar boundary surfaces. For a number of practical 
applications, however, a more relevant configuration is one 
where the loading is applied to the foundation medium through 
the base of a prepared indentation. In geotechnical engineering, 
such boundary topography is common in most construction 
projects where the foundations are placed at the bottom of exca- 
vations (Fang, 1991 ). In relation to various manufacturing pro- 
cesses and ground exploration methods, an understanding of 
the class of mixed boundary value problems associated with 
an indented medium is conducive to a rational analysis and 
interpretation of the physical process of drilling, coring, and in- 
situ testing. Owing to the inherent physical and mathematical 
complexities involved, however, no exact solution has yet been 
reported for the indented half-space problem. 

In this paper, a formal treatment is presented for the torsional 
response of a rigid disk bonded to the fiat end of a cylindrical 
hole in a half-space. With the aid of Fourier sine and cosine 
transforms, it is shown that the mixed boundary value problem 
can be reduced to a pair of integral equations, of which one 
possesses a generalized Cauchy-singular kernel. Through an 
analysis of the kernels of the governing equations, the frac- 
tional-order singularity of the interracial traction associated with 
the contact problem is directly extracted. Together with the 
analytical development of some related integrals, a solution 
procedure is implemented which can incorporate the singular 
nature of the contact traction explicitly. To facilitate theoretical 
and engineering applications, results on the influence of the 
embedment depth on the torsional stiffness of the rigid disk and 
the contact stress distribution are presented as illustrations. 
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2 Formulation of Problem 

Of interest in this investigation is the torsional response of a 
rigid disk bonded to the bottom of a flat-ended cylindrical cavity 
of radius a and depth 1 in a homogeneous, isotropic, linear 
elastic half-space (see Fig. 1). For this axisymmetric problem 
in cylindrical coordinates, rio and "FrO are the only nonzero 
stresses in the semi-infinite medium. Using T~ to denote the 
applied torque required to sustain the rotation of the rigid disk 
about the z-axis by an angle ®, one may write the loading 
condition at the base of the hole as 

Tl = --27r r2Zzo(r, 1)dr (1) 

such that 

u ( r , l )  = Or,  r <  a. (2) 

Here, u(r,  z) stands for the angular displacement field of the 
indented solid. Other key requirements for the problem are the 
traction-free condition for the wall of the cylindrical hole, 

rro(a, z) = O, O -~ z < 1, (3) 

the free-surface condition for the upper plane of the indented 
half-space, 

rzo(r, O) = 0 ,  r <  a, (4) 

and the regularity condition, 

u ( r , z ) ~ O ,  ~ r  2 + z 2 ~ w .  (5) 

With # as the shear modulus of the elastic solid, the constitutive 
relations of relevance are 

rzo = # ~ z ,  "Fzr = #r  ~r . (6) 

Owing to the particular topology of the domain, it is convenient 
to consider the response of the medium in regions Ri = { (r, 
O, z ) l r  >- a, 0 <- 0 <- 2rr, z >- 0} andR2 = {(r, 0, z ) l r  <- a, 
0 -< 0 -< 2rr, z -> l }. With the subscript i denoting the quantities 
of interest in the i th domain henceforth, the equations of equilib- 
rium for the two regions can be expressed as 

02u____2 1 0 u  I U 1 02Ul 
Or 2 + + - -  = 0, r > a , z  > 0, (7) r Or r 2 Oz 2 

02u2 1 0 u  2 u 2 02u2  
Or 2 + + O, r < a, z > l, (8) r Or r z Oz 2 
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Fig. 1 A rigid disk on an indented half-space 

respectively. In terms of the responses of R1 and R2, conditions 
(2),  (3),  and (4) imply 

u~(r, l) = Or, O -< r < a, (9) 

r - -  ( a , z )  = 0, 0 ~ z - < l ,  (10) 
Or 

OUl 
- - ( r ,  0) = 0, r-->a, (11) 
Oz 

while the regularity condition translates to 

u ~ ( r , z ) ~ O ,  ~ - + z 2 ~ ,  i =  1,2. (12) 

To ensure the responses of regions Rt and R2 are compatible 
over their common boundary, one must also require that 

Tro~(a, Z) = r~o~(a, z),  z P- 1 (13) 

and 

OUt (a, z) = Ou2 
Oz -~-  (a, z), z --> l. (14) 

In view of the boundary conditions (9) and ( 11 ), it is natural 
to define the Fourier cosine and sine transforms 

at(r, ~) = 2 F ut(r, z) cos (~z)dz, (15) 
71" a 0  

I; a2(r, ( )  = 2- u2(r, z) sin ((z - l)dz. (16) 
7r 

In terms of (15) and (16), the field Eqs. (7) and (8) can be 
written as 

dr 2 + r dr ~2 + at 0, (17) 

__d2az lda2  ( ~ )  = 
dr 2 + r dr ~2 + a2 - f O r ,  (18) 

whose general solutions are 

a l ( r ,  ~) = Al(~)K~(~r) + Bt(~)l t (~r) ,  (19) 

Or 
a2(r, ( )  = A2(~)Kl(~r) + Bz(~)ll(~r) + -~--. (20) 

Here L(x)  and K~(x) are the modified Bessel functions of the 
first and second kind of order v, respectively. For the solution 
to be bounded at r = 0 and 0% it is evident that A2 and B1 must 
both be zero. It then follows from the inversion theorems for 
sine and cosine transforms that the displacement fields in R1 
and R2 can be represented as 

ut(r, z) = J o  At(~)Kt(~r)  cos (~z)d~, 

r>--a, z>-O. (21) 

u2(r, z) = Or + f= B2(~)It((r)  sin ((z  - 1)d(, 
do 

r ~ a ,  z m l .  (22) 

For further reduction, it is useful to write the shear stress 
~'rO~ on r = a as 

lim~a/afar = #X(z)  = # ~-(z), z -> l 

where T(z) is an unknown function to be determined. According 
to (13), the solution in R2 must therefore yield 

l im #r  ~r  = #X(Z), z -> I. (24) 
r-~a 

On substituting (21) into (23), one finds 

o( f: 
lim # r ~ r  A,(~) cos (~Z)Kl((r)d~ = t.zX(Z), 
r--*a 

z -> 0. (25) 

Through the use of the identity 

O ( ~ K , ( ~ r ) )  -~K2(~r) ,  (26) 
r Or 

(25) can be written as 

- f :  ~Ai(~)Kz(~a) cos (~z)d~ = X(Z). (27) 

Likewise, with the aid of (22), (24) yields 

o ) 
lira #r ~r B2(~)I~(~r) sin ~(z - l)d~ + 19 
r-~a 

= #X(Z), z--> I. (28) 

With the identity 

r - -  I t ( ( r )  = (h (~ r ) ,  (29) 
Or 

it can be shown that (28) reduces to 

fo°~B2(~)h(~a) ((z  l )d (  X(Z), z -> (30) sin l. 

Through a formal inversion of (27) and (30), one is thus led 
to 

- 2  f ~  
AI( ( )  = 7r(K2(~a----------) X(Z) cos (~z)dz, (31) 

2 f,° B2(() = 7r(I2(~a-------~ X(z) sin ((z  - l)dz. (32) 

As a result of (21), (22), (31), (32) and suitable regularity 
hypotheses on the function X(z),  one may express 

Ou,l (r ,  z) = 1 (OK(r, Z -- ~) 
OZ ~" 

+ O K ( r , z +  ~))X(~)d~, r > a ,  z ~ O ,  (33) 

0 U  2 / \ 1 f =  
Oz tr, z) =-Tr J~ ( ~ l ( r ,  ~ -  z) 

+ cb~(r,~ + z -  2 l ) )x(~)d~,  r < a ,  z-> 1, (34) 
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where 

Kl({r) 
Ox(r, d) = l  sin ({d)d{, 

30 K:(&) 
(35) 

ll(~r) • ,(r, d) = /  sin (~d)d~. 
J o  h(~a)  

(36) 

With the aid of the foregoing representations, the remaining 
interfacial condition (14) can be stated as 

f ~ (~i(a-, ~ -- z) + ~i(a-, ~ + Z -- 2t))r(~)d{ 

= (~r(a +, z - ~) + ~K(a +, Z + ~))r(~)d~,  

z ~ 1. (37) 

In terms of the function r (z) ,  an equivalent statement of the 
loading condition in (1) can also be given by 

f= r(~)d~ = (38) 
Ti 

2~#a z" 

As will be illustrated later, (37) is a generalized Cauchy 
singular integral equation which, together with (38), constitute 
the primary governing equations for the contact problem. 

3 Reduction of Governing Integral Equations 
For further reduction of (37), it is useful to note (Pak and 

Abedzadeh, 1992) that 

lim f ~  Ki(@) sin (~d)d~ 
r~+ Jo K2(~a) 

f; ) ' = (K~({a) 1 sin ({d)d{ + ~ (39) 
\K2({a) 

and 

lim f ~  It(~r) sin (~d)d~ 
. . . .  J0 12({a) 

= f f  (Ii(ga) 
\I=({a) 

1 
- -  - 1 sin (~d)d~ + ~ .  

By recourse to (39) and (40), (37) can be written as 

f ~  [~-"~-  Z 1 l ] "r(~)d~ 2 + ~ + z - 2 l  ~ + z  

+ f f  [ f~  (It({a)\lf({a) 1 ) ( s i n ( ( ~ - z )  

+ sin ~(~ + z - 21))d(]r(~)d~ 

+ f f  [ f f  (Kt(,a)\Kf(,a) 1 ) ( s i n , ( ~ - z )  

- sin ((~ + z))d(]r(~)d~ = O. 

With the definition of the dimensionless parameters 

=z/a,  [=l /a ,  ~ = ~/a, 

and the function 

~(f) = r(z), 

(41) can finally be stated as 

1 ] ~ ( ~ ) d ~  
4 + e 

+ j .  [k~(~ - f) + k,(~ + f - 2[) 

+ k 2 ( 4 -  f ) - k f ( ~  + f ) ] ' ~ ( ~ ) d  4 = 0  (44) 

where 

k t (d )= f f  (I~(')\12~- 1)  sin ( , d )d , ,  (45) 

kf(d) = f o  \K~(K,(() 1 ) s i n  ((d)d(. (46) 

In terms of (43), (38) can also be expressed in dimensionless 
form as 

fT"~(~)d4 = (47) 
75 

27r#a 3 • 

Equations (44) and (47) govern the shear stress distribution 
rr0 on r = a for z --> I under the applied torque. Their solutions 
will, in turn, render the response of the indented medium fully 
determinate by virtue of (21) (22), (31), and (32). 

4 Singular Nature of Solution 
As should be evident from the governing integral Eq. (44), 

the terms 2/(4 - z) and 1/(4 + £ - 20 constitute a gene!alized 
Cauchy kernel which is  singular if ~ = f or if both ~ and f 
approach the end point 1. To investigate the singular nature of 
the solution, it is useful to express 

( 5 - - ? ) ~ '  0 <Re( /3 )  < 1, (48) 

and define two sectionally analytic functions 

F,(f) = ! f7 a4 4-f 

~7(4) d~, (49) 
(40) = ~ f 7  ( ~ _  ~ _  f),e 

F2(£) 7 . ,  ~ + f -  2[d~ 

f( ~(~) d~ (50) 1 
= 7  (4 + f -  2 / ) ( 4 -  D ~ 

where f is extended to the complex plane. From the basic behav- 
ior of Cauchy integrals near the end points of the line oaf integra- 
tion (Muskhelishvili, 1953), it can be shown as f + l + on the 
real axis that, 

F1(f) = ~7(f) cot (Tr/3)e ~ie + F* ( f ) ,  (51) 
(f _ f)e 

Ff(f) = . ~7(f)e~'e + Ff*(f), (52) 
sin (rr/3)(f- f)e 

(41) 
where F* and F* satisfy 

[V*(g)[ < C---------2~ IF=*(f)l < c--------2---~ (53) 
(42) I f -  /I al' If- fl a=" 

In the above, ct, c2, at and a= are real positive constants where 
both at and aa are less than Re/3. Upon substituting (51) and 

(43) (52) into (44), one can readily conclude that 
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1 
2 cot (7r/3) + - -  - 0 (54) 

sin (7r/3) 

which yields/3 = ~. This result is consistent with the findings 
of Williams (1952) for a fixed-free corner problem. 

5 Solution of Integral Equations 
Central to the mathematical formulation in (44) and (47) are 

the two kernel functions k~ and k2. By the method of contour 
integration on the complex t-plane, Pak and Abedzadeh (1992) 
have shown that k 1 and k2 can be evaluated in the form of 

1 8 (7/4)7rd 

k l ( d )  = 27r - - + zr 
d 1 - e -~d 

+ 71" ~ ( e  - y , f l  - -  e <n+(3/4))Trd), d -~ 0 ,  (55) 

and 

k2(d) = - 7r~(J~(~) + Y22(~)) 

d -> 0. (56) 

The infinite series in (55),  whose y,,, n = 0 . . . . .  c~ denote the 
non-negative roots of the Bessel function of the first kind J= in 
ascending order with y0 = 0, possesses rapid convergence. On 
the other hand, with the representation in (56),  k2 can be evalu- 
ated effectively by quadrature methods. 

With the foregoing developments for kl and k=, one is now 
ready to determine the solution of the governing Eqs. (44) and 
(47).  To this end, it is useful to make the transformation 

v = 1 / ( ( -  [ +  1), x =  1 / ( £ -  [ +  1). (57) 

In terms of (57),  (44) and (47) can be expressed as 

f j  G ( x ,  v)'7-o(v)dv = 0, -< v <- 1, (58) 0 

fol  4-o(v)dv = I ,  (59) 
27r 

where 

2 + 1 1 ] 
v x v v + x - 2 v x  x + v + 2 ( [ - 1 ) v x  

+ (~2) [k l (~-  ~) + kl(! + ~ -2  ) 

+ k2 ( ~ - ~ )  I k2 ( ~ + x - 1 + 2 ( / -  1 ) ) ]  , (60) 

(1 ) 
eo(V) =~- ~ +  [ -  1 , (61) 

= ~ (62) Tt # a  3 • 

With an even extension of ~o to the interval of [ - 1 ,  0],  (58) 
can be cast as 

f G(Ixl, tvl)G(tvl)dv = 0, - 1  _< x _< 1. (63) 
1 

In recognition of the singular behavior of ¢(g) exposed in 
the preceding section, it is natural to write 

0.15 

0.10 

0.05 

0.00 
0.0 

- -  t / a =  i 
- - - -  t/a=.l 
. . . .  ~/,~=.05 . . ~  
. . . . .  t/~=.ol ; .)pr, 
. . . .  ,:y ' 

d ) /  ,,,S ,y/7 

r i i i 
0.2 0 .4  0,6 0.8 1 0 

Fig. 2 Solution T(x) 

T ( x )  
-~o(x) - (1 - x2) 2/3 ' (64) 

Substituting (64) into (63) yields 

f T(Ivl) G ( l x l ,  I~1) v2)=,3 dv = O, - 1  _< x --< 1. (65) 
( 1 -  

In view of the fractional-order singularities of the integrand 
at - 1  and 1, and the symmetry of T ( x )  with respect to 0, one 
may expand the solution in terms of Jacobi polynomials 

= 2 (Erdogan, 1979). By the method { P~°2~)(x) } where a = /3  
of collocations, (65) can be reduced to 

2N 

Z WkG(Ix j I ,  Ivkl)T(Ivkl)  = o, j =  1 . . . . .  2 N -  1 (66) 
k=l  

where 

- ( 4 N +  a +/3 + 2) 
× F ( 2 N + a + I ) F ( 2 N + / 3 + i ) 2  "+~ 

Wk = (67) 
( 2 N +  1 ) ! ( 2 N +  a +/3 + 1) 

× F(2N + a +/3 + ' ~D~.0) • J--2U+l (V~) P~Y)(vg)  

and xj and vk are the roots of 

e ( l / 3 , 1 / 3 ) ( v  ) . . . , 2N-1 t=i, = 0, j =  1, 2 N -  1, (68) 

P(2N2/3'-2/3)(1Jk) = 0, k = 1 . . . . .  2N, (69) 

respectively, in descending order. Since the roots xj and vk are 
symmetric with respect to the origin, (66) can be stated as 

N 

Z WkG(xj ,  vk)T(vk)  = O, j = 1 . . . .  , N .  (70) 
k=l 

As the root XN is equal to zero, however, it can be shown 
that the corresponding Nth equation of (70) is automatically 
satisfied. On the other hand, the loading condition (59) fur- 
nishes the inhomogeneous equation 

N T(vk) T, 
Wk - -  - (71) 

k=l (vk) 2 27r 

which together with (70) form a linear algebraic system whose 
solution can be computed. Typical solutions for different depths 
of the hole are given in Fig. 2. 

6 Torsional Stiffness 
To determine the relationship between the applied torque and 

the angle of rotation, one can appeal to (21) which can be 
evaluated at r = a and z = l as 
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Fig. 3 Torsional stiffness of disk 

u(a, l) = a [q2([ + ~)  + q2([-  ~ ) 1 4 ( ~ ) d ~  
71" 

where 

(72) 

f :  Ki(~) cos (~d)d~. (73) q 2 ( d )  = - ~K2(,~) 

The numerical evaluation of q2(d) is facilitated by noting its 
equivalence to 

= + 1 - ~  ~))e_l<¢d ~ 
q2(d) = fo (Tr~2(J~(~-~ r~(~)) 

Ic/I ) 
+ In I d l  + 1 (74) 

by contour integration (Pak and Abedzadeh, 1992). Through 
the use of (2) ,  (72)  and the solution to the governing integral 
equations, the angular rotation can be found by 

71" k=l  Xk 

+q2(,__1+. 
The resulting torque-rotation relationship of the disk as a func- 
tion of the depth of embedment is shown in Fig. 3. As should 
be apparent from the display, the torsional stiffness 

Krr(1) = TJ® (76)  

assumes, as l ~ 0, the value of 

KTr(0) = (16/3) /za  3, (77)  

which corresponds to the torsional stiffness of a rigid disk 
bonded to the surface of a complete half-space (Pak and Sa- 
phores, 1991 ). As the hole deepens, however, one can see that 
the torsional stiffness of its base would rise quite rapidly, al- 
though the increase is limited to approximately 25 percent as 
l ----) O0 

7 Contact  Stress Distr ibution 

In accordance with (6)  and (34) ,  the contact stress distribu- 
tion underneath the disk can be represented as 

rzo(r, I) = 2 f 7  k~(P, ~ - [)~(~)d~, P < 1 (78) 
# 7r 

where 

fo ° l~(r() ((d)dG (79) k~(r, d) = I2(~) sin 

# = r/a. (80) 

As can be easily deduced from (40) ,  (48) ,  (54) ,  and (78) ,  
%o(r, l) has a singularity of the order 32- as r ~ a for I > 0. 

For the evaluation of the kernel (79) ,  one can prove by 
contour integration that 

~ Jl(ry,,) kr(r,d) = 27rr + 7r e-Y,, d, r < 1. (81)  
,=1 Ji(Y,) 

Equation (81 ) can be used to compute kr accurately for interme- 
diate and large values of d. For smaller or zero values of the 
argument, however, the following representation is more effec- 
tive: 

(b~d(1-b l2 /2)  l ~ , ) E ( b l )  
kr(r, d) = 2(1 - ~2)~3~2 b 2 

+(3bL~_r ''z 3d 
~37i ]F(b,) 

3 r ( 1  b l2'~ I/2 
+ T -- b2]  (1 - bz)'/2H(bl, b:) 

fo ° ( L(r~) 5 
+ \ 12(~) 4 ~Kl(~)l,(r~) 

3 ) 
-- ~ ~g3(~)ll(r~) sin (~d)dG r < 1 (82) 

where 

o I  
4r 4r 

bE - - -  (83)  
(1 + r) 2 + d  z '  (1 + r)  2 '  

f 
Tr/2 

E(b) = x/1 - b 2 sin 2 qSd~b, (84)  
~ 0  

r ~/2 1 
F(b) = dc k, (85) 

,,o x/1 - b 2 sin 2 & 

f l  ~/2 d6.  (86)  
1 

l-I(bl, b : )  = 41 - b 2 sin 2 ~b(1 - b: sin 2 th) 

In the above, E(b), F(b) and H(b l ,  b2) can be evaluated as 
standard complete elliptic integrals of the first, second, and third 

1.4 ~ ~ ~ , 

- -  I/a= t 
_~ . . . .  I/a=.1 

1 . 2 -  - -  . . . .  l / a = , 0 5  
, E  
, =  - . . . .  l / a = . O l  

¢ 1 . o -  - - - - l / = = , o o i  

0 . 8 -  

0 .6  , , : , 
0 .0  0 2 0 .4  0 6 0 .8  

# a  

F i g .  4 C o n t a c t  s h e a r  s t r e s s  d i s t r i b u t i o n  
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kinds, respectively, while the integral in (82) can be computed 
accurately by quadrature. 

With the aid of the foregoing procedures, the contact shear 
stress distribution can be determined by 

Tz°(r'l)-2 ~ WkT(vk)~kr(,,~). 
# 7rk=l (87) 

Typical results are shown in Fig. 4 where they are normalized 
by the contact stress distribution 

q-zOo ( r ) 3 r 

To 47ra3 a ~ -  r 2 
(88) 

for a rigid disk acting on the surface of an unindented half- 
space (Pak and Saphores, 1991). As l ~ 0, one can see that 
the solution for the indented half-space would approach the one 
for a smooth half-space except for some boundary layer effects 
at the edge of the disk. The latter phenomenon can, however, 
be anticipated in view of the difference in the fundamental 
singularities inherent in the two boundary value problems. 
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Stress Concentration Factors at 
an Elliptical Hole on the 
Interface Between Bonded 
Dissimilar Half-Planes Under 
Bending Moment 
The problem of  thin plate bending of  two bonded half-planes with an elliptical hole 
on the interface and interface cracks on its both sides is presented. A uniformly 
distributed bending moment applied at the remote ends of  the interface is considered. 
The complex stress functions approach together with the rational mapping function 
technique are used in the analysis. The solution is obtained in closed form. Distribu- 
tions of  bending and torsional moments, the stress concentration factor as well as 
the stress intensity factor, are given for  all possible dimensions of  the elliptical hole, 
various material constants, and rigidity ratios. 

Introduct ion  
In bimaterial structures, damage can occur from holes, 

scratches, and defects which reduce the load carrying capacity 
of large categories of structures used in modem technology. 
The bimaterial system is required to act as a single unit, in that 
the loads are transmitted from one material to the next through 
interfaces. The presence of holes or cracks in one of the two 
materials or at the interface could cause high elevation of local 
stresses and failure could supervene. The problem of stress 
concentration around holes at the interface between bonded 
dissimilar half-planes is a problem of invariable practical inter- 
est. The problem of stress concentration around holes in a homo- 
geneoUs infinite plate is found in a book by Savin (1961) for 
different shapes of a hole. In the present paper, the formulations 
given by Savin (1961) for the plate bending in terms of the 
complex stress functions are used. The focus of the present 
investigation is on the derivation of a general analytical solution 
to the problem of thin plate bending of two bonded dissimilar 
half-planes with an elliptical hole on the interface and interface 
cracks on its both sides and to employ this solution to determine 
some physical quantities such as the stress concentration factor. 
The complex stress functions approach together with the ratio- 
nal mapping function technique are used in the analysis. The 
problem is considered for a uniformly distributed bending mo- 
ment applied at the remote ends of the interface. Examples of 
the distributions of bending and torsional moment along the 
interface and boundaries of the hole are shown. Stress concen- 
tration factor is calculated for all possible hole dimensions, 
several material constants and rigidity ratios. An expression for 
the stress concentration factor is derived and its accuracy is 
investigated. The stress intensity factor is derived for the case 
when the elliptical hole becomes very sharp and can be consid- 
ered as a crack penetrating the two materials. Values of the 
stress intensity factor are expressed in terms of the complex 
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stress functions and the stress concentration factor, respectively. 
A comparison between the two expressions is carried out and 
their accuracy are investigated. 

Analyt ica l  M e t h o d  

Figure 1 (a)  shows two bonded dissimilar half-planes and an 
elliptical hole with an interface crack on its both sides. The two 
half-planes are symmetrically bonded along the X-axis which 
coincides with one of the principal axes of the hole. The material 
at Y ~ 0 is referred to by material 1, while material 2 is that 
at Y ~ 0. Material 1 is rotated about the X-axis as shown in 
Fig. 1 (b) so as to facilitate the analysis scheme which is carried 
out accordingly. Symbols and subscripts of the components 
of bending moments, torsional moments, deflections, bending 
forces, and rotations are indicated by capital letters in Fig. 1 (a)  
and by small letters in Fig. 1 (b) .  A mapping function by means 
of which materials 1 and 2 in Fig. 1 (b) are mapped into the 
unit circles of the tj-planes, ( j  = 1, 2) (see Fig. 1 (c)) ,  respec- 
tively, is expressed as follows: 

zj = - i a  1 + t j  _ i b ~  ~/1 + t~ ( l a )  
1 - t j  1 - t j  

1 + t~ i b ~  
zj = - i a  - -  

1 - t j  1 - t j  

t=l 1 + ~lt--------~ + At + C ( lb )  

N= 2m Ek 
E____.~__ + ~ + Ec ( l c )  

zJ = w( ti) = 1 -  tj k=l= 

where N = 28 is used in this paper. The rational mapping 
function in ( l b )  is derived from the irrational mapping function 
of ( l a )  and then ( l b )  is expressed in the form of ( l c ) .  The 
procedure of deriving the rational mapping function is not stated 
in this paper for the sake of briefing, and it has been thoroughly 
demonstrated in (Hasebe and Inohara, 1980). Values of Aj and 
cej of ( l b )  are given in Table 1 in Hasebe et al. (1994). The 
bonded boundary is denoted by M, while the unbonded bound- 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 7 

Copyright © 1996 by ASME
Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



aries are denoted by Lj (see Fig. 1 (b)).  Points on the interface 
M of Fig. 1 (a) have the same coordinates which corresponds 
to t~ = t~ on the unit circles. Thus, the boundary conditions on 
the interface can be expressed in terms of a single variable 
which satisfies a = 1/~ on the unit circle. Bending moments, 
torsional moments, deflections, bending forces, and rotations in 
Figs. l ( a )  and l (b )  are related as 

Mr~ = - m y  I, Mrs =my 2, Mx, = - m x , ,  Mx~ =m,2 (2a) 

Mxtg I = mx,y,, Mx2r2 = mx:~, W, = -w , ,  Wa = w2 (2b) 

fPYldS:fpyldS, fP~2ds=fPy2ds (2C) 

OW l OWl OW2 Ow2 OWl OWl 

OX1 OXl ' OX2 Ox2 ' O Y1 Oyl ' 

OW~_ Ow2 
(2d) 

O Y~ Oy2 " 

Moments, forces, deflections, and rotations are calculated in 
accordance with the stress functions derived in the analytical 
plane (z:planes) of Fig. 1 (b), and those on the physical plane 
(see Fig. 1 (a)) are obtained using (2). Bending and torsional 
moments are given in terms of the complex stress functions 
~j(tj), @j(tj), ( j  = 1, 2) as follows (Savin, 1961): 

m~: + myj = -4Dj(1 + u:) Re[ 4':(tj) ] (3a) 
L~'(t~) J 

mr, - m~: + 2imp:y: 

.r [ 4 , : u : ) ] '  + . Oj (tj) 
= 2D,(I - u p ~ . ~ -  Lw'(tJ)._J ~'(t:) J (3b) 

Since a uniformly distributed bending moment applied at infin- 
ity in the X-direction is considered, each of the stress functions 
is divided into two parts as follows: 

q~g(tj) = qS~(tj) + qb~(tj), ~:(tj) = ~)~(tj) + ~ ( t j )  (4a) 

where 4))~(tj) and O:(tj) are the stress functions representing 
the state of stresses at the remote ends of the half-planes for 
the uniformly distributed bending moments and are obtained by 
substituting the values of the applied moments Me and/zM0 in 
(3a) and (3b) as follows: 

~b~(q) = Mo ~(tl) ,  
4D1(1 + ul) 

~b2a(t2) - # g 0  w(t2), (4b) 
4D2(1 + u2) 

~ ( t , )  - Mo co(q), 
2D1(1 - ul) 

o a ( h  ) = - #Mo c~(tz) (4c) 
4D2(1 - uz) 

D2(1 - .,~) 
# - D,( I  - v~) ' (5) 

The bending moment applied at material 1 is Mo, while to keep 
the continuity of rotations at the remote ends, a bending moment 
of magnitude/zM0 must be applied at material 2 (see Appen- 
dix). The boundary conditions of the external force and rota- 
tions are expressed in terms of the two complex stress functions, 
49i(t:), ¢:(ti), ( j  = 1, 2) as follows (Savin, 1961): 

- , 9 , b ( a )  + 4 : ( ~ )  + qJj(cr) = D:(1 - vj) 

x [ f :  ( m . )  + i + ia: + (6) 

M° l Material 1 
(Dr,w) 

~M l Material 2 
(D~,vg 

Mo I 
M D 

~Y 
iC21 apalCl I 

@ I" 
D C ~b I ~tM° 

(a/ 

C M l x] Material 1 Mo 
z>Plane 

y? 
M D T C M 

~M 1 ~ : J  Material 2 II ~MO 
~ L 2  z2-Plane 

(b) 
i El 

-1 1 -1 1 
B 

-iFt -iF2 
ti-Plane (c) ~-Plane 

Fig. 1 (a) Geometry and coordinate system of two bonded dissimilar 
half-planes with an elliptical hole on the interface and interface cracks 
on its both sides; (b) zFplanes of materials 1 and 2; (c) unit circles of 
materials 1 and 2 

~J(Cr) + (a.}t(O') (~j(O') + I~'j(O') = \ " ~ j -  + i " ~ ' /  (7 )  

where Kj = (3 + uj)/( 1 - uj), 1.9 is Poisson's ratio, D: is the 
flexural rigidity defined by Ejh}/[12( 1 - u~)], Ej is Young's 
modulus, and hj is the thickness of the plate. The integral with 
respect to s represents integration along the boundary line. m (s) 
and p ( s )  are the bending moment and bending force per unit 
length along the boundary line, respectively, aj and b i are the 
real and complex constants of integration, respectively, which 
are set equal to zero in the present paper (Savin, 1961 ). The 
complex stress function ~Og(tfl is given by analytic continuation 
of stresses as follows (Muskhelishvili, 1963): 

- -  ~(1/tj) 
~bi(tj) = K:~bj(1/tj) co'(tj) 4)j(tj). (8) 

The boundary condition on L: is obtained by substituting from 
(8), (4a), and (4b) in (6) as follows: 

- 1  6~+(~) - 6 ~ - ( o )  - ,gDA1 - v ~ )  

x [ fn (m(s) + i fnp(s)ds)dz] -~ hn(~) (9) 

where 

~b~+(~) = ~b~-(~). (10) 

The superscripts + and - are the limit values of the function 
~b:(6) as approaching the boundary from regions Sf and S 7, 
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respectively, (see Fig. 1 (c) ) .  Since the externally applied bend- 
ing moments are considered by the functions ~b~(t~) and 
q~,A(t~) h i ( a )  = 0. The boundary conditions on M are the 
continuatmn of moments and rotatmns. The continuity of 
stresses is expressed in view of (2) as follows: 

[fM (myl + ifMPyIdS) dzl] 

=-[L(my -if p,/s)dz ] (ix) 

which is expressed in terms of the complex stress functions in 
view of (6) and (8) by 

,kT(~) - ,~i-(~r) 

_ ~2D2(i - //2) [qb~(~r) - qb~(cr)], (12) 
~lD~(1 //l) 

and it can be further simplified using (4a)  and (10) as follows: 

_ ~ z D ~ ( l  - //2) [~b~+(t7) _ qS~ ( c r ) ] .  ( 1 3 )  
~ l D l ( l  -- //I) 

Similarly, continuity of rotations along the bonded interface is 
expressed in view of (2) as follows: 

( O w l + i O w , ~ = _ ( O w ~  iOwz) 
OXl Oyl ] \ OX~ Oyz / " (14) 

Using (7) and (8) ,  (14) can be written in terms of the complex 
stress functions by 

~ t ( ~ )  + ~4,7(o-) = - [ ~ ( ~ r )  + ~4~2(o)],  (15) 

which is expressed using (4a)  and (10) as follows: 

= -[ th~+(cr)  + xz~b~-(cr)] + D,(cr) (16) 

mo 
Dl(o ' )  - [w(a )  - w(cr)]. (17) 

D i ( I  - //~) 

Since on M we have 

thus, Dl (o  ~) = 0. 
Consider the function 01 (h )  defined by 

Or(t,) = ~ ( t t )  ~2D~(1 - //2) 4~(1H~).  (19) 
K~D~(1 - //~) 

Equation (13) can be written in terms of the function 01 ( t l )  as 
follows: 

0i~(~r) - 0~-(a) = 0. (20) 

The solution of (20) is given by an arbitrary rational function 
gi (t~) (Muskhelishvili, 1963): 

~=D~(1 - u2) th~(1/Tl ) = gl(ti). (21) 
01(ti) = ~b~(ti) x ,Dl (1  //1) 

On the boundary, the following relation holds: 

g~(cr) = g?(t7)  -~ g~(a)  (22) 

From (21) the two limit values of ~b2n(l/~) are expressed by 

qS~+(l/~ ) _ K,D,(1 - u~) (45~_(cr) _ g,(a))  (23a) 
K2D2(1 -- //2) 

qb~ (l/W) - K1D,(1 - ui)  ( ~ + ( ~ r )  - g,(~r)). (23b) 
K2D2(1 u2) 

Substituting (23a) and (23b) in (16),  the boundary condition 
on M is expressed as follows: 

t~la+(O ") + ~. l(b~-(O')  = T l g l ( t 7 )  + hiM(O')  ( 2 4 a )  

K 2 D 2 ( I  - //2) hiM(~r) = Dl(a)  (24b) 
tc2D2(1 - u2) + K2KiDI(1 -- Ul) 

K1K2D2(1 -- Uz) + ~clDl(1 - //I) 
kl = (24c)  

tc2D2(1 - u2) + K2KiDi(I -- ul)  

(1 + K2)KiDi(1 -- Ul) 
71 = (24d)  

tczD2(1 - u2) + ~c2KiD~(1 - ul)  

The problem of obtaining ~b~(t~ ) is reduced to the Riemann- 
Hilbert problem of (9) on Lj and (24a) on M. Similarly, the 
function ~b~(t2) can be obtained by merely interchanging the 
subscripts 1 and 2 in the foregoing derivations. The coefficients 
of (a~(tz) corresponding to (24b) ,  (24c) ,  and (24d)  are 

tqDl(1 - ui)  
h2M(a) = D2(cr) (25a) 

KID1(1  -- P l )  + KiKzD2(1  -- //2) 

l K2KIDI( 1 -- / /I)  + KzD2(1  -- //2) 
~ 2  - -  - (25b) 

k I KIDI(1 -- Ul) + Ki~2Dz(1 - u2) 

(1 + K i ) K 2 D 2 ( I  -- 1/2) 
y~ = (25c)  

t<lD~(1 - u~) + KdqD2(1 - //z) 

Derivat ion of  General  Solut ion 

The general solution of Riemann-Hilbert problem is first de- 
rived for ~lB( t l )  in the q-plane as follows (Muskhelishvili, 
1963 ) : 

q~( t l )  = Hl ( t i )  + Ylxl(tl______) fM 
gl(a)  

&r 
27ri X~(cr)(~r -- q )  

+ X~(fi)Pl(tl) (26a) 

_ xl(t l)  f hL~(cr) dcr Hl( t l )  
27ri JLt X=(O-)(cr - tl) 

X,(tl) fM hiM(dr) da. + (26b) 
27ri X i ( ~  ~ t,) 

Noting that hL,(a) = 0. Also, since D l ( a )  defined by (17) 
vanishes, thus, hiu(~r) = 0, and consequently H1 (fi) = 0 except 
for the constant of integration. The function Pi (t l)  is an arbi- 
trary rational function. Plemelj function Xl(fi)  is defined as 
follows: 

Xl(tJ) = (tl - O~)'n'(tl -- /~) i - ,n ,  (27a) 

ml = 0.5 + /(In kl)/(27r).  (27b) 

a and fl are the points in the ti-plane (and t2-plane) correspond- 
ing to junctures C and D of boundaries Lj with M. Since X~ (t~) 
is a multivalued function, the branch X i (t~)/t~ ~ 1 is chosen 
for ti ~ ~.  Plemelj function, X~ (t~) has the following relation- 
ships on the boundaries: 

X ~ - ( c r ) = - k t X ; ( c r )  on M (28a)  

X ? ( ~ r ) = X ; ( C r )  on Li. (28b) 

The function gl(h) is assumed as the summation of two frac- 
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tional expressions which are regular in S~ and Si-, respectively, 
as follows: 

gl(tl) = k ~ at___.A_ - + ~ bl~ (29) 
~lk -- tl k ~Ik -- tt 

where {~k, rh~, a~k, and bib are unknown complex constants, but 
the value of 1~1~] is greater than one and the value of [the [ is 
less than one. The contour integral of gl (h) of (26a) is changed 
into line integral surrounding M, and is carried out using the 
residue theorem as follows: 

"Yix1 (tt) f gl (~)  dcr 
2rri du X ~ ( a - ~  7- h) 

_ T1XI(tl) O~  gl(o')  do- 
27ri(1 + hi) ,TM Xi~(a)(c r - h) 

_ y__._.!~ ( k~ ( 1 Xl(tl) ) al...~k 
(1 ÷ hi) Xl((lk) ~1~ - tl 

S ' (  xl(t i)  '~ blk "~ (30) + 
7 \  1 Xl~l~) ] rllk -- t l J  ' 

The function in (26a), Pl ( t l ) ,  is determined by utilizing the 
regular characteristic of the complex stress function O~(h) of 
(8) in Si ~. Substituting (4a) and (4b) in (8) we get 

0f ( t t )  = Kt~bla(l/tl-- ~ ~ (1 / t l )  ¢;B(tj ) 
w'(h) 

Mo 
2D1(1 - /)l) 

[ w ( t , ) - ~ ( l / h ) ] .  (31) 

Expanding the second term _ in the fight-hand side of (31 ) in 
Laurent's series at tl = 1/¢~ --- ¢~, we get 

~(1/h) (/jIB(el) = -- ~ Ai~B~¢~,____._______~ + regular terms in Si ~ (32) 
w'(tl) k=l ¢; - -  t, 

where A,~ = ¢1~(¢;) ;  B~ -= Eklw'(~) ,  (k = 1, 2 . . . . .  N). 
The first term on the fight-hand side of (31) is expressed by 

substituting (30) in (26a) and expressing ~bf(h) in (26a) as 
~ ( 1 1 h )  as follows: 

~ ( 1 / h )  = Xl(1/h)Pl( l /h)  

+ (1 + kl) Xl(~lk) ~l~--~'lltl 

+ ~ (1  Xl(1/h) ,~  ~ ] 
Xi(~i~) / ~ -  I / h J  

= - -  (34c) 
Xt(¢~) tiX~(¢'~) 

and (Jk ------ 1/{~'--~; r/J~ ------ 1 / ~ ;  ~ ------ 1 /~ .  Substituting (32) and 
(33) into (31 ), the function ff ~ (h) is expressed with its irregu- 
lar terms in the unit circle as follows: 

O f ( h )  = t q X l ( l l h ) P , ( l l h )  + T1~g--"----L-- 
(1 + X~) 

X 1 X2(tl) - -  ¢2 AlkBk~;2 

Mo ~ ~7¢~: 
2D1(1 -- u,) k=l ¢; - t t  

+ regular terms in S~. (35) 

The second term in the fight-hand side of (35) is regular at tl 
= (~k, while the third and the fourth terms have poles at tl = 
~ .  The function 0 f ( h )  must be regular inside the unit circle 
and consequently the irregular terms should cancel out. Ex- 
panding the first term in the right-hand side of (35) in a 
Laurent's series at h = ~ and equating the first, third, and 
fourth terms to zero, the function P1 (tl) is finally given by 

- -  M o E ~  

Pl(h) = 1 ~ AigBk 2D1(1 - ul) 
(36) 

The unknown constants of the function g l(tl ) defined in (29) 
are obtained using (21) as follows: 

x2D2(1 - u2) ~bf(1/71) 
e l ( h )  ~:1D1(1 v,) 

_ Tt { xl(t,) ~ a,~ 
1 + k l ~  1 X T ~ 7 7 i J { l , - t t  

{ }-- K:D2(1 - u2) y :  ~ 1 X~(tl) b2__.JJ_~( 
+ KID1(1 ul) 1 + k2 Xl(~7~k) rl~k - h 

M0 Ek 
AlkBk 

+--1 ,y. Xl(h) 2Dl(1 - ul) + - - Y l  

Kt "~" X1(~k) ~k -- tl 1 + hi 

× ~ { 1  Xl(tl) } blk + K2D2(1 -- v2) "Y2 
xl(rhk) rhk-- tl KtDi(1 -- ul) 1 + k2 

where 

= Xl(1/77)P,(1/tT) + "Y._____L........_ 
(1 + hi) 

X k~ (1  X2( t lA  / -----~lk--~lt--k2 

+ regular terms in Si ~ (33) 

Xl(1/h)  ' t (1~X2(1) 

Xi(~lk) tlX2(~k) 

X1(11~1) /7[kX2(tl) 

~1('01k) t lX2(~{k) 

(34a) 

(34b) 

x ~ {1 Xl(tl___.....)_~ a2-7{;k 2 + K=D2(1 - u2) 1 

Xl((~k) J {~ - h K1Di(1 - ul) x2 

~M~Ek~ 2 
A2kBk~ 2 + 

× ~ X1(/1) 2D2(1 - u2) (37) 

k Xt(¢~) ¢~ -- t, 

The term X2(1/h) contained in ~b2(1/h) is replaced by X~(h) 
as in (34a), (34b), and (34c), where m2 = ~ .  Relations (19) 
and (37) which give the function g1(h) are equal. Therefore, 
their poles in S~ and $7 must be equal and the coefficients of 
each pole are equal as well, which include or exclude the Hem- 
elj functions. Thus, companng the coefficients of the poles in 
the two equations, gl(tl) is determined as follows: 
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MoE~ 
AlkB~ 

1 V 2 0 , ( 1  - u ,)  
g l ( t l )  

K I  k ~k - ti 

A~kBk~ 2 + 
+ .~2D~(1 - u2) 1 ~ 2D2(1 - u2) (38) 

KiD~(1 -- u~) ~2 ~ ~ - h 

The complex stress function q~ (tx) is obtained by (26a),  (30) ,  
(36),  and (38) and is finally expressed by 

4~f(t~) = yl  
1 + k t  Ii {, 

X ~k=~ 
1 + M - 7~ X ~ ( h ) ~  + 

J 

MoEk 
A ~B~ 

2D~(1 - u~) ~D~(1  - u2) 1 × + 
~k -- tl ~1D1(1 - -  / J 1 )  1(2 

m 

#MoE~; z 

202(1 - t)~) 
, ( 3 9 )  

M o l  

Wa, III1\ ! 

2 Ilk'? f y M , ,  ~,6,0 
(a) M~ol Mo~Mo 
~o ~o 

Yla 

"IN 
0 ~ ~ X/a 

I 11 ? 

III1/ 0 ) = 

Fig. 2 Distributions of bending and torsional moment along the hole 
and the interface between the two bonded dissimilar half-planes, D=/D~ 
= 0.5; v~ = 0.5; v= = 0.25. (a) C l / a  = C=/a = 1; a / b  = 1. (b) C l / a  = C~/ 
a; b / a  = ~. 

_ _ _  [ D 2 ( 1  - u 2 )  ] Similarly, the function qb~(tz) is obtained and is expressed by D2(1 - u 2) Mx, + u2 ul Mr (41) 

Mx~ D~(1 2 u~) D,(1 u~) 
~g(t~)  = - J - x -  

1 + k 2  

1 1 + X2 - Y2 X2(h) The stress concentration factor, SCF at points A and B, is 
× 1 +  k=l 72 Xa(~k) calculated for various elliptic holes and is defined by 

St = M~i/Mo, SB = M~z/tzMo (42) 

where Max1 and MBxz are the bending moments at points A and 
B, respectively. In Fig. 3 the variation of the SCF is shown 
versus the a/b ratio, and for different values of the rigidity 
ratio. S~ is the SCF at point A for a rigidity ratio equal to D2/ 

I~MoEk 
A2kBk + 

2Dz(1 - U2) K1DI(1 -- Ul) 1 × + 
~k -- tz KzD2(1 -- U2) K1 

B 

× ~ { 1  X2(h) ~ AIkB'-~2 M°Ek~2 
_ _  2 D 1 ( 1  - ul) 

• ( 4 0 )  

The unknown constants Alk and A2k can be determined using 
the relations, aik = ~b~8(~/,), a2k = ~b~B(~[), (k = 1, 2 . . . . .  
N),  and solving 4N simultaneous linear system of equations 
with respect to the real and imaginary parts of A~k and A2k. 

S t r e s s  D i s t r i b u t i o n s  

Two examples of stress distributions are shown for the fol- 
lowing parameters; rigidity ratio, 02/01 = 0.5, Poisson's ratio 
of material 1, u~ = 0.5, and that of material 2, u2 = 0.25. 
Since the shape is symmetrical with respect to the Y-axis, the 
distributions are shown for X -> 0. In Fig. 2 ( a )  the hole shape 
is circular with the lengths of the interface cracks C~ = Cz = 
a while in Fig. 2 (b )  the hole shape is the ellipse of ratio b/a 
= 1.5 with the length of the interface cracks C1 = C2 = a. It is 
obvious that as the ratio a/b decreases (i.e., the ellipse becomes 
sharper) the maximum values of the bending moments, Mo~ and 
Moz increase, then the problem becomes a model of two bonded 
half-planes with a crack penetrating the two materials. On the 
boundary M, we have Mr, = My2 ~ My. In addition the follow- 
ing relationship holds among M×~, Mx2, and My on M, (Hasebe 
and Salama, 1994a). 

10.C 

SA 
SB 

8.0 

6.0 

4.0 

2.0 

0,0 

0.0 
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SA 
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40.0 

t ,  DgDl=0.5 

.................... SA """ -. 

. . . . . . . . .  0.0 
a/b 1.0 b/a 0.0 

30.0 

20.0 

I0,0 

Fig. 3 Stress concentration factors at points A and B for rigidity ratios 
of D=/DI  = 0, 0.5, 1 and 10000, vl = v= = 0.25 and lengths of interface 
cracks are C~ = C= = 0 and C l / a  = C=/a = 4 
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Fig. 4 Stress concentration factors at points A and B for different values 
of Poisson's ratio and for a rigidity ratio of D2/D~ = 0.5 and lengths of 
interface cracks are C~ = C= = 0 

D~ = 10000 which represents the bending of bonded elastic to 
rigid materials. The problem of bending of a half-plane with an 
semi-elliptic hole is demonstrated by the curve D2 = 0 for which 
the values of Sa coincide with the results of Hasebe (1972).  
When D2 = ~ the values of the SCF of material 1 are equal to 
zero, that is because material 1 is considered fixed at its both 
ends which are expressed by the line X~ = oo and xl = - ~  and 
at these two lines Ow~/Oxt = 0. The values of the SCF for D2/ 
D~ = 1 and u2 = u~ are found to be exactly equal with the 
values given for the case of bending of a homogeneous infinite 
plate with an elliptic hole by Savin ( 1961 ) for which the values 
of SA and SB are equal. The values of SA are also equal to those 
of a half-plane and there is no difference in the figure. In order 
to investigate the dependence of the SCF on the lengths of the 
interface cracks, two special cases in which the lengths of the 
interface cracks are given as C~ = Cz = 0 and C~ = Ca = 4a 
are considered. The values of the SCF are found to have a 
negligible difference, which can be seen in Fig. 3, corresponding 
curves are coincident. Also, as the ratio a/b approaches zero, 
the problem tends to that of bending of two half-planes with a 
through crack in both materials, for which the SCF represents 
the stress at the tip of the crack and can be taken as a measure 
of the stress intensity factor for that particular problem. While, 
as the ratio b/a approaches zero the problem tends to that of 
bending of two half-planes with an interface crack for which 
the SCF in all curves of Fig. 3 approach a value of one. In Fig. 
4 the values of the SCF are shown versus a/b and for different 
values of Poisson's ratio, the solid lines and the dashed lines 
show the values of the SCF at points A and B, respectively, for 
a rigidity ratio equal to D2/D~ = 0.5 and the lengths of the 
interface cracks are Ct = Cz = 0. From Figs. 3 and 4, it is clear 
that the SCF is rather dependent on the Poisson's ratio other 
than the lengths of the interface cracks. 

The SCF of bending of a homogeneous infinite plate with 
an elliptic hole is given by the following closed form (Savin, 
1961): 

SEI4 = Mmax = 1 + 2(1 + u) 
M0 (3 + u ~  (43) 

where u is the Poisson's ratio and p is the radius of curvature 
at points A and B, and has the relation p = aZ/b. A comparison 
between (43) and our results for the homogeneous case is car- 
ried out for some of Poisson's ratios and the ratio of the radius 
of curvature to the major axes length, b shown in (43) ,  and the 
results were found to be identical. A general expression for the 
SCF is derived as follows: 

SCF = Z kjp"J (44) 
j=l 

where kj are the coefficients determined from the boundary 
conditions and the shape, nj are the roots of the characteristic 
equation (Hasebe, 1971; Hasebe and Kutanda, 1978). The first 
three terms of (44) are considered for an approximate expres- 
sion as follows: 

S a o r S B = k x ~ + k 2 + k 3 ~  (45) 

where nl = -0 .5 ,  n2 = 0 and n 3  = 0.5 in (44) owing to the 
elliptical shape of the hole. The coefficients in (45) are deter- 
mined for different material constants and rigidity ratios and 
for C1 = Cz = 0. Using the least squares method and the analyti- 
cal results, the values of k~, k2, and k3 are obtained and are 
shown in Table 1. The used 100 data for each of SA and SB are 
those of a/b ranges from 0.01 to 1 at an increment of 0.01. The 
SCF, approximate values and errors of (45) are demonstrated 
in Table 2. Judging from Table 2, relation (45) is considered 
as a good approximation. 

Stress Intens i ty  Factor  

The case of a/b equal to zero represents a through crack in 
both materials for which the SIF is obtained. The bending and 
torsional moments are expressed in the vicinity of the crack on 
the X-axis as follows (Hasebe and Iida, 1979): 

( 0 _  k~ sin ~ ) (46) 2 k~ cos - s M~ + M x j = " ~  2 

1 
M5 - Mxj + 2iMxj~ = 2(1 + uj) 2~r [{(7 + uj)k~ 

+ i(5 + 3uj)k~} exp(-iO/2) + (1 - uj)(k~ - ikJs) 

× exp(-5iO/2)] (47) 

where r and 0 are the polar coordinates measured, respectively, 
from the crack tip and from the line of extension of crack, k~ 
and k~ are the SIF for bending and torsional of material j ,  
respectively, and they are expressed in terms of the stress func- 
tions Cj(tj) as follows: 

Table 1 Values of kl,  k2, and k3 of (46) for SA for Poisson's ratios of Vl = v2 = 0, 0.25, and 0.5 

D2/D t = 0 D2/DI = 015 D2/DL = 108 

ul = u2 0.0 0.25 0.50 0.0 0.25 0.50 0.0 0.25 0.50 

kl 0.673 0.772 0.857 0.595 0.674 0.74 3.735 8.092 20.670 
k2 1.001 1.006 1.011 1.009 1.011 1.012 1.214 1.653 3.294 
k3 -0.006 -0.010 -0.013 -0.010 -0.012 -0.013 -0.150 -0.405 -1.284 
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Table  2 Error percentage between the calculated values 
of the SCF and (46) .  D 2 / D ~  = 0.5, 1,1 = ~2 = 0.25 and C1 = 
C2 = 0. 

p/b Sa Eq. (46) Error percent 

0.0100 68.4003 68.4209 -0.0302 
0.0200 34.7339 34.7156 0.0527 
0.0300 23.4969 23.4804 0.0702 
0.0400 17.8756 17.8627 0.0719 
0.0500 14.5019 14.4921 0.0675 
0.1000 7.7526 7.7505 0.0274 
0.2000 4.3769 4.3788 -0.0432 
0.3000 3.2515 3.2541 -0.0805 
0.4000 2.6888 2.6912 -0.0892 
0.5000 2.3511 2.3530 -0.0800 
0.6000 2.1260 2.1271 -0.0524 
0.7000 1.9652 1.9654 -0.0126 
0.8000 1.8446 1.8439 0.0376 
0.9000 1.7508 1.7491 0.0962 
1.0000 1.6758 1.6731 0.1641 

k£ - i k ~  

= -2~/2Dj(1 + uj) e x p ( - i t / 2 ) q ) ] ( t o ) / J ~ o )  (48)  

where to = - 1 is the value of  tj on the unit  circle which corre- 
sponds to the crack tip. 6 is the angle between the X-axis and 
the direction of the crack, 6 = - 7 r / 2  as the crack is in the Y- 
direction. The fol lowing nondimensional  SIF is used: 

F a  _ (3 + V~) k~ FB _ (3 + /-/2) k~ , (49)  

(1 + /]l) M0~fb ' (1 + v2) #Mo~/b 

The variation of the SIF of  F A and F R for materials 1 and 2, 
respectively, is shown in Fig. 5 versus the rigidity ratio and for 
different values of Poisson 's  ratios. The stress intensity factor 
is related to the SCF at points A and B by 

1 3 + u l  
Ka - lim ~ p M  A, 

2 1 + /Jl p~o 

Kn 1 3 + u2 lim ~pM~x2 (50)  
2 1 + v2 0-,o 

where KA and Kn are the SIF at points A and B for bending 
(Hasebe and Kutanda, 1978).  A nondimensional ized form of  

2° IFA, , A t2°°FB 
1.6[". ~ BV 7 1  ~ j16.0 

,, . . . . . . . . . .  F B 

1.2 ;, vl=v2=0.0 12.0 

0.8 8.0 

0.4 4.0 

0.0 0.0 
0.0 0.2 0.4 0.6 0.8 1.0 

D2/D1 

Fig. 5 Stress intensity factors at points A and B versus the flexural 
rigidity ratios D2/DI, Poisson's ratios of ~1 = Y2 = 0, 0.25 and 0.5 and 
lengths of interface cracks are C~ = C2 = 0 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  

the SIF at points A and B is expressed in terms of the SCF as 
follows: 

1 3 + vl l im ,vx'f~MAl/MO NA 
2 1 + /-'1 p-,o 

N B -  1 3 + V_____ 3 lim~pMx82/#M ° (51)  
2 1 + v2 p-,0 

where the values of  M~/Mo and MBx2/tzMo in (51)  are the SCF 
defined by (45) .  Substituting from (45)  into (51 ), one can see 
that the term which has influence on the SIF is that containing 
k,. A comparison between (49)  and (51)  for some cases is 
carried out and the results show that the values of  the SIF 
obtained by (51)  are nearly equal to those of (49) .  

C o n c l u s i o n s  

A general solution to the problem of thin plate bending of 
partially bonded half-planes with an elliptical hole and interface 
cracks on its both sides was obtained. The closed-form solution 
was obtained using the complex stress functions approach de- 
veloped by Muskhelishvil i  (1963)  and the formulations of 
Savin (1961)  for the thin plate bending together with the ratio- 
nal mapping function technique. Using the technique of the 
mapping function, it enables us to analyze awkwardly shaped 
structures and make the analytical solution feasible. For exam- 
ple, if the mapping function of (Hasebe and Iida, 1979) is used, 
a solution of  bonded dissimilar half-planes with a square hole 
on the interface can be obtained. A comparison between the 
problem of bending of a homogeneous  infinite thin plate with 
an elliptical hole and the results of this paper for the homoge-  
neous case was carried out. Bending and torsional moment  dis- 
tributions on the boundaries  have been obtained and are shown 
in Figs. 2 ( a )  and 2 ( b ) .  The relation of  (41)  among the bending 
moments ,  Mx,, Mx2, and Mr  on the bonded boundary M is 
satisfied. The stress concentrat ion factors, SA and SB have been 
obtained for some material constants and rigidity ratios and all 
dimensions of the elliptical hole. From the figures it is obvious 
that the length of the interface cracks has a negligible effect on 
the stress concentrat ion factor, since there were no such loads 
transmitted between the two materials for the case of  loading 
considered here. The stress concentrat ion factor is shown to 
vary only for different a/b ratios while Poisson 's  ratio also 
shows a small  effect. An expression for the stress concentration 
factor has been obtained by (45)  and its accuracy is investigated 
through a comparison whose results are shown in Table 2. Val- 
ues of the SIF were derived in two expressions for the case 
when the ratio a /b  tends to zero for which the problem tends 
to that of bending of two bonded half-planes with a through 
crack in both the materials. 
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A P P E N D I X  

Derivation of (5) 
Since relation (14) should be satisfied at the remote ends, in 

terms of  the complex stress functions it is expressed by 

w(~) 4~(~) + ~ ,/,A'(~) + ~;(~) 

[ w(a) ~b2a'(~)+~(~)] ' (52) 
= - 4 ' A ( ~ )  + W ' ( ~ r )  

Substituting (4b) into (52) ,  

Mo 
[w(cr)(1 - u,)  + w(~r) (1 + u,)]  

2D1(1 - ul z) 

#Mo 
- [w(cr)(1 -~ L/Z) "}- w ( a ) ( 1  - uz)]. 

2D2(1 - u22) 
(53) 

Noting the relation on the interface of  (18),  # is finally ex- 
pressed as follows: 

Dz(1 - u22) 
/z = D~(1 - u~) ' (54) 
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Frictional Contact Between the 
Surface Wave and a Rigid Strip 
A problem of frictional contact between a running surface wave and a motionless 
rigid strip is considered. The corresponding mixed boundary value problem of elasto- 
dynamics is reduced to a singular integral equation for the normal stress distribution 
and a closed-form solution of it has been found. Boundaries of the contact zone 
are determined from a system of  transcendental equations involving trigonometric 
functions. Also, simple formulae obtained for kinematic characteristics of solution 
(tangential velocity inside the contact area, velocity and slope of the free surface 
outside it). The problem considered represents a limiting case of operating ultrasonic 
motor when it is completely braked by an external tangential load force. 

1 I n t r o d u c t i o n  

Precise theoretical modeling of motion and energy transfor- 
mation in ultrasonic motors is of great interest from both theo- 
retical and practical viewpoints. The general standpoint of the 
author with this respect has been outlined recently (Zharii and 
Ulitko, 1992; Zharii, 1993). 

One of the most interesting types of motors is a traveling 
wave ultrasonic motor. Several attempts to develop its model 
are due to Kurosawa and Ueha (1988), Hirata and Ueha 
(1993),  Suzuki et al. (1990),  but as of today, no consistent 
theory of it has been developed. 

In papers by Zharii (1994) and Zharii and Ulitko (1994), 
two limiting cases of operation of the motor corresponding 
to cases of vanishing and infinitely large friction have been 
considered. Both these cases are, of course, unrealistic. But the 
solutions obtained are surely necessary for the development of 
grounded ideas concerning nature of motion transformation 
from elastic waves to rigid bodies in frictional contact. 

There is one more limiting case that is worthy of consider- 
ation in the course of construction of a complete model of a 
traveling wave ultrasonic motor. We mean a situation when the 
tangential load is equal to the pressing force multiplied by a 
coefficient of dry friction, and consequently, the rotor (rigid 
strip) is completely braked. In this case, evidently, tangential 
stresses in each point of contact area are equal in magnitude to 
the normal pressure multiplied by the friction coefficient. This 
problem is a direct generalization of the smooth contact problem 
considered by Zharii and Ulitko (1994). 

2 F o r m u l a t i o n  o f  a P r o b l e m  

For theoretical modeling, the stator of an ultrasonic motor is 
considered as a piezoceramic plate of thickness h: - h / 2  < z 
< h/2, polarized in the z-direction. The plate is a half-plane in 
shape -oo < x < ~ ,  y > 0 (Fig. 1 ). Vibrations are excited by 
the running electric field, 

Ez = E0 cos (kx - wt), (1) 

where k is the wave number, w is the angular frequency of 
excitation, and k = 27r/k is the wavelength. 
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The rotor is modeled by a rigid strip (Zharii, 1994). The 
equation of motion of the plate in the plane-stress approximation 
is (Grinchenko et al., 1976, 1989): 

c21 grad div u - c2: rot rot u 

--  ( 1  + v)d31c21 grad E~ = 
02U 

(2) 
O t  2 ' 

where u = iUx(X, y, t) + juy(x, y, t) is the displacement vector, 

cl = [ps~l(1 - u2)] -l/z, c2 = [2pslel(1 + u ) ] - u 2  (3) 

are the longitudinal and transverse wave velocities, and u = 
-s~et/s~2 is the Poisson's ratio. These and forthcoming notations 
have been universally accepted (IEEE, 1984; Berlincourt et al., 
1964). 

Taking into account the specific form of excitation, we pass 
on to the movable coordinate system, ~ = x - wt/k, y. In this 

w 2 02u 
- -  = 0. (4) 

k 2 0~ 2 

system, equations of motion (2) become 

c~ grad div u - c~ rot rot u 

+ i(1 + u)d31c12Eok sin k~ 

In the absence of the rotor, excited in the stator are the run- 
ning waves of wavelength k. If now a rigid rotor is pressed to 
the surface y = 0 by means of the force P per unit wavelength 
and per unit thickness, after decaying of the transient process, 
contact areas arise (Fig. 1 ). Also, we suppose that a tangential 
force of magnitude T acts on the rotor in the positive t-direction. 
When T = #P,  the rotor cannot move under the action of 
tangential stresses, and tangential stresses inside the contact 
area are equal in magnitude to the normal pressure multiplied 
by the friction coefficient/.z. 

Further we use a dimensionless coordinate s = k~. Suppose 
that the contact area covers a segment a < s < 6 (Fig. 2). 
Within this zone, normal displacement for an absolutely rigid 
rotor are constant. Therefore, boundary conditions can be writ- 
ten as 

Uy [y=0 : Uy0, T(y l y=0 = # I oy l y=0 = --  #O'y [y=0, 

a < s < &  (5) 

We took here the negative sign because in the slip zone 
tangential stresses are positive while normal ones should be 
negative. Also, we suppose that the tangential velocity is nega- 
tive everywhere inside the contact zone, like in the smooth 
contact problem (Zharii and Ulitko, 1994). The second of the 
above equalities is true only when it is so. Stress resultants are 
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P 

xr~.x, ~ "t ~P 

Fig. 1 Geometry of the problem 

equal to prescribed normal and tangential forces (both P and T 
are posi t ive) ,  

f61k f~lk 
cryd~ = - P ,  T(yd~ = T = i.zP. (6)  

alk ~lk 

On the free surface, both normal and tangential stresses van- 
ish, 

cry]y=0 = 0 ,  T~yly=  0 = 0 ,  

-Tr < s < a a n d 6 < s < T r .  (7)  

In the above equations, quantities a and 6 are so far undeter- 
mined. 

Derivation of an Integral Equation 
Representing unknown contact stresses by the Fourier series, 

so 
cry =-- f ( s )  = ~- + f~ COS ns + f "  sin ns, 

n = l  

go T(y ~- g(s )  = -~ + Y~ g. cos ns + g[, sin ns (8)  
n=l  

= - a f ( s ) ,  - ~ r  < s < 7r, 

and taking into account that the latter equality implies propor- 
tionality between Fourier coefficients of f a n d  g,  we obtain the 
general solution of (4)  in the way similar to that in the previous 
work (Zharii  and Ulitko, 1994). This solution is 

u x = ( 1  + u ) d 3 1 E o ~ [ ( k 2  + y~) 

x - ( k 2  + "Y~)e-VlY + 2Tl'y2e-VzY + 1]  sin s + Uo(y_____) 
AR J 2 

k L L [ - ( k  2 + "y~)e -ny,y + 2"yiT2e -nv2y ] sin ns + 

n=l 

k ~ f, ' ,  
+ ~ ~ - -  [ ( k  2 + ' ~ ) e - n T l Y  _ 2 ] /1 ,y2e-ny2Y]  COS n s  

n 

7..._2 , ~  #f---~ [2k2e "v~Y - (k 2 + y~)e 11~2Y ] COS / iS  
pc~AR n 

# f  " [2k2e "r,y - (k 2 + yZ)e "~2y] sin ns,  Y2 
pcZzAR n n=l 

Uy = (1 + u)d31Eo 

k 2 + y2 _ ( k  2 + y~)e-V~y + 2kZe-r~y Vo(y) 
X - -  COS S + - -  

Yl AR 2 

--~y~ f_2' [ _ ( k  2 + y~)e ,,v,y + 2kZe-.V2y] cos ns  7.___._2___ 1 
+ pc~Ae n n=l  

t 
T----L--~ ~--~l f '.___2 [ _ (k 2 + y2)e-.V~y + 2kZe-.V2y ] sin ns 

+ pcZzAR n 

k ~ #f__2' [_2yiy2e-,,v,y + (k 2 + y2)e-.r2y ] sin ns 
pc~Al~,~=l n 

k V Izf" [2ylg/2e "~'Y 
pc2 Al~ , n 

--  ( k  2 + T~)e -'e2y ] c o s  ns. ( 9 )  

where, as earlier (Zharii, 1994, Zharii and Ulitko, 1994), we 
denoted Y~,2 = (k 2 - ~ 2 / c [ 2 ) m  and AR = (k 2 + y~) 2 - 
4k2y~y2 as the Rayleigh determinant. 

Having written these explicit expressions for displacements, 
we can calculate the tangential particle velocity d~ly=0 = 
-~dufldsly=o and the half-plane boundary slope duy/dsly=o. 
We do this using integral representations of Fourier coefficients 
that follow from (7) and (8) ,  

= - -  f ( s i )  COS nSldSl, 

f l f~ ,', = - f ( s l )  sin nsldsl (10) 
7r 

and the value of sum, 

1 s 
s i n n s  = - c o t - .  (11)  

,,=l 2 2 

In the result of transformations we obtain 

[ lixly=o = - V  cos s + RxA----o ( f ( s )  + cro) 

#l 1 f [  SI--Sds1] ' 
RAo 27r f ( s l )  cot 2 

a .y  F U/sin s + ~___!_ ( f (s )  + Cro) 
ds y=0 k KAo 

1 1 f 2  s t - s  1 + - - - -  f ( s l )  cot dsl . (12) 
A0 27r 2 

Here 

U = --(1 + u)d31Eo 
( k  2 - v ~ ) ( k  ~ + 9,~) 

y1AR 

2ky2 
V = ~ k2~y~rU+ (13) 

F i g .  2 Normal and tangential stresses 
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are amplitudes of the vertical displacement and tangential veloc- 
ity of the boundary y = 0 in the absence of a rotor. Other 
notations mean the amplitude of excitation of  a running wave 
and the pressing force per unit wavelength, 

k 2 + "y~ kP  
A 0 = - ( 1  + u)d3~Eo'pc~ 72 , or0 = ~ .  (14) 

Parameters R, ~, and/.z~ are 

k 2+722' k 27 ,72 - (k  2+722)' 

VT~ 

Note that all notation coincide with those used earlier by Zharii 
(1994) and Zharii and Ulitko (1994),  with the exception of  a 
new quantity #~ and A0 denoted in those papers by A. Now we 
use the notation A for an uppercase a for other needs (see 
below).  

Satisfying the kinematic contact condition 

= 0 ,  ~ < s < 6 ,  
y=0 

that follows from (5) ,  on the base of the second of (12) we 
come to a singular integral equation with respect to an unknown 
function f ( s ) :  

Yj K s~ - s ds~ 
# i f ( s )  + ~ f ( s l )  cot 2 

= - # l c r 0 -  KAosins ,  a < s < 6. (17) 

Transforming both independent and dependent variables, 

S S1 S 
7 = t a n ~ ,  7~ = t a n ~ ,  ~0(7) = f ( s )  cos 2 ~ ,  (18) 

we reorganize (17) to the standard form, 

E #,~(7) + _5_ ~°(__9~)d~7~ 
r 7, 2_-~ - a (7 ) ,  

a 6 
t a n - = A  < 7 < A = t a n - .  

2 2 

The right-hand side is 

1 
G ( 7 )  = - /Zlao 1 + 7 - - - - - -~  

~1 G ( 7 )  - K 1 
~0(7) - #3 + K2 #1 z + K2 ( 7  - A ) ~ - " (  A - rl)" 

1 ~ x  (4 - A ) ' - m (  A - ~)m 
x - j ~  ~ ( ; ) d ~  

C 
+ (22) 

( 7 - A ) '  m(A -- 7 ) " '  

where C is an arbitrary constant. A new parameter m is deter- 
mined as 

1 I n / ~  + iK m = - -  0 - < R e m  < 1. (23)  
27ri #1 - iK '  

(15) In the problem considered, it is a real number and on the base 
of  the latter equality we may introduce the following useful 
quantities: 

#1 , sin m r  = - (24)  c o s m r  : 

An arbitrary constant C can be excluded upon substitution 
of the general solution (22) into the static condition (21).  Inte- 
grating under the integral, we use formulae for integrals listed 

(16) in the Appendix and find that the contribution of  G ( 7 )  vanishes. 
In the result, we obtain 

C = - cro sin mr .  (25) 

After that, using (A6) ,  we calculate three integrals in (22) 
originated by the three addends in (20) and obtain an expression 
for ~o(7) in the form 

~'(7) 
t p (~ )  = (7] -- a ) l - m (  A - 7 ) ' '  ( 2 6 )  

The right-hand side is singular in form at the ends of the contact 
area, so we do not write down an explicit formula here (later 
we will find a more convenient expression). 

Demanding that contact stresses and, due to that, cp, are 
bounded at the ends of the contact area at 7 = A and 7 = A, 
we find that the numerator of this solution must vanish at these 
points, 

~P(A) = ~ ( A )  = 0. (27)  

These conditions result in a system of transcendental equations 
that after some transformations takes the form 

(19) p sin m(6 - a )  - 2rmr _ m sin m r  
2 

6 - a  (1 +m)c~  + (1 - m)6 
X sin sin = 0, 

2 2 

+ Ka0 ~ - 2KAo 7 (20) 
1 + 72 (1 + 72) z ' 

In the transition from (17) to (19) we used the first of static 
conditions (6) that in terms of the new function cp takes the 
form 

fAX cP(7)d7 = --redo. (21 ) 

4 S o l u t i o n  o f  t h e  I n t e g r a l  E q u a t i o n  

An exact general solution of Eq. (19) can be written using 
well-known formulae (see, for example, Mikhlin, 1949). In our 
case we have 

p sin (1 - m)(6  - ol) + 2mTr 
2 - ( 1 - m)~sin mTr 

6 -  oe . ma + ( 2 -  m)6 
× s i n - - s i n  = 0 ,  (28) 

2 2 

where p = - cro/Ao. 
Making use the specific form of representation of ~o(7) (26) 

and conditions (27) expressed by Eqs. (28),  we perform an 
identical transformation 

1 
: ( 7 )  = (7 - a)~-m( A - 7) m 

A -- 7 ~ (A)  
× 6~(7) A A ] A --  A ~b(A) (29) 

and instead of (22) obtain another formula for ~o(7), 
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#a G(rl ) K 
(p(rl) = ilz~ + K 2 #~ + K 2 (rl -- A)m(~x  - rl) a-m 

1 ;A' G ( ~ ) d ~  x - ( 3 0 )  7r (;  _ a ) m ( S  ~ ' ~ - - m ( ;  __ 7) 

Calculating integrals in (30) as described in the Appendix 
(see (A9))  and consistently simplifying the expression obtained 
using Eqs, (28), we obtain the final formula for ~o(~7): 

= 2Ao sin rmr cos ~ ~ cos a-'~ 6 ~o(~7) ~(~7 - A )  m 

s m a  + (1 - m ) 6  + s  (31) X ( A  -- ~ ) a - m  COS 3 -- COS 
2 2 

0.520 
0.516 
0.512 
0.508 

0.540 

0.532 

0.524 

0,516 

0.508 1 J 
0,504 

0 wBon 

Fig. 3 Frequency dependences of the quantity m for different values of 
the coefficient of dry friction: (1)  # = 0.05, (2)  # = 0.1, ( 3 ) / x  = 0.15, (4) 
# = 0.2, (5) # = 0.25 

and, using the last of (18), find the normal stresses distribution, 

f ( s )  = 2Ao sin mTr sin m - -  
S - - O g  

2 

× s i n a _ , . 6 - s  ma + ( 1 - m ) 6 + s  - -  cos (32) 
2 2 

5 Kinematic  Characteristics 
Applying the transformation (18) to expressions (12), we 

obtain necessary formulae for the tangential velocity inside the 
contact area ( a  < s < 6): 

as[y=0 = - V [ c o s  s + -~ sin S 

L R 

1 + / z ~ ( # o + ( r / 2 +  1)~p(rD)], (33) 
+ RKAo 

Here f (s) means  f ( s ) / A o  and 

2 a - s  6 - s  - sin ~ sin l-m 
2 2 

mc~ + (1 - m ) 6  + s 
× cos 

h(s)  = 2 

2 sin" s - a sina_ m s - 6 
2 2 

moL+ (1 - m ) 6  + s 
X COS 

2 

The constant £ equals 

$ _  1 + #_....~i 2 [ m c o s a  + (1 - m )  cos6  
2RK 

, 6 < s < ~ .  

(37) 

- cos (mot + (1 - m)6)] .  (38) 

(here Eq. (19) has been used), and expressions for the velocity 
and the free surface slope outside the contact zone ( -Tr  < s < 
c~ and 6 < s < ~r), 

or0 (1 + ~1/~) 
axly=o = - V  c o s s  +RKAo 

IZa l fAZ qO(rh)drh ] 
Rao 072 + 1) 7 7  J, 

duy = U[sin s + or0 
ds y=o KA--o (#a - m7) 

1 1 fax ~o(r/i)dr/a ] 
+ A-~ 071 + 1) - 7r ~-7 "---- ~ ] (34) 

Calculating integrals in the latter equations (see formulae 
( A l l )  in the Appendix), and again using Eqs. (28), we find 
simple explicit formulae: inside the contact area 

axlY=°= - V [ c ° s s  + l'Z-2sins + Ag + l , (35) 

and outside it 

l~x[y=O = - - V [ c o s  s + #-L sin s + £ - #--! h ( s ) ]  
R R ' 

duy = U ~ ( s ) .  
ds y=o 

(36) 

6 Analysis of  Solution 
Consider first the quantity m that according to (23) depends 

on both the friction coefficient and the frequency of excitation. 
Its value determines the character of stresses (32) and kinematic 
characteristics (35), (36) near the ends of contact area. Plots 
of m for different # are presented in Fig. 3 in the frequency 
interval from zero to the Rayleigh wave resonant frequency ~R 
= kcR where cR is the Rayleigh wave velocity calculated for a 
given value of Poisson's ratio. All data are calculated for the 
PZT-4 ceramics having u = 0.33 and CR/C2 = 0.932 (Berlincourt 
et al., 1964). 

In the case of frictionless contact we had m = 0.5 for all 
frequencies and plots of stresses and kinematic characteristics 
were symmetrical with respect to the center of contact area 
(Zharii and Ulitko, 1994). Now this symmetry disappears: for 
# > 0 we have m > 0.5. The more is m - 0.5 (though this 
difference is rather small), the brighter is the difference between 
local distributions of all field quantities near the front point of 
contact s = 6 (they become sharper) and its back point s = ce 
(they become smoother). It is seen from Fig. 3 that m growths 
with # and increases together with w. It means that working 
conditions for elastic material become less favorable near the 
resonant frequency compared to those at low frequencies. 

Let us consider transcendental Eqs. (28) determining bound- 
aries of contact area. Asymptotic analysis of them for low values 
of the loading factor p shows that when p ~ 1, approximate 
formulae are valid: 

c e = _ 2 ~ l - m  ~ m p, 8 = 2 p,  (39) 
m 1 - m  

therefore 6 > [a[.  In the smooth contact problem (Zharii and 
Ulitko, 1994) we had the following relation between the half- 
length of contact area CEsta and parameter p:  
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0 

P a 

0'71. 

-~  -1.94 a,6 2.09 

Fig. 4 Boundaries of the contact area in the problems of smooth contact 
(thin line) and for frictional contact (thick line) at m = 0.532 (p, = 0.2, to 
= k c , )  

a s m =  2 a r c s i n ~ p ,  a ~ m = 2 ~ p  for p ~  1. (40) 

As m > 0.5, we have ce > -a , ,~ and 6 > a ...... 
Analysis of (28) also showed that contact areas merge all 

together, i.e., 6 = - a  = rr when p takes the value sin 2 mTr < 
1. In the smooth case, as it follows from (40),  this occurs at p 
= 1. However, actual values of p for which the solution of the 
problem is correct, are significantly less than that indicated. 
Analysis of the tangential velocity distribution (see below) 
showed that the boundary condition (5) is valid only for p 
0.72, so quantities a and 6 are plotted for these values of p.  

In Fig. 4 we plot contact area boundaries in the frictional 
problem determined by (28) and those in the smooth problem 
(40).  It is seen from the graphs and is confirmed for low p by 
(39) that the center of contact area is displaced to the fight. 
The maximal relative displacement of it, ½(6 + a ) / ( 6  - a ) ,  is 
equal to 0.032 at the minimal pressure, p ~ 0. The length of 
contact area increases compared to the smooth case: Maximal 
value of ( 6 - a ) / (2t~sm) = 1.013 occurs at the maximal possible 
value ofp  = 0.72 (see below). These results qualitatively agree 
with those known for statics (Johnson, 1987). 

Using formulae (32),  (35),  and (36) in Fig. 5 we present 
normal stress distributions, tangential velocity of the half-plane 

~y 

~- - -~ -0 .55  
-0.89 V_0.99 

~v 

o 

(=) (b) 

-'-,, -00  f 
_0 ,F 

0~ = 0 

v-0 , I 

(c) (d) 

Fig. 5 Vertical displacements of the boundary of the half-plane and 
normal stress distributions (upper graphs) and tangential velocity of the 
surface (lower graphs) for values o f  p :  (a) p = 0.067, (b) p = 0.25, (c) p 
= 0.5, (d) p = 0,72; m = 0.532 (~  = 0.2, to = kcn) 

boundary, and the shape of the surface found from the latter of 
(36),  namely 

Uy = U 1 + s l )dS l  , - ~ r  ~ s --~ ol, 
~r  

I f /  ] u y =  U 1 - h ( s , ) d s l  , 6 ~ s  ~ 7 r .  (41) 

Thanks to the proper choice of the integration constant, we 
eliminated an arbitrary constant that enter the function U o ( y )  
in (9) and now have uy[y=o.s=±, = U irrespective of the value 
of pressing force P (see Zharii and Ulitko, 1994). 

In these graphs we plotted dimensionless quantities iyy = ~ry/ 
A t ,  fly = u y / U  andgx = vx/V.  As in previous papers we assume, 
that due to dissipation, U and V achieve large but finite values 
at the resonant frequency w = kcR. 

It is seen from Fig. 5 that the amplitude of velocity at the 
front point of contact s = 6 is bigger than at its back point, s 
= a. As in the smooth case, nonuniformity of the velocity 
distribution inside the contact area, [dx(6)/min dxl increases 
together with p. At p = 0.72 we have//x(s)  = 0 at s = -0 .73  
(Fig. 5 (d) ) .  When p exceeds this value, we have formally tAx(S ) 
> 0 within some interval. Consequently, in this interval r~y 
would change its sign. So, for p > 0.72, boundary condition 
(5) and the solution obtained become incorrect. 

Conclusions 
In this paper, a solution of a new mixed boundary value 

problem of elastodynamics has been found. The limiting case 
of it for vanishing friction has been solved by Zharii and Ulitko 
(1994).  

The solution obtained displays several new features. First, 
asymptotic behavior of stresses and kinematic characteristics is 
determined by the quantity m that depends on both the friction 
coefficient and the frequency of excitation. Though deviation 
of m from its value 0.5 in the smooth problem is small, it causes 
significant difference between values of the tangential velocity 
at front and back contact points (see Fig. 5). One more differ- 
ence is that now the tangential acceleration is infinite in points 
near the ends of the contact area not only inside it, as in the 
smooth case, but outside it as well, i.e., at s ---, a - 0, s --~ 6 + 
0 (see (36) and (37)) .  

This solution gives the necessary information of the structure 
of an elastic field near the ends of the contact area in the general 
problem of contact interaction when partial adhesion occurs in 
the center of the area, and slip near its ends. The problem 
considered is a limiting case of a general one when due to 
tangential forces, the adhesion zone shrinks to a point. The very 
complicated general problem is under investigation now. 
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A P P E N D I X  

Calculation of  Cauchy principal value integrals in this work 
is performed in the same way as in a previou s paper  (Zharii ,  
1994).  First, we introduce notations 

qo(n )  = 1, q l ( n )  - ~ q2(rl) = 
1 + ~ 7 2 '  1 + 7 2 ,  

q307) = 1 q4(r?) = r/ ( A 1 )  
(1 + rlz) 2 '  (1 + 72) 2,  

and consider integrals arising in (22) ,  

1 fa  x (4 - A ) l - m (  ~x - 4) m 
• ~(rl) = -~ . .  ~ _ - - ~  q~(4 )d4 .  (A2)  

We introduce an auxiliary function of a complex variable z 
and a complex parameter  u, 

(z  - A ) ' - ~ ( z  - A )  ~ 
7 ( z )  = q~(z) .  ( A 3 )  

Z - - U  

This function is single valued in the complex z-plane cut 
along the section (A, A )  connect ing its branch points. Calculat- 
ing the integral of 7 ( z )  along the closed contour L which by 
pass the segment  clockwise we find 

lfA  + l f? ~ i  7 ( z ) d z  = ~i ( 4 ) d 4  - ~i ~ - ( 4 ) d 4  

= sin reTrY(u), ( A 4 )  

where 7 + and 7 -  are the l imiting values of 7 on the upper and 
lower sides of  the cut, respectively. 

On the other hand, the contour integral in (A4)  is equal to 
the sum of residues of the integrand at points z = ± i ,  z = u 
and z = co ( the latter is nonzero only for r = 2) .  

Applying the Plemelj formula (Markushevich,  1950),  

• 07) = ½('~+07) + • (~) ) ,  (A5)  

(note that the only residue at z = u takes different values at 
upper and lower sides of the cut)  we finally obtain 

1 
- [ ~ res Y(z)],=0 

~ r  sin mTr z=±i,~ 

+ cot mrr(rl - A ) l - m (  A -- f])mqr(T]). (A6)  

These formulae are used for r = 1, 2, 4. 
In (30)  we calculate somewhat  different integrals for r = 1, 

2 , 4 ,  

1 f ?  (~ - A ) - m ( A  - ~)~ 
~r(7 7) = ~ -~ ~ ~ ~ q r ( ; ) d  4. (A7)  

Denoting 

(z  - A ) - m ( z  - A )  m-' 
~7(Z) = qr ( z ) ,  (A8)  

Z - - U  

in this case we obtain 

1 
~r  = sin--mTr [ ~ res 7(z)] ,=~ 

z=±i 

+ cot mTr(r] - A ) - m ( A  - rl)m--~qr07 ). (A9)  

In derivation of (25) ,  we used the last formula for r = 0 
( the sum vanishes)  and the fol lowing formula: 

(A10)  
71" J a  ( 4  --  a ) l - m (  A - 4 )  m sin m r r  

Nonsingular  integrals arising in (34)  can be calculated with- 
out use of the Plemelj formula: 

I f's (4 - A)m( ~ - -  4) '-m 
3A ~=~ q r ( 4 ) d  4 _ . 1 [ 2  res :7(z) 

sin mTr z:±i 

-+ 1~7 - AI'I~7 - A I '  'nqr(~)], ( A l l )  

where 

(Z -- A ) m ( z  - A )  1-m 
.7(Z) = qr(Z) .  (A12)  

Z - r  1 

Either upper or lower sign are taken for ~ > A and ~7 < A, 
respectively. 
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Viscoplastic Analysis 
of Adhesive Joints 
The uniaxial constitutive law for an adhesive is studied by constant strain rate tensile, 
creep and relaxation tests'. The S-D effect of  the adhesive is taken into account by 
using the Raghava yielding criterion in a three dimensional constitutive formulation. 
The obtained constitutive law is then used to analyze a single lap joint and a butt 
joint by a finite element method. Constant cross head speed tensile and creep loading 
cases are examined. For a butt joint, the results show that the viscous effect and the 
influence of the hydrostatic stress must be taken into account due to the variation of  
the hydrostatic stress and of  the loading rate in the adhesive layer as function o f  its 
thickness. A comparison with experimental results is also given. A good agreement 
between viscoplastic calculations and experimental results is obtained for  single-lap 
joints. A reasonable result is obtained for  butt joints and the discrepancy is attributed 
to interfacial debonding. 

Introduction 

Structural adhesives exhibit some sort of viscoelastic and 
viscoplastic behavior, especially ductile adhesives at high stress 
levels and at elevated temperatures. The redistribution of stress 
and strain in an adhesive joint during viscoelastic-viscoplastic 
deformation influences considerably the strength of the joints. 
In addition, adhesives usually exhibit different behavior in ten- 
sion and in compression (S-D effect), which is associated with 
the important role of the hydrostatic stress in polymer yielding. 
In order to calculate more accurately the mechanical behavior 
of adhesive joints for engineering design, a more complete con- 
stitutive formulation for the mechanical behavior of adhesives 
is needed which accounts for these specific properties of poly- 
meric materials. 

The time-dependent behavior of adhesive joints has been 
studied by a number of investigators. Hayashi (1972) studied 
analytically the creep properties for a double lap joint. Delale 
and Erdogan (1981 ) used the Laplace transformation technique 
to study a single-lap joint with a viscoelastic adhesive. More 
recently, Groth (1990) studied viscoplastic stress in a single- 
lap joint using different theological models. The S-D effect for 
adhesives was taken into account by Gall, Dolev, and Ishai 
(1981) and Raghava, Cadell, and Yeh (1975) for polymeric 
materials by introducing the influence of hydrostatic stress in 
the yield criteria. But it seems that little work has been con- 
ducted taking into account adhesive viscous and S-D effects for 
stress analysis in adhesive joints. 

This paper presents a stress and strain analysis of adhesive 
joints using a viscoplastic adhesive model. The experimental 
study is performed on a commercial adhesive system Hysol 
EA9309.2. The uniaxial constitutive equation of the adhesive 
is investigated by constant strain rate, creep, and relaxation 
tests. The obtained uniaxial law is then generalized to three 
dimensions by using the Raghava yielding criterion (Raghava, 
Cadell, and Yeh, 1975), which takes into account the different 
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behaviors of the adhesive in tension and compression. The ob- 
tained constitutive model for the adhesive is used for finite 
element analysis. The calculated results are then compared with 
experimental values. 

Mechanical Behavior of Bulk Adhesive 
The Hysol EA 9309.2 adhesive used in our analysis is a two 

constituent epoxy system which can be cured at room tempera- 
ture. To obtain short-term stable mechanical properties, the ad- 
hesive was cured for one week at room temperature and post- 
cured for three days at 50°C. 

The uniaxial tensile behavior of the bulk adhesive is deter- 
mined by using standard ISO 1/2 specimens fabricated from a 
lmm plate of hardened adhesive in accordance with NFT91- 
034 standards. 

The mechanical tests, consisting of constant strain-rate ten- 
sile, short-term creep, and relaxation tests, are performed at 
room temperature with a computer controlled testing machine. 
The strain is measured by a slip gage extensometer. The experi- 
mental results are presented in Figs. 1 (a) and 1 (b), 2 and 3. 

These experimental results, as well as loading and unloading 
tests (Hu, 1991), show that the viscoplastic deformation of the 
adhesive is very important and that the adhesive displays little 
strain hardening (Fig. 2). The creep tests (Fig. 1 (b)) show that 
the creep strain is negligible at low stress levels; but at high 
stress levels, the three stages of creep (primary, secondary, and 
tertiary) occur. The secondary creep stage dominates most of 
the adhesive creep life. Therefore, in the following model, only 
the secondary creep is taken into account. A creep threshold of 
0 = 20 MPa, based on the creep tests, is proposed, below which 
the creep strain is neglected. 

Based on these considerations, a Norton-type (Lemaitre and 
Chaboche, 1988) viscoplastic law is used in a uniaxial formula- 
tion: 

where ~ is the creep rate at an applied stress or. #, k are material 
constants, which are derived from the creep and the constant 
strain rate tension tests, giving 

# = 54MPa, k =  8.99. 

As shown in Figs. 1-3, the uniaxial model can describe well 
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the experimental results for the bulk adhesive (the damping 
coefficient is defined as /5 = (a - 0)/L). For the relaxation 
case, it is seen that at lower applied strain levels, there is a 
difference between the experimental and the calculated curves. 
This difference comes from the fact that at lower applied strain 
levels, the primary creep is very important, which is not taken 
into account in our model. 

In the sections which follow, this uniaxial equation is used 
as the basis for a three-dimensional constitutive formulation. 

T h r e e - D i m e n s i o n a l  F o r m u l a t i o n  

In order to analyze the stress distribution in adhesive joints, 
a three-dimensional constitutive formulation for adhesives is 
necessary. In our study, the method outlined by Betten (1989) 
is used and an equivalent stress from the Raghava criterion 
(Raghava, Cadell, and Yeh, 1975) is proposed to account for 
the different behaviors of adhesives in tension and compression. 

For creep mechanics, the constitutive equation can be written 
in a general form, 
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Fig. 2 Simulational and experimental constant strain rate tensile tests 
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= f(tr ,  to, A) (2) 

where tr is the applied stress tensor, to the damage tensor, A 
the tensor of anisotropy, and ~ the creep strain rate tensor. 

In our case, the anisotropy and the damage of the adhesive 
are neglected; furthermore the nonlinear stress tensor terms are 
also neglected for simplification. Under these conditions, Eq. 
(2) yields: 

= ~OoI + ~ l s  ( 3 )  

where ~oo and ~pl are two scalar coefficients depending only on 
the experimental data and the stress invariant, s is the deviatoric 
part of stress tensor ~r; and I is the unit tensor. ~P0 and ~o~ are 
identified from Eqs. (3) and (1), giving: 

1 - 2u 
~o0 - - -  ( a  - 0 )  k ( 4 )  

3/z k 

(I  + v ) ( ~ - 0 )  k 
(5) 

where u is the Poisson's ratio and cr is an equivalent stress. In 
our case, to take into account the S-D effect of the adhesive, 
an equivalent stress other than that of Von Mises should be 
defined. For polymeric materials, the Raghava yielding criterion 
is widely used: 

J22d + (Crc --  c r , ) l  = cr,,o', (6) 

with 

J2d = ( 1 . 5 S i : i j )  °'5 (7) 

I = crii (8) 

where ac and a, are the elastic limits in compression and in 
tension, respectively. From this yielding criterion, the equiva- 
lent stress is obtained: 

/ ( h  - 1 )  + ( P ( X  - l )  2 + 4 J ~ d k )  °'5 
Creq -~ ( 9 )  

2k 

where k is defined as crc/crt.  
The general constitutive equation can then be derived from 

Eqs. (3), (4), (5) and (9): 

_ ( 1  - 2 v )  ( O . e  q _ o)ki + ( 1  + U___..___.~) S 3#k #k (Creq -- 0) k -  (10) 
tTeq 

From Eq. (10), it is found that the Norton constitutive equation 
is a special case in which incompressibility and the Von Mises 
equivalent stress are assumed. 

This constitutive equation is implemented into the finite ele- 
ment code ZEBULON (Burlet and Cailletaud, 1991 ). This finite 
element code is capable of performing linear and nonlinear, 
static, and dynamic analyses. The Poisson's ratio is a function 
of deformation, and here, for simplification, we chose Vc = 0.5 
when the adhesive is plastic, h is taken to be 1.2, as is commonly 
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used for polymeric materials (Adams and Wake, 1984). The 
uniaxial curves in tension and compression for the adhesive are 
calculated at a strain rate of 10 -4 s -~ (see Fig. 4) in order to 
check the finite element code. The result shows that the present 
constitutive model can reflect the different behaviors of the 
adhesive in tension and in compression. This constitutive rela- 
tion is then used to analyze the stress distribution in adhesive 
joints. 

V i s c o p l a s t i c  St res s  Ana lys i s  of  A d h e s i v e  Jo in t s  

In the following section, a single-lap joint in creep and a butt 
joint in constant cross head speed tension tests are examined 
with emphasis on viscous and S-D effect on adhesive joints. 
The adherent is an aluminium alloy with mechanical constants 
E+ = 73000 MPa, u, = 0.29, and the elastic constants for the 
adhesive are Ec = 1950 MPa, uc = 0.36. 

Single Lap Jo int  in Creep. The finite element mesh of a 
single-lap joint is shown in Fig. 5 (the adhesive thickness is 
0.5mm). The elements are two-dimensional, eight-node, qua- 
dratic elements which can be used for plane-stress, plane-strain, 
and axisymmetric problems. Geometrical nonlinearity was not 
included, thus limiting the analysis to material nonlinearity with 
small displacements. The boundary conditions are shown in 
Fig. 5. A pressure corresponding to an average shear stress of 
approximately 20 MPa is applied for a short time, and then it 
is kept constant on the line A A '  (Fig. 5). The calculation is 
performed under a plane-strain condition. 

The distribution of the shear stress and normal stress in the 
joint at the mid line ( x l )  (Fig. 5) is shown in Figs. 6 (a )  and 
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6(b) .  The shear stress concentration at the joint ends is relaxed 
by creep. The shear stress tends to be homogeneously redistrib- 
uted along the joint due to the viscosity of the adhesive. By 
contrast, the normal stress has a tendancy to increase at the 
joint ends. The asymmetry of the peel stress is due to a small 
rotation of the applied force line arising from the asymmetry 
of the joint. 

The displacement at the middle of line A A '  as a function of 
time is plotted in Fig. 7. At this loading level, the displacement 
of the joints continues to increase and creep fracture is unavoid- 
able. This loading level is therefore unacceptable for engi- 
neering design. The relaxed shear stress is compensated in the 
middle of the joint, enhancing the stress level there ( Fig. 6 (b) ). 
Thus the shear stress (minimum stress) at the midpoint of the 
joint should always be kept at a value less than the creep limit 
to avoid creep failure. This is contrary to the ultimate joint 
strength that is governed by the maximum stress or strain as 

0.08 i 

i°+ t 
0.02 I t 

i E 
.................... ................... I ................... T 0 • 
0 150 300 450 

time(s) 

Fig, 7 Displacement evolution as s function of creep time 

MARCH 1996, Vol. 63 / 23  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



lill 
Ill 

---I--i-H-;; r 
I , i i  

Fig. 8 

I I I I I I I I I  

*dr,~.,=u I I I I [I 
_ _  I l i l ~  
w~i'*l I I I I IHt 

(plane of symmetry) 

Finite element analysis of a butt joint 

proposed by Hart-Smith (1981). This viscoplastic model can 
provide a useful tool for creep design of adhesive joints and 
for studying the viscous influence of adhesive joints. 

Butt Joint in Tension. In order to investigate the S-D effect 
in adhesive joints, a butt joint is examined by a finite element 
method using the obtained constitutive adhesive model. This 
kind of joint has been examined by many authors. Adams et 
al. (1978) studied the elastic case for this type of joint by finite 
element method; Anderson and DeVries (1989) used fracture 
mechanics to evaluate the joint strength. This kind of joint is 
particularly interesting for our analysis. If the cross head speed 
is kept constant, the loading rate and hydrostatic stress of the 
adhesive layer changes with varying thickness. These two fac- 
tors determine the mechanical behavior of the adhesive layer. 

In our analysis, the butt joint consists of two aluminum alloy 
cylinders bonded with the same adhesive as before. Mechanical 
behavior is investigated both by a finite element analysis and 
experimentally. The finite element mesh is shown in Fig. 8. 
Due to the symmetry, only a quarter of the joint is analyzed. 
The thickness of the adhesive layer is chosen as 0.5mm with a 
cylinder diameter of 10mm. A displacement of 0.08mm is ap- 
plied for 13 seconds, corresponding to a cross head speed of 5 
x 10-3mm/s. 

The axial and radial stress distributions are shown at the 
rnidplane of the adhesive in Figs. 9(a)  and (b). There is little 
variation in the axial stress Crz: during loading when the adhesive 
begins to deform plastically. This stress remains almost constant 
in the joint except near the ends, which are perturbed by the 
edge singularity. In the central region, the axial stress is slightly 
higher than the average applied stress needed to satisfy the 
equilibrium condition. But crrr decreases with increasing load- 
ing. An important hydrostatic stress is induced in the joint due 
to the difference in Poisson's ratios between the adherents and 
the adhesive. This stress varies in the same manner as :rrr and 
it reaches about 28 MPa. The zone influenced by the edge 
singularity decreases with decreasing adhesive thickness. 

The average stress-strain relation of the adhesive layer is also 
studied as a function of its thickness (see Fig. 10). All of the 
calculations are performed at the same cross-head speed of 5 
x 10-3mm/s. The results show that the tensile stiffness of a 
butt joint decreases with increasing adhesive thickness due to 
the diminution of the hydrostatic stress in the adhesive layer 
(Fig. 11 ). The variation of the maximum stress in the adhesive 
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Fig. 9(a) Axial stress distribution along the mid-line of butt joint; {b) 
radial stress distribution along the mid-line of butt joint 

layer is shown in Fig. 11. For a joint with adhesive thickness 
of 0.1, 0.3, and 0.5 mm, there is very little variation of the 
maximum stress (this is confirmed experimentally). For the 
joint with a 3mm thickness, there is an increase of the maximum 
stress and this stress decreases when the adhesive thickness is 
further increased. Finally, the behavior of the bulk adhesive 
dominates for very large adhesive thicknesses (approximately 
the diameter of adherent). 

This variation comes from competition between the tensile 
loading rate of the adhesive layer and the hydrostatic stress state 
as a function of the adhesive thickness during a constant cross- 
head speed test. In fact, for thinner adhesive thicknesses, the 
loading rate of the adhesive layer increases and the viscosity 
has little time to manifest itself. But because the hydrostatic 
stress is higher, a high equivalent stress (as defined previously) 
is induced, and it increases the relaxation rate. For the adhesive 
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layer of 3mm, the influence of the hydrostatic stress is trivial, 
and the adhesive behavior is determined mainly by the increas- 
ing loading rate. 

The variation of the loading rate in the adhesive layers can 
be estimated. If Es and Is represent the Young's modulus and 
the length of the adherent, respectively, and Ec and l,. those of 
the adhesive, the total elongation of the adhesive joint (A/) can 
be calculated: 

A I =  A I , +  Ale 

= <~Is + eclc (11) 

so that the average deformation rate of the joint is given by: 

~5 - AI _ ~.~1~ + ~clc (12) 
1 l 1 

where e, and ec are the average strains in the adherents and the 
adhesive respectively; 4 and ~,. denote the averag.e strain rates 
in the adherents and the adhesive, respectively; 8 is the trans- 
verse loading rate and l denotes the total joint length. 

In the elastic case, the following relation between the strain 
rate in the adherent and in the adhesive is available: 

~ _ E ~  
(13) 

4 E~ 

With Eqs. (12) and (13) the strain rate can then be determined. 
In the plastic case, the strain rate in the adherent is taken to 

be zero since the stress variation in the adherent is almost negli- 
gible, and the strain rate in the adhesive layer is calculated by 
Eq. (12). 

For a butt joint having a total joint length of 40mm and an 
adhesive thickness of 0.5mm, the variation of the loading rate 
in the adhesive can be three times greater than that initially. 
When the adhesive is completely plastic, the loading rate is 80 
times that of the average loading rate in the joint. 
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0.5mm. The comparitive result is shown in Fig. 12. A good 
agreement between the experimental results and the model is 
obtained. 

For butt joints, the mechanical tests are performed at a cross 
head speed of 5 × 10-3mm/s. The displacement of the adhesive 
layer is measured by a slip gage extensometer. The average 
strain is calculated as being the ratio of the displacement of the 
adhesive layer to its thickness; the displacement of the adhesive 
layer is calculated by removing that owing to the adherents 
from the value measured by the extensometer. The experimental 
results are compared with the viscoplastic finite element analy- 
sis (Fig. 13). A reasonable agreement is also obtained between 
the model and the experiments. The small discrepancy undoubt- 
edly comes from interfacial debonding that is unaccounted for 
in the model, but observed in adhesive joints tested in tension 
within a scanning electron microscope (Hu, 1991 ). For single- 
lap joints, only very little localized debonding occured. 

Conclusion 
The general constitutive relation of an adhesive was studied 

experimentally and theoretically to take into account the viscos- 
ity and the influence of the hydrostatic stress. The calculated 
results for adhesiv e joints using the obtained constitutive equa- 
tion show that for a single-lap joint under a creep load, the 
shear stress concentration is relaxed by creep. The relaxed shear 
stress is compensated by an enhanced shear stress in the centeral 
region of the joint. This stress level should always be kept under 
than the creep limit to prevent creep failure of the joints. For a 
butt joint subjected to a constant cross-head speed loading, the 
hydrostatic stress and the loading rate in the adhesive layer 
varies as a function of the adhesive thickness. The competition 
between these two factors with varying adhesive thickness is 
taken into account in the present analyzes. The results show 
that for thinner joints, the stiffness is more important and the 
maximum stress varies little (0.1mm to 0.5mm). By increasing 
the joint thickness, the influence of the hydrostatic stress de- 

50 

Experimental Comparison 
The experimental comparison is performed on both single 

lap and butt joints at constant cross-head speed loading. The 
individual specimens are cut and machined from aluminium 
alloy plates bonded with the adhesive. The cure condition used 
for the bulk adhesive previously described is adopted. Before 
bonding, the 2024 T6 aluminium adherents were surface treated 
with a chromic acid etch to prepare the surfaces. 

The tensile tests, using a cross head speed of lmm/min, are 
carried out for single lap joints. The average shear strain is 
measured by an ALTHOF extensometer (Hu, 1991 ), and the 
average shear stress is calculated by dividing the applied load 
by the bonded surface area. The adhesive thickness here is F ig .  13  
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creases and the influence of the loading rate dominates the 
behavior. This leads to an increase in the maximum stress in 
the joint. Finally for very large joint thicknesses (approximately 
equal to the cylinder diameter), the adhesive bulk material prop- 
erties are exhibited. The experimental result shows a good 
agreement with our analyzes for single-lap joints, and a reason- 
able result is obtained for butt joints. The difference between 
the model and the experiments for butt joints is probably due 
to interfacial debonding which is not taken into account in 
present model. 
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Analysis of High-Speed Rolling 
With Inertia and Rate Effects 
Limit-analysis procedures for time-dependent materials are utilized for assessing 
some essential technological parameters in high-speed strip rolling (i.e., the torque, 
the separation force, the minimal friction required to avoid skidding, maximum allow- 
able speed, etc.). The formulations are quite wide in scope (e.g. they include the 
inertia of  the plastic flow beside the material rate effect) but lack, in general, the 
rigor of the true bound by reasons to be discussed. The solutions are, by default, 
considered as "approximate bounds" unless stated differently. Due emphasis is given 
to the development of  a lower bound, infrequently employed in metalworking analysis. 
It yields' relevant information about the process which appears entirely consistent 
with an independent upper bound solution. In particular, the rate effects are shown 
(in both solutions) to be characterized by the intensity of two dimensionless groups, 
known universally as Bingham No. and Euler No. Normally they cannot be ignored 
at high speeds currently attainable in modern industry, above, say, Uo = 50 Ira/s]. 
For slow speeds, the above solutions constitute rigorous upper and lower bounds. 
The relative close proximity of the two bounds to experimental data (with copper, 
aluminum, and steel) and their excellent agreement with the rigid-plastic finite ele- 
ment solution, demonstrate the utility of  having these dual bounds simultaneously. 

A seemingly useful by-product from the analysis is the ability to predict the onset 
of skidding at very high speeds. For this sake, an expression is offered for determining 
the maximum allowable rolling speeds (at the incipient of skidding) in conjunction 
with the requirement for a certain minimum interfacial friction. 

1 Introduction 
The effect of high speeds on metalworking plasticity has been 

surveyed and accentuated by Davies and Austin (1970). In 
general, such investigations can be approached from two as- 
pects. One aspect is the effect of speed on the material rate- 
dependent yielding, resulted from the induced high strain rate. 
This consideration was pioneered by Cdstescu and his col- 
leagues (see, for example, Cristescu (1975, 1979) and Durban 
(1984)),  employing a linear viscoplastic constitutive behavior. 
The second view is to incorporate into the analysis the inertia 
of the plastic flow in order to get a better estimation of the flow 
resistance, as suggested by Tirosh and Kobayashi (1976) for 
rate-independent materials. The present work presents an at- 
tempt to apply these two aspects simultaneously on high-speed 
strip rolling and to "weight" their relative importance on the 
design of high-speed rolling process. A numerical FEM formu- 
lation of such a problem was given by Fontane and Gelin 
( 1991 ). Other numerical oriented formulations were offered by 
Chandra (1989) for rate sensitive materials and by Lau et al. 
(1989) for inertia flows. 

A peculiar phenomenon of decreasing loads while increasing 
rolling speeds was observed experimentally three decades ago 
by Ford (1947) and attracted attention since then. A partial 
explanation to this puzzling effect was suggested by Tirosh et 
al. (1985), based on the supposition that a plastic softening 
occurs in a narrow self-heated layer beneath the rollers. The 
analysis in the above paper was restricted to a rolling condition 
with zero neutral angle, while generally, as resulted from the 

present study, the location of the neutral point appears to be a 
speed-dependent variable. The present solutions will show that 
by increasing the rolling speed, the neutral point is shifted to- 
wards the exit. This makes the process more efficient in the 
sense that less frictional shear resist the plastic flow beneath 
the rollers. Consequently, the average pressure on the rollers is 
gradually decreased, until a limit speed is reached above which 
skidding is envisaged. The approximate upper bound solution 
employed here utilizes the new kinematically admissible veloc- 
ity field of Iddan et al. (1986), which differs from Avitzur's 
(1968). In parallel, an approximate lower bound solution is 
suggested, an avenue not considered hitherto. The commonly 
used "slab method" solutions, i.e., Hoffman and Sachs (1953) 
and Bland and Ford (1948) can be considered as lower bound 
solutions. However, they are quite restrictive in the sense that 
cross sectional planes of the deforming domain are bound to 
remain planes, and hence unable to account, for example, for 
the shear stress distribution inside the body. The present solution 
relaxes this restriction and thus provides, in principle, wider 
view on phenomena associated with high-speed rolling. The 
two bounds (which are rigorous under quasi-static condition) 
appear relatively close one to the other, so that they may replace 
more elaborate and costly alternatives. Comparisons with exper- 
iments of Shida and Awazuhara (1973) and A1-Salehi, Fair- 
bank, and Lancaster (1973) are given with some scatter. On 
the other hand, the bounding analysis is compared to the finite 
element solution of Li and Kobayashi (1975). The fine match 
justifies the use of the derived formulations for predicting the 
maximum allowable speeds in strip rolling. 
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2 Constitutive Equation 
For limit analysis applications, the relationship between the 

(p) (v) stress deviator, s U = s u + s U (which is composed of plastic 
part, s}J '~, and viscous part slj ~)) and the associated strain rate, 
~0, should be based on an existence of a stress potential. It has 
been shown to be so by Rice (1970) in certain materials which 
are characterized by the "over-stress" equation (where the plas- 
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tic flow is activated only when a certain threshold stress is 
reached) like Perzina's (1963) representation 

where 

F > 0  for ~/~2>k 

F = 0  for ~ / ~ - < k  (1) 

and J2 = ½SijSij ( S i j  ~ (:7 U - -  ½6ijO'kk), k and Y are material con- 
stants. 

Nonlinear functions for F ( . . . )  in (1) may readily be used 
but presently the linear form (designated as Bingham Material) 
is mostly used for cold metal working ((Cristescu ( 1975, 1979) 
and Tirosh and Sayir (1987)) and will be employed here too, 
namely 

eO = ~ 1 - s U for ~ - ~  k, (2a) 

or inversely 

k 
su= (277 + ~2)L U, (2b) 

where 12 = ½~u~J, and ~7 represents the "viscosity" of the solid 
(which is 77 -= (k/y)). By manipulating with (2b), one can get 
the Von-Mises' rate-dependent yielding curve as 

 2c, 

In many materials 77 is a (decreasing) function of (increasing) 
effective strain-rate ~, but it is taken as a constant in the pres- 
ently considered range. At lines of velocity_ discontinuities 
(where, due to the extreme high strain rates ~/~ - ,  ~ and ~ - ,  
0), we may consider their product in (2c)  to reach a finite 
value. This delicate point, akin to the upper bound formulation, 
deserves a special study. In the present rolling process we re- 
strict ourselves to the large diameter of the roller (compared to 
the thickness of the strip) so that the flow is "nearly smooth" 
and thus avoids the discontinuities. This is one of the reasons 
why we designate the foregoing analysis as an approximate 
bounding analysis (the second reason, associated with the accel- 
eration, will be given later). Obviously, when the process ap- 
proaches a quasi-static low speed, the analysis renders rigorous 
bounds. This distinction will be kept throughout. 

3 D y n a m i c  E f f e c t s  

Consider the rolling process shown in Fig. 1. The suggested 
upper bound solution is based upon the kinematically admissible 
velocity field of Iddan et al. (1986) portrayed in Fig. 2 and 
reads 

u~= a i 

2 R 

2 

Uy* = Q xy (3) 

2 R 2 ~ - ~ 5 - x 2 ( R + h s -  R2~-~S-x2) 2 2  

where R is the roll radius and 

Q = ~oRh s 1 + hi 1" (4) 

't ~ I*) 

(b) 

F_L LI C,~ 
r -  - i  

Fig. 1 The geometry of the rolling process: (a) general view, (b} the 
plastic zone in the upper bound analysis, (c) the plastic zone in the lower 
bound analysis, The admissible velocity fields used for the two bounds 
are different. 

The extended upper bound functional with due discussion on 
its approximative character was given by Tirosh and Kobayashi 
(1976). It reads 

J ~ ~, sud~dv+ ~lm~z[u*]ds 

+ fv ~J~2[u*]ds+ f p,*u* (5) 

where m is the shear factor along the roll/material interface 
area s I (namely, m = r/k). p is the material density. [u*] and 

FLOW / VELOCITY MAP 

Ui 

Fig, 2 The smooth kinematically admissible velocity field described in 
Eq, (3). A line of discontinuity in the velocity field appears only at the 
entrance (and not at the exit) which may be disregarded when the ratio 
D/ho is >>1. 

28  / Vol. 63, MARCH 1996 T r a n s a c t i o n s  of  t h e  ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



[u#] designate the discontinuity in the tangential and normal 
components across boundaries of velocity discontinuities. 
([u#] is finite, [u#] = 0). The upper dot denotes the material 
derivative, whence the acceleration in (5) is 

Out* 
aF = at + u~ue ~ ' 'j" (6) 

The energy-rate terms on the right-hand side of (5) are all 
expressed in terms of u~* and its derivatives. The result is in an 
upper bound to J, (denote as J*) .  Since u~* of (3) includes 
the neutral angle a,, as a free parameter, it will be determined 
as the angle which minimizes J* according to 

O J* OzJ * 
Oa. - 0, aa--~-, > 0. (7) 

The lengthy algebra for expressing J* and its derivative is 
omitted here for brevity and given fully in Iddan's thesis 
(1988). The end result of eliminating a,, from (7) yields 

m 
o t  n = + - _  _ _  

a 2a 

where a and b in (8a) are the following functions: 

a = N  4 1 + ~  R \ h o /  R 

- m 1 + 2 ~ - \ h o ]  J \ h o ]  J 

I G2 = 1 + ~  , ~0 

2 \ h o ]  .~ + m  R 2 R 2 
1 

- 2 h-~ - \ h o ]  

R 1 -  . ( 1 2 )  G~= 1+~ .j \R] \ho] J 

When relating the interfacial shear stress to the average rolling 
pressure as T = #p, the approximate upper bound solution for 
the separation force is 

M 1 
F = ( 2 ~'~ (at --= the total contact angle). (13) 

(8a)  #R 1 -  
\ / 

By letting the speed approach zero, the reduced expression 
is a rigorous bound and reads 

M..b. = kRZGl, F..b _ kRG1 (14) 

(8b) where G~ is defined in (10) and a .  is defined in (8a).  

{ ~ f  h~ ho 4 1 ~ - h f  b = hI m tg i - i - l n h f  
2R - - - -  

- 3 E u  [ 1 -  ( h f ~ 2 ] } - N { m [ 1  + \ho] 

+ 4  1 + ~  R + \ h o ]  

N = (Bingham No.) i and Eu = (Euler No.) in (8b) are the 
basic nondimensional speed parameters of the process defined 
in this situation as 

w g 2 
N ~ - ~ / ~ ,  Eu ~ pw 2 k (8c)  

The solution (Sa) for a ,  is valid only for non-negative b. For 
negative b, one can show that a,, = 0. Upon substituting a ,  
back to the expression of J* and equating it to the applied work 
rate (Mw), one gets the approximate upper bound solution for 
the torque, M, as 

M = kR2[G1 + N'G2 + Eu. G3]. (9) 

The functions G~, Gz, and G3 of (9) are derived by Iddan 
(1988). They are 

G , =  + a ~  l n ~ + ~  

R 2tg i Ra,,~ ho } 
+ m ~ [  ( ~  /-tg-'~hh--s° 1] 

4 The  Viscoplast ic  L o w e r  Bound  

The Admissible Stress Field. The lower bound solution is 
now extended to include the speed effects via the inertia of the 
plastic flow. The kinematics which goes with the admissible 
velocity field in this solution does not have to (but may, if 
convenient) be similar to the one used in the upper bound 
solution, and therefore will be denoted differently as u! °). Con- 
sider a plane strain strip rolling where the arc of contact is 
replaceable (with a small error) by a line, as in Fig. 1(c).  In 
contrast to the direct method of the upper bound any kinemati- 
cally admissible velocity field will always yield a solution, the 
lower bound approach (with rate effects) is an indirect method. 
It means that a solution may or may not be reached by the trial 
stress fields, ~rlf ). It depends whether the equation of motion 
(rather than just the static equilibrium) can be satisfied, which 
is is 

cr °) - pal °) = 0 (15a) 0 , J  

where the acceleration field a! °) is assumed to be derivable from 
a kinematically admissible velocity field of ul °). In addition, 
the admissible stress field al~ ) must satisfy the yielding equation 

j~o) 1 o(o)~(o) _> = ~i j  ~ij ~ J2 (where f ~  k as in (2c)) (15b) 

and the stress boundary conditions 

aly°)nj = Ti off st. (15c) 

In cases where the stress field is composed from different zones, 
interfaced by lines of velocity discontinuities, the following 
"dynamic conditions" should be met across such lines (with 
notations as in (5)) ;  

[a~ °)] -- 0, [cr~ °)] = pu~°)u~ °). (15d) 

At the present analysis, a small angle approximation is used 
(e.g., relatively low reductions are operated with relatively large 
roller) such that the stress field is "nearly" continuous and so 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 29 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



are the velocity fields. Thus, the "dynamic jumps" are negligi- 
ble. The inequality equation of the lower bound theorem (Tirosh 
and Iddan, 1994) renders 

f~ ( ° ' n u . d s ~ f ~  T,u, d s + f v p ( a ? > - a , ) u ~ d v .  (16) u f f  U ".1 
M 

The second term on the right-hand side of (16) is a variation 
between acceleration fields. It is zero on the boundary, s, but 
remains unknown elsewhere, in spite of the steady-state nature 
of the process. The volume integral of this difference throughout 
the domain of the flow can be assumed small for any smooth 
admissible velocity field in V. A possible error of this nature 
causes us to call the resulted bound as an "approximation" 
rather than a "rigorous bound" which may only be reached in 
the limit situation of u! °) ~ 0. 

For the steady-state strip rolling process, Eq. (15a) is hence 
reduced to 

z_(o) Ou~O) 
_ ~ ,~<0 ( 1 7 )  

0o'(~°__.__~ + 1 o'~ °) - ors °) 
Or r ~ + = pu~°~ r Or 

~ ( o )  ~ ( o )  
_1 &rJ___.~ + ,~-~o + 2 ~0  = 0. (18) 
r 08 Or r 

The stress boundary conditions for (17) and (18) depend on 
the position of the neutral angle as defined in Fig. 1 (c). They 
are given separately at each zone due to their inverse shear 
direction, namely 

~_(o) J~l ~0 = [m along the wall: 

' - ' f o r ( R , <  r -<Ro) ,  ' + ' f o r ( R f < r ~ R , ) .  (19) 

Along the plane of symmetry; ,-(°)~ = 0 for 0 = 0. 
For the considered cases where the roller's radius is relatively 

large, say (ho/R) is O(10-2),  therefore, 

o-?)(Ro) = cr,(Ro) ~. O, o-?)(Rf) = O'r(Rs) ~ 0. (20) 

We now choose u} °) to satisfy all the kinematical conditions of 
the flow as u~* does in the upper bound analysis of the same 
problem (Tirosb et al,, 1985). Namely 

u~ ° )=  u~ °) = 0 in V (21) 

Ro Ro 
u~ °) = - u o - -  cos 0 m - U o - - .  (22) 

r r 

By inserting the above velocity field in (2c),  one gets the speed- 
dependent yielding for this particular problem 

where for this case, the "speed parameter" N is defined as N 
= rl(uolRok). For time-independent plasticity (rl = 0), the Von- 
Mises criterion J ~  = k is recovered. 

The procedure to get the solution for (17) and (18) is to 
assume a distribution of the shear stress components in such a 
way that the stress boundary conditions (19) are satisfied, and 
then, with this shear distribution, to integrate (17) and (18), 
subjected to the boundary conditions of(20).  The most simple 
trial supposition is that the shear component vary linearly with 
the angle, as 

T ~ ° ) = _ + ( - ~ )  J ~  ( - ) f o r z o n e I ,  ( + ) f o r z o n e l I  (24) 

so that (19) is satisfied. 
Substituting (24) in (18) and solving for the normalized 

stress bo ( b i j  ~ ( cr~jlk ) ) renders 

8 2 

~o) = g(r)  _+ m - -  = g(r)  + second-order term 
o/ 

(mot ~ 1) (25) 

where g(r)  is the unknown function to be determined. 
Using (25) with (17) with due account of (20), (21), and 

(22), one gets the stress distribution at each of the zones: 

I :  6 - ~ ° ) = - 2 ( ~  - 1 ) [ l n - ~ + N { ( ~ )  2 -  1}1 

2 L\Rs/ 

the hoop stress in zone I: 

6 ~ ° ) = - 2 - 2 ( ~ - 1 )  ln--R°r 

- 2 N ( ( ~ +  1 ) [ ( R - " 2 ) z -  11 + 2  } 

1 o 
+ ~ E u  - -  - 1 ; (28) 

and in zone II: )_r 
~ 0 ) = _ 2 _ 2  m + 1 ln Ri 

--1Eu{{R°? 
2 \ ~ - y . ] -  ( ~ ) z ) .  (29) 

The shear stress (in the two zones with different signs) is 

~_~o~ = +_--mO 1 + 2N (30) 
o/ 

where 

uo ouo J2(ho- h,) 
Eu = p-~- ,  and N =  ~ 0  (31) 

Y 

By letting the speed to approach zero, the rigorous statically 
admissible field for the lower bound theorem is obtained. Thus 
the static solution is 

zoneI:  & ~ 0 ) = _ 2 ( ~ _  1)ln--R°r Rn-<r--<R° 

zoneII:  6-~ ° ) = - 2 ( ~ +  1 ) l n ~  Rf<--r<-R,, 

zone I: 

zone II: 

(32) 

(~o) - 2 -  - 1 l n - -  R.-< r -<Ro  
r 

mO 
zoneI:  -7-~- 0 < 0--< c~, R.--< r - -  Ro 

o/ 

mO 
zoneII:  " ~  = + - -  0--< 0 <-- c~, R I ~  r ~ R . .  (34) 

O/ 
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Fig. 3(a)  The friction hill In the rolling process. Comparison between 
the "slab method" (Hoffman and Sachs, 1953) and the author's reduced 
lower bound solution (namely for N = Eu = 0). Note that a higher lower 
bound means that the solution is closer to reality. 

T= [~Eu-2N(~- 1)][(h°~2- 1] 
\hal 

40 

I 

i 3C 

8~ 
CURVE 

46 
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re.AND AND ~ 
. . . .  ~ W A N  
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.& & ,k & .& .~ 
R N M  ENTRY 

Fig. 3(b) The friction hill In the rolling process. Comparison between 
the "slab method" (taken from Bland and Ford, 1948) and the authors 
reduced lower bound solution (namely for N = Eu = 0). Data: copper, 
reduction of 30 percent, friction coefficient of pr. = 0.086, h0 = 2.54 mm. 

The stress distribution of (33) is compared favorably in Fig. 
3 with the "slab method" solution given by Sachs and Hoffman 
(1953) and Bland and Ford (1948). 

5 The  Neut ra l  Angle  

The neutral point on the strip, beneath the roller, is defined 
as a point of "no slip" between the strip and the roller. It is 
located at a distance Rn at which the radial stress of zone I is 
equal to the radial stress of zone II. Hence, by equating (26) 
to (27), one gets an implicit equation for R~. It reads 

( R o ) -  m in (RoR:' ~ 
21n ~ t. R~ ..# 

1 [(R°'~ 2 -  1] +,, ,(~r, , .o.~:_ 1] + Eu 

+ + 1 - 2 \ ~ ]  = 0. (35) 

One can obtain from (35) the explicit solution to R, as 

or 

Rn ~ Ro 

Rf ~ ((ll2)+(alm)) 

e(Tal2m) 

hf ~ (( 1/2) + (a/m)) 

h,, ~ h0 e(r,/2,, ) , (36) 

or equivalently (via geometrical relationships), 

h, } o~ ~ 2 ho ' / , \~ /____ (37) 
D L eCra/2m) ho ' 

where 

(38) 

For slow speeds one gets 
[11~ \ ((]12)+(a/m)) 

 Ot o) (39) 

(41) 

ho h, 11. 
ho_JJ ' (40) 

A comparison of the neutral angle obtained from the upper 
bound analysis (Eq. (8)) to the neutral angle obtained form the 
lower bound analysis (Eq. (37)) is given in Fig. 4 along with 
three-dimensional analysis of Oh and Kobayashi (1975). 

6 The Rolling Torque and Separation Force 
The torque (per unit width) is calculated from the totality of 

the interfacial shear produced by the normal stress distribution 
(Eq. 28 and 29) and Coulomb friction coefficient according to 

[f L ] M = I-J_D _ R° o.~i)dr + o.~ii)dr 
2 R 

ID- 

(zones I and II are designated by superscripts) 

which yields 

M U'B" = ~ k D h o  [2(ho ~ h i ) ]  

0,9- 

0.7- 

× ({A} + N { B }  + Eu {C}) 

dB o~ tb 
FRICTION R/lfflO, m 

(42) 

Fig. 4 The location of the neutral point versus the shear factor for vari- 
ous reductions. Comparison of the two reduced bound solutions (upper 
and lower) with the 3D solution of Oh and Kobayashl (1975) with Initial 
width/thickness ratio of 3. 
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where {A}, {B}, and {C} in (42) are 

A =h--oh"lnfh°hf~\ h.2,] +2o~m[ 1 h0h] h. l n ( h ~ ) ] h o  (42a) 

B= ( 1 -  ~o)[ (1 + m ~(h° 1) + 2 1  

(h°~Z( h" (1 + rn _ 

l { h . [  (hob z] ( ho ho) ) 
C = - ~  ho 1 + \~-j j  .] - 2 1 + ~ - ~  . (42c) 

The overall force (per unit width) is readily computed from 
the same normal stress distribution as [;0 ] 

F = - a~oI~dr + a~oH>dr (43a) 
Rn 

which yields 

FuB=k -ECho-h:) ({EI+N{G}+Eu{H})  (43b) 

where the expressions { E }, { G }, and { H } are given as 

h o + h : - 2 h , - h ~ l n \  h~ ] 
m + - -  (44a) 
2~ ho - hi 

G=2~'(ho-h,, '~ ( i  + m ho_ 

+ (ho  (hn- 

× [ ( 1  + ~ ) ( 1 - ~ )  + 2 ~ ] }  (44b) 

H :  

The friction coefficient, #, for the torque calculation, is re- 
lated to the friction factor m through their force equivalence 
relation, as follows: 

~o ~-,o(a)dr = #p,~(Ro - Rf) ~ ~Fo~ (45) 

where from (30) 

Tr0(~) = m k  1 + 2N . 

The interrelation between # and m is hence 

m 
# -  ( ~ ) + [ 1  + 2 N ( ~ ) ] .  (46a) 

For nonviscous material it reduces to the regular relation 

m 
(46b) # -  p 

av 

The rolling torque (41) and the separation force (43) varia- 

4 

IO.- 

3 

d 
i ¸ 

"q,O 

D/ho=40 

r% =40 

m -0.25 (/z=.09) UPPER 
- - +  NUMERICAL(FEM) ~L~,~ 
- + -  (FONTANEANDGEL1N) 

LOWER. / 

I I 
0.5 1.0 

EULER No. (PUf 2/K) 

Fig. 5 The average roll pressure as a function of the rolling speed (ex- 
pressed by the Euler No.). Note the decrease of the roll pressure while 
increasing the rolling speed in the upper bound solution. This tendency 
is terminated at the speed at which the neutral angle reaches the rolling 
exit. From this speed and further on (shown in dashed line) skidding is 
envisaged. FEM solution of Fontane and Gelin (1991) has an essential 
resemblance. 

tion with respect to the rolling speed are shown in Figs. 5, 6, 
7, and 8. 

7 M i n i m u m  Required Friction and M a x i m u m  Al- 
lowable Speed 

Lower Bound Solution. It is noticed that to ensure a,, -> 
0, a minimum allowable shear factor, mmin, should be prescribed 
or else skidding will ensue. For the lower bound solution, 

-- , .'. mmln = 20~, (47) 
2 in h0 

since, for slow processes, r (defined in (38)) approaches zero. 
The condition (47) is equivalent to requiring that the Cou- 

lomb friction coefficient should be at least 

mmin 20~ 
~Lt ~ - -  , . ' .  # m i n  : O~ ( 4 8 )  

min rain 

since, at c~,, = 0, (plk)mi. = 2. The result of (48) agrees qualita- 
tively with observations given by Hoflinan and Sachs (1953). 

8 

t_J 
== 
o 

=0 

O/ho= 40 

m • 0.25 (/v. =.09) ~," / ~" R 

LOWE___.R / I  // 

I I 
5 I 

EULER NO. (pUf2/K) 

Fig. 6 Bound solutions to the roll torque versus speed. The speed at 
which skidding is anticipated is shown with dashed line. 
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At a given speed, the friction prevails at ce,, = 0 sets the 
minimum required friction coefficient for safe rolling (i.e., with- 
out skidding). Let c~,, in (37) be zero and solve for m. This 
leads to the minimum friction 

i--.--- 

r e ( o )  ~ [ho - hy 
nfin ~ 

-'] 
( lpu~+2rlu°~-~oo(1--~o))  1 + \ 2  k kR 

x . (49) 

l+k~ho~TU° /R (1-~) 

Now, the maximum allowable rolling speed (which maintains 
the minimum friction of (49)), is solved from (49) and reads 

, (0) + - + - -  ( 5 0 )  ~Omax = a 2ff 

where 

P 
2k 

b=2r/~/(ffoo)(lkR - ~ 0 ) (  m~-  1) 

2 m e =  ( ~ -  , ) l n ( h ~ ) / [ ( h ° ] 2 -  , ] \ ~ )  (51) 

and finally 

Sm,x = u~°d,x • (52) 

Speeds beyond that may lead to skidding. For example, for 
nonviscous material, Eqs. (50)-(52) yield the maximum allow- 
able speed as 

m= .25 , ~ ' 9 9  

D/h 0 • 40 

r% • 40  

NO INTERTIA (E u .0) 

IcL ~ UPPER . . . . . . . . ~  ~." ~ 

~ z  
~ LOWER 

=o, 

t I 
.005 .010 .~5  

(BINGHAM No.)-t; ~LLf/(KR) 

Fig. 7 Bound solutions of the roll pressure for time-dependent material 
(without inertia), using the Bingham number as the dependent variable. 
Note the similarity to Fig. 5 where the inertia term (the Euler No.} is used 
as the dependent variable. The roll pressure is seen to decrease while 
the rolling speed is progressively increased. It is terminated at the speed 
at which the neutral point reaches the exit. From this speed on (shown 
in the dashed line) skidding is envisaged. 

4 
o 
o 

=02 

O I 

m = ,25 , F =.09 

D/h o • 40 

r% • 40  

NO INERTIA (Eu =0) 

LOWER/  

.005 
I I 

.(~O .OI5 

(BINGHAM No,~'J ~Ui/(KR) 

Fig. 8 Bound solutions to the roll torque versus speed, as in Fig. 6, but 
with Bingham number as the dependent variable rather than the Euler 
No. The speeds at which skidding is anticipated is shown with a dashed 
line. 

,o, ("i) :m.× = 2 

k k h : )  

1/2 

k 
(53) 

U p p e r  B o u n d  Solut ion.  One can estimate the minimum 
required friction and the maximum allowable speed also from 
the upper bound solution. Let the expression for ~,* (u:, m, R, 
ho, h:) in Eq. (8) be equal to zero to set the limiting condition 
for nonskidding operation, and solve for m 

{ (,£°/ h: 
ln \ n: / + 4 R k 2R 

m~'" = 1 , R  [~ 1 h ~  riuy[ l k R  ~.l--~tg - - 1 - + 2",] 
\ho/ 

~TUfk-R- {4(1  +hi ) "~-'-~----h°~Y (hf ]z ( ~ Z )  } 
hol v--*  \hol 

(54) 

~ ] ~ t g  - 1 - - ~ -  1 + - 
\ ho / ho J 

By letting the process be slow (us ---~ 0), the minimum shear 
factor becomes 

ln( )+l 
a.V g 

ram*i. = ~ (55) 
tg- l [~h]~_ 1 

This reduced result is identical to Avitzur's solution for quasi- 
static rolling ( t968, Eq. 15.37a) derived from an entirely differ- 
ent velocity field. 

The maximum allowable speed is derived from (54) and 
reads 
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Fig, 9 The minimum allowable friction factor, m, versus the maximum 
allowable exit speed. It Is seen that In order to reach higher rolling speeds 
one should increase the interfacial shear. This interrelation is not pro- 
nounced in the lower bound solution. 

fo [( ] 1 ~f a0b 
= -  o-d~-- 1 + - 1 

~f (n TT)rf 

where 

(60) 

= e0eu and ~f = ~ In . (61) 

At any specific reduction, the equivalent strain ~, and subse- 
quently the associated hardening flow stress, ~, were evaluated 
beforehand, and merged into the final expressions of M and F, 
as k = (~/~).  

The bounding solutions (Eqs. ( 8 ), ( 12 ), ( 42 ), and ( 43 ) ) are 
compared to experiments with copper and aluminum from A1- 
Salehi et al. (1973) and with steel from Shida et al. (1973). 
Corresponding rigid-plastic finite element solutions by Li and 
Kobayashi (1982) are attached to these Figs. from 10 to 15. 
The agreement is not too satisfactory in regard to experiments 
(to be discussed) but very satisfactory with respect to FEM 
solutions. 

where 

8= 2~ 1 - \ ho/ J 

b =  ~-~'r/{4(1 +-hoohf) ~/(hO~Rhf) _F \ho/(hf~2(h°-hf~\ R ] 

m,,,N f g= 2 at o tg -1 - 1 

h/ [ ln(h__~)+ 1 ~ ]  
2R 4 . (57) 

For example, for a nonviscous material, Eqs. (56), (57) yield 
the maximum allowable speed as 

Ufmax 

m R t g - l ~ h ~ - l - [ l n ( h ~ ) 4 , W  R j ;" 

L \h0/ j 

(58) 
A typical presentation of the interrelation between mmin and -4 
Ufmax is given in Fig. 9. It explains why higher rolling speeds [ 
necessitates higher friction factor with the workpiece. 

8 Comparison to Experiments and Finite Element 
Solution 

The hardening behaviour of the tested materials has the fol- 
lowing form 

~ = o'o 1 + (59) 

where b, n, and ao are material constants. 
As mentioned earlier, to conform with the limit analysis theo- 

rems one should use a uniform flow stress in V. This was 
introduced by the following averaging 

9 Results and Discussion 
The solutions given here were formulated for viscoplastic 

solids undergoing high-speed rolling with some generaliza- 
tions and approximations as mentioned in the text. The nature 
of the solutions does not allow for fine details as residual 
elasticity (Chandra, 1989), temperature-dependent friction 
(Lenard, 1989), and the like. Therefore, special occurences 
of, for instance, multi normal-pressure peak points (Jesweit, 
1989), delamination split ("All igator ing")  of the workpiece 
(Sherby et al., 1982) etc., cannot be detected. The suggested 
solutions provide just a general information of what may be 
changed (if at all) in the design of the process if an increase 

- - - - - - ~  ~lkl & I~IBA~MIIHII 
 ,oo 

26 • MI[AIIglII[D (AL-$ALJklt IT, A£.) 

BOUND SOLUTIONS 

RmUCT~ON°r% 

Fig. 10 The roll torque versus reduction. Comparison between FEM 
solution of Li and Kobayashi (1982) and the bound solutions, along with 
experiments on copper taken from AI-Salehi, Fairbank, and Lancaster 
(1973). Data: ~o = 70.3 (N/mm=). 

34 / Voh 63, MARCH 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3ooc 

T 

zooo 

Fig. 11 

KXX: 

. . . .  FiLM ILl & KOBAYASHll 

O ,rT8 e "~  126 • MEASURED (AL'SALEHI ET, AL) 
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u -  ,~8.75mm 
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The roll fo rce versus reduction. Data and references as in Fig. 10. 
It is seen that at some port ion of  the curves the lower  bound surpasses 
somewhat  the numerical solut ion (rather than to stay a lways beneath 
it). It is believed to be attr ibuted to the di f ference in the way  the fr ict ional 
shear is used. In the numerical solut ion the fr ict ional shear is considered 
independent of  the normal stress, whereas in the lower  bound analysis 
(when N = Eu = 0) it does depend on the normal stress by a Coulomb- 
type relationship. 

of the rolling speed is anticipated. The solutions are, how- 
ever, reduced to rigorous bounds (on which practical designs 
are usually based) by letting the operational speed to ap- 
proach zero. 

It turns out that the suggested approximate solutions appear 
relatively close to each other and embrace consistently the 
counterpart numerical rigid-plastic solution of Li and Kobay- 
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Fig. 12 The roll torque versus reduction. References as In Fig. 10. Data: 
~ro = 50.3 (N/ram=). 
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The roll force versus reduction. References and Data as in Fig. 

ashi (1982). The comparisons were done in regard to the 
position of the neutral angle, (namely, the distance l, shown 
in Fig. 3a), the torque (Figs. 10, 12, 14) and the separation 
force (Figs. 11, 13, 15). The good match of the FEM solution 
to the presented bounds is exhibited. Experimental data from 
A1-Salehi et al. (1973) and from Shida et al. (1973) are 
added to these figures and appear scattered up and down the 
bounds. This can possibly be attributed to the variation in 
the friction conditions during the experiments, unaccounted 
by the analysis, and/or the inadequacy of the Bingham mate- 
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i 

- - ~  - -  FEM ( U B NOBAYAS~) 

o MEASURED (SHIDA ~ AL) 
,,,. , , , BOUND SOLUTIONS 

o o 

o 
o 

o 

o o 

o/, 
O STEEL 

o F ' ° ' ° e  

,130 

b ,.052 
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Fig. 14 The roll torque versus reduction. Comparison between FEM 
solut ion of Li and Kobayashi (1982) and the bound solutions, along with 
exper iments on steel given by Shida and Awazuhara (1973). Data: ~ro = 
334(N/ram=). 
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diameter, higher limiting speeds can be obtained. A closer 
experimental study of this complex behavior related to skid- 
ding at high speeds is certainly due. Within the framework 
of the present finding, it seems that the current industrial 
rolling speeds (which are of the order of 102 [m/s ] )  are 
probably on the verge of their maximum utilization. 
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The roll force versus reduction. References and Data as in Fig. 
14. As in Fig. 11 it is seen that at some portion of the curves the lower 
bound surpasses the FEM solution (rather than to stay beneath it). It is 
believed to be attributed to the difference in the way the frictional shear 
is used. In the numerical solution the frictional shear is considered to be 
independent of the normal stress, whereas in the lower bound analysis 
(N = Eu = 0) it does depend on the normal stress b y  a Coulomb-type 
relationship. 

rial model to describe the behaviour of the tested materials. 
The general trend of the scattered data, however, is still an 
indicative measure of the validity of the suggested solutions. 

The speed effect on the separation force and torque ap- 
pears in Figs. 5, 6, 7, and 8. In these figures the bound 
solutions are extended beyond their quasi-static range in 
order to estimate the role plays by the inertia and the mate- 
rial "v i scos i ty . "  The upper bound solution indicates that 
the average roll pressure, though not the torque, is reduced 
with the increase of speed. This kind of observation by 
Ford (1947) received recently a support from a numerical 
solution by Fontane and Gelin (1991) who incorporated 
both inertia and material rate sensitivity into their FEM 
formulation. The present explanation is that this phenome- 
non can be attributed to the shift of the neutral point towards 
the exit, while the rolling speed is progressively increased. 
It relaxes the need to postulate a soft self-heated layer which 
was as an alternative explanation by the authors (1985).  

It is noted that the "max imum allowable speed"  phenom- 
enon, anticipated in this work, emerged from the same phys- 
ical ground as that commonly observed "min imum allow- 
able shear" demand as shown in Fig. 9. They impose the 
same restriction on the performance of high-speed rolling. 
For example, when considering a strip of steel (p = 7850 
[kg/m3],  k = 108 IN/m2]) ,  undergoing 40 percent reduc- 
tion by rollers of dimensions (D/ho) = 40 and shear factor 
of m = .25, the maximum allowable speed is computed 
(from Eq. 56) to be approximately 60 Ira /s] .  The maximum 
speed can go up if the shear factor, m, and/or  (D/ho) will 
be increased. When the same material is viscoplastic with, 
say, r/ = 103 [ (N /m 2) sec] and inertia is ignored, the maxi- 
mum speed for smooth rolling is then approximately 70 [m/ 
s].  Again, with higher shear factors and~or larger roll- 
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Thermal Stresses due to a Laser 
Pulse: Elastic Solution 
The thermal stress field in an elastic half-space due to a single pulse from a laser is 
derived for the general case of a mixed-mode structure beam. The mode structure 
models the output from a cylindrical laser resonator and thus defines a radially 
symmetric intensity distribution about the beam axis. The functional form of the 
temporal pulse profile is quite general in that it models the temporal pulse shapes 
emitted by a laser that is either internally pulsed through radio frequency modulation 
of  its power supply, Q-switched, or mode locked. It also models a continuous beam 
that is mechanically chopped through external means. 

Introduction 
The birth of pulsed laser technology in the 1960s extended 

the usefulness of the laser in materials processing applications. 
Pulsed lasers are now commonly used in such diverse applica- 
tions as drilling, scribing, trimming of electric resistors, weld- 
ing, hardening, quenching, cutting, and surface texturing of 
metal forming tools (see Nonhof (1988) for an overview of 
materials processing applications with Nd:YAG lasers, and 
Steen (1991) for an overview of materials processing applica- 
tions with CO2 lasers). 

Laser irradiation of a surface produces a heating effect due 
to the absorption of light energy. Deposition of the laser energy 
can be either continuous, where there is no interruption of the 
beam, or pulsed, where beam output from the resonator is inter- 
rupted either electronically or mechanically. In a pulsed beam, 
a significant amount of energy is delivered to a material surface 
in short time intervals thereby leading to elevated thermal stress 
levels as the thermal load is absorbed into the substrate. The 
thermal stress field that results from pulsed laser irradiation is 
primarily controlled by the temporal pulse profile or distribution 
of pulse energy in time. An individual pulse typically rises to 
its peak power in a small interval known as the rise time. After 
peak power is attained, the pulse decays to minimum energy 
over a time interval which typically exceeds the rise time and the 
temporal distribution of energy in the pulse is thus negatively 
skewed. In other laser resonators, the temporal pulse profile has 
a near-zero skewness and thus the pulse rise time and decay 
time are nearly equivalent. The shape of the temporal profile is 
due to the mechanism that produces the pulses (i.e., electronic, 
mechanical, acousto-optic, etc.). 

The amount of heat delivered in a single laser pulse and the 
manner in which it is distributed in time governs the thermal 
stress field in the irradiated material. The thermal stresses can 
lead to surface and subsurface cracking of a material and hence 
degrade its performance in a future application. The thermal 
stress field in a laser-irradiated material is also important in 
materials processing applications where the goal is to alter the 
microstructure of the material near its surface (such as in laser 
hardening). The ability to predict the thermal stress field in a 
material can also help one to adjust critical process parameters 
such as pulse repetition rate, pulse train period, peak power per 
pulse, and depth of focus. 
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Theoretical and experimental investigations of laser heating 
of materials and the resulting thermal stress fields began to 
appear not long after the laser became a significant materials 
processing tool in the 1960s. For example, Oswald et al. ( 1971 ) 
conducted an experimental investigation of the thermoelastic 
response of materials such as A1, Ag, Cu, Si, and Ge irradiated 
with a pulsed laser. Popov et al. (1983) developed an experi- 
mental technique to investigate thermally-induced plastic slip 
with an energy beam. Geller et al. (1986) modeled the thermal 
stress field in a steel plate quenched with either a laser or an 
electron beam. Welsh et al. (1988) explored thermal stresses 
and strains in both an elastic half-space and thin films under 
steady-state heating with a Gaussian source from a laser. Ger- 
manovich et al. (1988) derived the thermoelastic response of a 
half-space subjected to volumetric heating by a concentrated 
heat flux for various values of absorption coefficient. Volchenok 
and Rudin (1989) derived the thermal stress field in a multilayer 
plate due to the action of a continuous Gaussian surface source. 

In this paper we derive the thermal stress field in an elastic 
half-space due to a single laser pulse, the heat from which is 
absorbed in the surface plane of the material. The distribution 
of pulse energy during pulse activation is described by a func- 
tion that models the temporal pulse profiles from common mate- 
rials processing lasers, such as a Q-switched Nd:YAG laser or 
pulsed CO2 laser. The spatial distribution of heat energy on the 
material surface is a superposition of the two lowest order 
modes from a cylindrical laser resonator; these modes result 
from solution of the standing wave equation for the resonator. 
The mixed structure is more general since it is a mixture of 
both the Gaussian mode, where the maximum energy is at the 
center of the pulse, and the doughnut mode, where the energy 
is minimum at the pulse center and concentrated in a ring around 
the pulse center. The problem is thus axisymmetric with respect 
to the z-axis. 

Thermal field 

Heat from a laser pulse with temporal profile, Y(t), and 
radial intensity distribution, Q(r),  is absorbed in the surface 
plane of an elastic half-space (r, 0, z) with the z-axis directed 
into the half-space. The resulting thermal field, T = T(r, z, t), 
is derived from the following temperature problem: 

02T 1 0 T  02T 1 0 T  
Or 2 "t- -- - -  "~" for r > O, z > O, t > O (1) 

r Or Oz 2 ee Ot 

T = 0  at t = O ,  Vr, z (2) 

OT Y( t )Q(r )  

Oz K 
on z = 0 ,  t > 0  (3) 
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OT 
- - = 0  at r = 0 ,  t > 0  (4) 
Or 

T ~ 0  as r , z  ~ o o .  (5) 

In Eq. (1), a stands for the thermal diffusivity and in Eq. (3) 
K represents the thermal conductivity. Note that the assumption 
of a surface source given by Eq. (3) is appropriate for laser 
heating of metals where beam absorption occurs to depths of 
the order of 10 nm to 100 nm (Englisch, 1977). 

The solution to Eqs. ( 1 ) -  (5) may be written as 

T(r ,  z,  t) = Y ( T ) Q ( r ' )  
=0 '=0 

× g ( r ,  z, t - Tlr ' ,  0, O)dr 'dT  (6a) 

where 

g( r ,  z,  t - "fir', 0, 0) 

2r'f°f°/3Jo(/3)Jo(/3 = - -  r r ' )  
71" =0 =0 

× exp{ -a( /32 + r/E)(t - r )}  cos (rTz)d~Td/3 (6b) 

and Y ( t )  is a dimensionless function of time. 

T h e r m a l  S t r e s s  P r o b l e m  

The thermoelastic stress field, a o, is the sum of particular 
stresses, a~, and homogeneous stresses a~ 

aij = a{j + a~. (7) 

The particular solution results from the thermal field in the 
material but does not satisfy all of the boundary conditions. The 
homogeneous solution (designated with the superscript h) is 

superposed onto the particular solution so as to cause the solu- 
tion to satisfy the following boundary conditions: 

a, ,(r ,  O, t) = O; a, , ( r ,  O, t) = O. (8) 

Stress Field Corresponding  to Particular Solution.  The 
particular solution is derived using the method of the displace- 
ment potential (Nowacki, 1986). The stress field cr~ is derived 
from the displacement potential, ~o, using the following rela- 
tions: 

af, = - 2 #  O--~ + qo; ago = - 2 #  + ~o; 

[~ 0 0 2 ] 02~ (9a-d)  
az"e = - 2 #  O--rr + ~ ~o; apt = 2#  

where ~ = E/2(1 + u). Here, ~ is the shear modulus, E is 
Young's modulus, and v is Poisson's ratio. The displacement 
potential is related to the thermal field through 

V 2 ~  = m T  (10a) 

where 

( l + v ~  
m = \ 1  - u / K  (10b) 

and K is the coefficient of linear thermal expansion. Inserting 
Eqs. (6) into Eq. (10a) and taking the Laplace transform of 
the resulting expression, with the Laplace transforms denoted 
by an overbar, gives 

N o m e n c l a t u r e  

a = dimensionless shape pa- z 
rameter affecting nega- 
tive skewness of tempo- C(t;  13) 
ral profile 

b = dimensionless shape pa- D ( t ; / 3 )  
rameter affecting pulse 
activation time E 

c = dimensionless shape pa- G(z ,  t - TI/3) 
rameter affecting posi- 
tive skewness of tempo- K 
ral profile Kc 

d = characteristic beam ra- 
dius 

f = fraction of mode struc- Q ( r )  
ture containing the 
Gaussian source T(r ,  z, t) 

g ( r ,  z, t Y ( t )  
- ~'lr ' ,  0, 0) = function defined by Eq. 

(6b) a 
h(/3; f )  = function defined by Eq. /3 

(23b) ~7 
m = material parameter de- K 

fined by Eq. (10b) 
p = Laplace transform vari- k 

able 
qo = maximum incident flux /z 

for Gaussian source u 
r = radial spatial variable ~rq(r, z, t) 
t = time ~- 
t, = pulse rise time 

~o(r, z, t) 

= normal position vari- 
able 

= function defined by 
Eq. (31) 

= function defined by 
Eq. (33) 

= Young's modulus 
= function defined by 

Eq. (18b) 
= thermal conductivity 
= parameter related to 

characteristic beam ra- 
dius 

= radial intensity distri- 
bution 

= temperature field 
= temporal pulse profile 

(dimensionless) 
= thermal diffusivity 
= integration variable 
= integration variable 
= coefficient of thermal 

expansion 
= parameter defined by 

Eq. (23a) 
= shear modulus 
= Poisson's ratio 
= stress field 
= temporal integration 

variable 
= displacement potential 

~(r ,  z, p)  = Laplace transform of 
displacement potential 

• (r, z, t) = Love function 

Dimens ionless  quantit ies  

r* = dimensionless radial 
spatial variable 

t* = dimensionless time 

t~* = dimensionless pulse 
rise time 

z* = dimensionless normal 
position variable 

G*(z*, t* 
- ~-*  I / 3 " )  = 

T*(r*, z*, t*) = 

y(~-*) = 

a t ( r * ,  z*,  t* )  = 

T*  = 

~b(r*, z*, t* 
- T* If)  = 

dimensionless 
function defined by 
Eq. (18b) 
dimensionless 
temperature field 
temporal profile i n  
terms of dimensionless 
temporal integration 
variable 
dimensionless stress 
field 
dimensionless 
temporal integration 
variable 

function defined by 
Eq. (36b) 
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z z 

(a) (b) 

Fig. 1 (a) Mixed source ( f  < 1); (b) Gausslan source ( f  = 1) 

2ma f ~  r'Y(p)Q(r') V ~  = rr--'g- o 

× { £  £ /3J°(/3r)J°(13r')c°s(Oz) d~Td/3} o p + a(/32 + r/2) 

By inspection, Eq. (1 t ) has the following particular integral: 

2ma ~ r,[r(p)Q(r,) 
~=-~---~ o 

[ f= f= /3Jo(13r)Jo(13r')cosOTz) drldl3~dr," 
× t :. o(U77q 77 7 7 ]  

(12) 
J 

Equation (12) may be more conveniently written as 

2ma f ~  r'Y(p)Q(r') 
~=-~--K o 

rr° cos + 

_ f °  cos (~z) 

Evaluation of the integrals over the integration variable r} gives 

m°~f==f;=r'Q(r')13Jo(,l~r)Jo(,Or')iT(P) ~=-"K- o o p 

exp - z 
e - ~ z  

x 13 .~ +_ ~2 dl3dr' (14) 

a 

In order to lend generality to the problem, the following 
function is chosen to represent the heat absorbed in the surface 
plane due to a pulse with mixed mode structure: 

Q(r) = qo[f + (1 - f)K~r2]e -(r/~). (15) 

Equation (15) models axial intensity distributions due to many 
high-power lasers that emit pulses having intensity distributions 
comprised of complex mixtures of modes. The fraction of the 
mode structure that contains the Gaussian mode is given by f,  
where 

TEMoo ~ Gaussian mode 

TEMoo ] TEMo~, --* doughnut mode (16) 
f = TEMoo + TEMol, 

[ 0 _ _ < f _ < l  

and the designation TEM, which stands for transverse electro- 
magnetic, describes the behavior of the laser resonator at its 
boundaries (Koechner, 1988). Figure l ( a )  depicts the pulse 

. . . . .  mode structure for f ~ 1. Figure l (b)  shows the Gaussian 
mode which corresponds to f = 1. The doughnut mode struc- 
ture, which is the extreme case of Fig. 1 (a),  corresponds to f 
= 0. The parameter qo corresponds to the maximum incident 
flux for a Gaussian source and contains information about perti- 
nent surface physics, e.g., reflectivity, morphology, etc. The 
parameter Kc is related to the characteristic beam radius d 
through Kc = d - 2  . The beam radius d represents the circular 
boundary within the Gaussian source that contains 63 percent 
of the total pulse power incident to the surface. Equation (15) 
results from the Laguerre-Gaussian distribution function which 
is a solution of the equation for standing waves in the laser 
resonator (see Koechner, 1988). 

Note that the doughnut mode structure is useful for selected 
heat treating, cutting, and welding applications while the 
Gaussian mode structure is employed in the vast majority of 
laser cutting applications (Powell, 1993). 

Using Eq. (15), we may write the following integral: 

(11) ~ o  r'Q(r')Jo(13r')dr' 

=q,[ _(_ 2K,. f + ( 1  f )  1 '/32~]e-(°2'4r,-) (17) 
4Kc / .] 

Performing the Laplace transform inversion on Eq. (14) and 
using Eq. (17) gives the desired form of the displacement poten- 
tial: 

~o 

£ { 1 } X Y(r) e -°z - - G(z, t - rl~) drdl3 (18a) 
=o 2 

where 

G(z, t - rlfl) = e ~z erf f i ~ - r )  + . 4 a ( t  

e,ca7 z } 
+ e -m erf - r )  ~/4a(t - r )  

- 2 sinh (/Sz)] (18b) 

and erf (x) is the error function. The stress field corresponding 
to the particular solution, derived with Eqs. (9) and (18a), is 
therefore 

aPrr = ~k h ( f l ; f )  Y(r) _ e_ & /3Jt(j3r) 
0 =o r 

+ { '/32e-'0~ 21 02G~jo(l~r)]dzd f l o z 2 J  J (19) 

o'~0 = h 0 h( /3 ; f )  =o Y(r )  e -& - 

× {/3J~/3r) t~2jo(flr)) 

+ { fl2e-~z 21 02G~jo(flr)]drdfloz~j J (20) 
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° ~ =  k f;=oh(/3;f) f i=oY(r) 

x { ~ -  e-~=}/32J,,(/3r)drd/3 (21) 

o¢z=-x ff=oh(/3;f) fi=or(7-) 
× {/3e-t~z + lOG~/3J'(/3r)dT-d/32 OzJ (22) 

where 

and 

h = m#aqo (23a) 
~ K  

h ( / 3 ; f ) =  f + ( 1 - f )  1 -  e-(~2/4rP. (23b) 

Note that Eqs. ( 1 9 ) - ( 2 2 )  satisfy only one of the boundary 
conditions since 

O Goz ~=o = -2/3 (24)  

" is The shear stress a ~= 

,, _ 2/~ [ C ( t ; / 3 )  + (/3z - 2u)D(t;/3)1 
a,z 1 7 ~ u  =0 

× /33e-a~Jz(13r)d/3. (30) 

Application of the zero shear stress boundary condition Eq. 
(8b) gives 

C(t;/3) = 2uD(t ; /3)  (31) 

h is The normal stress a~z 

f; cr~ = 2# D(t;/3)(1 + /3z)/3ae-~ZJo(/3r)d/3 (32) 
1 ---2u =o 

Application of the remaining boundary condition Eq. (8a) to 
the sum of Eqs. (21) and (32) gives 

r molqo(l - 2u) ]  
D(t;/3) = L ~5¢ h( /3 ; f )  

f: x Y(T) erfc { / 3 a ~  - 7-) }dr (33) 
=0 

The remaining components of the isothermal solution are 

'r';-2~f;=[ (z-/3z)/3J°(/3r)l - 2u o 

and hence 

However, 

since 

~ 1 ~ = o  = o. (25 )  

P ¢rzz I~=o * 0 (26)  

Gl==o = 2 erf { / 3 ~ ' t -  7-) }. (27) 

In order to remove the unwanted traction, we must superpose 
an isothermal solution onto Eqs. (19) - (22). 

Stress Field Corresponding to Isothermal Solution. The 
stress field corresponding to the isothermal solution a} is de- 
rived from the Love function • = ,I~(r, z, t) (Nowacki, 1986) 
using 

~.),. = 2# O uV 2 _ ~; 
1 - 2 u  Oz 

ado 1 - 2u Oz 7 

h __ 2# O ( 2 - - U ) V  2 -  @; 
or= 1 -- 2U OZ 

errs "1 - 2uOr (1 - u)V 2 -  ~. (28) 

The Love function, which satisfies the axisymmetric biharmonic 
equation, is written in terms of the two unknown functions C(t; 
/3) and D(t;/3) as 

qb = I ® [C(t ; /3)  + z/3D(t;/3)]e-~Jo(/3r)d/3. (29) 
oB= 0 

- (1 - 2u - /3z) J1(/3r)l/32e-aZD(t;r /3)d/3 (34) 

2# 
a~ 1---'2vf;=o[ 2u/3J°(/3r) 

+ (1 - 2u - /3z) Jl(/3r)]/32e-mD(t;r /3)d/3. (35) 

Dimensionless Formulation. It is convenient to recast the 
problem in terms of the following dimensionless variables: 

r* = rq~;  z* = z ~ ;  t* = 4aKct; 

7-* = 4a/~7-; f l *  = BI~I -~  

a ~ =  (4~[~K~ao; T*  = ( - ~ - ) T  
\ mlzqo / 

The temperature solution Eqs. (6) may be written as 

1£" = Y(r*)qJ(r*, z*, t* - 7-*lf)dT-* 
T* 4 ~  *=o 

where 

t* - r ' I f )  = I f +  (1 - f )  q,(r*,  Z*, 
k 

(36a) 

× 1 1 + t * -  r* 1 + 7-* 

{( r.2 z.2)} 
exp - 1 + t * -  r* + t* ~ - *  

x/t* - 7-*[1 + t* - r*] 
(36b) 
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The dimensionless thermal stress components are 

f; fT ,[{o÷ } ors = h( /3*;f)  Y(T* - e -e*: 
*=0  *=0  

X ,8*J,(13*r*)r, + { '8*2e-e•: 

+ {(1 - /~*z*)/3*Jo(~8*r*) 

1 0 2 G  * )  , , 
- ;=5-  ~ Jo(Z  r ) 2 0z* J 

OXS4OOTZ 

0.8 

.~0.6 a - 0.4, b - 7, c - 3, t* = 0.27 

0.0 tr" 0.5 1.0 'r.5 2.0 
t • 

Fig. 2 Model of temporal pulse profile 

- (1 - 2 u - f l * z * )  J~(~_ .*)~. R*r "l 
r* J 

x fl*e-~*: erfc (13* tff*~-T* ) Jdr*dl3* 

f; f: [( o*} ao*o = h(/~*; f )  Y(T*) e -~': 
*=0  *=0  2 

× [/5*JL~_fl*r*) 
I. r* 

+ (/3*Ze -~*z* 

/3*2Jo(/3*r*) } 

1 02G * , 
2 07 ~ }J°(fl r*) 

f{2UlS*Jo(l~*r*) + (1 - 2u - fl*z*) J,(t~ r*)}, * ] + 
t r* J 

(37) 

ensure that the pulse activation time is significantly longer than 
the rate at which heat propagates through the material. Note 
that temporal pulse profiles similar to that in Eq. (41) have 
been proposed by Hetnarski and DeBolt (1991). 

Equation (41) models temporal profiles from a laser that is 
either pulsed through radio frequency modulation of its power 
supply (Gardner, 1992), Q-switched, or mode-locked. It also 
models output from a laser that emits a continuous beam that 
is mechanically chopped outside of its resonator (Hector and 
Sheu, 1993). An oscilloscope trace of the temporal profile of 
a Q-switched Nd:YAG laser using a 6.3-ram diameter crystal 
may be found in Kim and Hector (1991). A similar trace from 
a mode locked Nd:YAG laser using a 4-mm diameter crystal 
may be found in Hector et al. (1992). 

The dimensionless pulse rise time, t,*, or the time required 
for the pulse to reach peak power, is 

( a ~  C-' . (42) t,*. = \ b c /  

×13*e-Z*: erfc {.13* tff~- r* } ]dT*dl3* 

f; £ cr~ = =o ~*2h(~*;f)J°(l~*r*) *=o Y(T*) 

X ~ -  e -e* :  + e-~*:(1  + fl*z*) 

(38) 

× erfc { / 3 * % -  r* } I dr*d/3* (39) 

era = - fl*h(13*;f)Jl(fl*r*) Y(T*) 
= 0  *=0  

1 OG* 13,2z,e_a,z. X /3*e -~*: + ~ az--- 7 -  

where erfc (x) stands for the complementary error function and 
G* and its derivatives are listed in the Appendix. 

Temporal Pulse Profile. The temporal profile of the pulse 
is 

Y(t*)= (t--*yexp{-b(t*c-L*c)} 
\t~* ! 

(41) 

where a, b, and c are temporal shape factors that control the 
extent of negative skewness of the pulse energy in time, pulse 
activation time, and positive skewness of the pulse energy in 
time, respectively. These parameters must be chosen so as to 

Results and Discussion 
The model temporal profile shown in Fig. 2 was used to 

generate the thermal stress field in an elastic half-space. Values 
of a, b, and c were chosen to be 0.4, 7, and 3, respectively, 
since they give a negatively skewed profile that resembles the 
temporal output from many pulsed lasers. The dimensionless 
rise time is calculated from Eq. (42) to be t~* = 0.27 and the 
pulse decays to minimum energy by t* = 1. Equations ( 3 7 ) -  
(40) were evaluated with standard numerical integration rou- 

tines. 
The steady-state thermoelastic response of the half-space due 

to continuous surface sources is examined first since it will 
provide a basis against which the more complicated effects due 
to transient heating may be compared. Figures 3 depict the 

-0.6 

-1.0 t* 5.0 

i i i 
-1.40, 0 1.0 210 3,0 4.0 5.0 

r" 
(a) 

-0.2 : 

-0.6 

doughnut source  

-1.0 

-1.4 I 
0.0 t:o 2:0 3:0 ,:o 5o 

r • 
(b) 

Fig. 3 Steady-state variation of radial stress with radial distance from 
axis at selected depths and time for (a)  f = 1; (b) f = 0 
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~-0.20 ~7. ' . " '  doughnut . . . . . .  
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t* 

(c) 

0.00 

-0.10 
• 

-0.20 

-0.30 

-0.40 
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0 1.0 2.0 3.0 4.0 5.0 
t* 

(d) 

Fig. 4 Evolution of surface stresses at selected radial positions (a) o-g. for 
f = 1; (b) o~* for f = O; (c) ego for f = 1; (d) ¢~e for f = 0 

steady state radial stress variation with radial distance from the 
axis and at selected depths, due to Gaussian and doughnut sur- 
face sources, for Y(t*) = 1. Figure 3(a)  shows that the surface 
of the material experiences the largest compressive radial stress 
since surface elements beneath the beam expand against 
"cooler" surface elements outside of the edge of the beam. 
Note that the spatial distribution of the radial stress field resem- 
bles the radial distribution of the source, as expected. Figure 
3 (a) is in qualitative agreement with the results of Welsh et al. 
(1988). Similar observations are appropriate for the radial stress 
due to the doughnut source (as shown in Fig. 3(b)) .  

Considered next is the surface stress distribution both in time 
and with radial position due to heat from a pulse with temporal 
profile given by Eq. (41) with the specified temporal shape 
factors. Figures 4 show the evolution of surface stresses ~ 
and cr 0*b at selected radial positions relative to the center of the 
pulse. Figures 4 (a) and 4 (b) compare the radial surface stresses 
due to the Gaussian source ( f  = 1 ) and doughnut source ( f  
= 0), respectively. As is the case with steady state heating, 
compressive radial stresses develop on the surface in response 
to the manner in which energy is deposited to the surface. The 
radial stress becomes increasingly compressive during the time 
when the pulse is activated. Shortly after the pulse reaches 
maximum energy, a maximum compressive stress occurs in the 
surface beneath the center of the beam followed by a decay to 
zero stress as the pulse decays to minimum energy. Note that 
radial positions that are removed from the axis experience a 
similar variation in radial stress although the maximum com- 
pressive stresses are much lower than those at the center. The 
major difference in the evolution of radial surface stresses due 
to the Gaussian and doughnut sources is that the magnitude of 
the maximum compressive stresses due to the latter are consid- 
erably less than the former (and hence the reason for the dif- 
fering vertical scales between Figs. 4 (a) and 4 (b)).  The energy 
distribution due to the Gaussian source is much more concen- 
trated around the center of the beam. This is why the Gaussian 
source is the most popular mode structure for materials pro- 
cessing applications. Similar radial surface stress distributions 
are observed in Figs. 4(c) and 4(d) for or*0 due to the Gaussian 
and doughnut sources. 

Figures 5 show the radial distribution of surface stresses at 
selected times during pulse activation for the Gaussian and 
doughnut sources. The maximum (compressive) radial surface 
stress is at the center of the beam since surface elements rapidly 

expand in response to the absorbed energy but are constrained 
by "cooler" surface elements surrounding the center. The radial 
stress decreases from the center since the energy in the Gaussian 
source decreases in a similar fashion. Even though the pulse 
has delivered its peak power by t* = 0.27, the maximum radial 
stress continues to increase as a short time interval is required 
for the material to develop thermal stresses in response to the 
absorbed energy. At times t* = 1, 3, the pulse has decayed to 
minimum energy and or* exhibits a corresPonding decay back 
to zero stress. The radial surface stress due to the doughnut 
source in Fig. 5 (b) behaves in a similar fashion except that the 
maximum compressive stress it creates at the beam center is 
smaller in magnitude than that due to the Gaussian source in Fig. 
5 (a).  A secondary maximum in compressive stress is reached at 
a point that is removed from the beam center. This is due to 
surface elements being compressed in this region in response 
to the largest energy concentration delivered by the doughnut 
source. 

The imposition of the zero shear stress boundary condition 
(Eq. 8(b))  allows one to investigate only the radial and circum- 
ferential stress distributions in the surface plane. It is of interest 
to investigate the subsurface stress field since a shear stress 
distribution is developed and this is the purpose of Figs. 6-8. 

Figures 6 show the evolution of the subsurface stress field at 
a depth z* = 1.5 and at selected radial positions relative to the 
axis due to heat from a Gaussian source. During pulse activa- 
tion, elements in the vicinity of the axis develop small tensile 
radial, circumferential, and shear stresses while experiencing 
compressive normal stresses. As heat propagates from the sur- 
face into the material substrate, shear stresses develop in re- 
sponse to the manner in which the rapid expansion of surface 
elements is prevented by colder regions in the surface. Hence, 
subsurface material elements deform as a consequence of the 
manner in which surface elements deform and from the fact 
that those elements beneath the surface are further constrained 
by colder regions deeper into the substrate and by adjacent 
elements. Elements proximate to the axis deform in the manner 
shown in the inset figure in Fig. 6(d).  Note that the maximum 
value of a~ on the axis is achieved at a time that is nearly twice 
the pulse rise time due to the finite time required to heat the 
material at z* = 1.5, and the material to subsequently deform 
(see Fig. 6(c)) .  Also, by symmetry, cruz = 0 on the axis as 
indicated by the solid line in Fig. 6(d).  As surface elements 
relax their accumulated strains during pulse decay from peak 
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Ô 340W.* 
0.0 I ' ' ' ' 

"0.2"0'1 ~ •  ~-- .. ......... 

doughnut s o u r c e  
-0.3 

o4i 1'0 2:0 ;o ,o 4.0 0.0 
r* 

(b) 
-0,1 

l -0.0 . . . . . . . . . . . . .  

-0.1 * , ""  . . . . . .  " "  . , . .  

-0.2 / 
Geusstltn source 

O3 

i ! i I0~ ~ 
1.0 2.0 3.0 4,0 0,0 1.0 2,0 3.0 4.0 

r* r* 
(c) (d) 

Fig. 5 Radial distribution of surface stresses at selected times (a) ¢~* for 
f = 1; (b) cry* for f = 0; (c) cr~o for f = 1; (d) ¢#o for f = 0 

power, a,.*,., cr~e, and a~ subsurface stresses achieve maximum 
compressive values and then decay to zero. 

Figures 7 show the radial distribution of the stress field at z* 
= 1.5 and selected times due to a Gaussian surface source. 
Maximum tensile stresses accumulate at points on the axis for 
both a~  and ~r~*0 and decrease along points removed from the 
axis. Tensile stresses continue to increase along radial positions 
until the effect of pulse deactivation causes them to gradually 
decrease to compressive values, as shown by those curves at 
t* = 1, 3 in Figs. 7(a)  and 7(b).  Note in Fig. 7(d) that 
a maximum in the shear stress at t* = 0.5 is reached near 
r * = l .  

Figure 8(a) shows the axial variation of radial stress due to 
a Gaussian source at selected times. Extreme values of the 
subsurface tensile stresses occur as the pulse reaches its rise 
time and shortly thereafter. Compressive stresses occur during 
the time when the pulse deactivates. Note that the t*  = 0.10, 

0.27 curves intersect the ordinate axis at ~ = -0.62, -1.18, 
respectively, and thus do not continue on to infinity, as might 
be inferred from the scale used to plot the figures. Figure 8(b) 
shows that the radial stress field is compressive at r* = 1 for 
the times indicated in the figure. 

Conc lud ing  R e m a r k s  

The thermal stress field due to a single laser pulse with speci- 
fied axial and temporal profiles has been derived for an elastic 
half-space. Compressive stresses develop in the surface plane 
of the material while the effect of subsurface shear stresses 
and a compressive normal stress produces tensile radial and 
circumferential stress fields near the axis until material response 
to pulse deactivation occurs. 

Although the assumption of an elastic response is reasonable 
for many laser heated materials, there are situations where a 
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material is preheated to a significant fraction of its melting 
temperature in order to improve beam coupling to the material. 
The preheated material is then exposed to a pulsed heat source 
to effect a metallurgical transformation or to remove small quan- 
tities through the thermocapillary effect during melting or 
through evaporation. In this situation, a viscoelastic constitutive 
model is more appropriate and work is underway to incorporate 
viscous effects into the model. It is also the case that very few 
materials processing applications involve single pulse heating 
of a material. In the vast majority of applications, a train of 
pulses is delivered to the surface and hence localized heating 
and subsequent thermal stresses are much more severe. Models 
of both stationary and moving pulsed heat sources are currently 
being developed for this more realistic situation. There are im- 
portant applications where thin coatings are heated with a pulsed 
laser. To estimate the thermal stress fields in these situations, 
a problem where the exposed region is of a finite thickness, 
rather than semi-infinite, is under development. Finally, many 
laser processing applications involve material removal and work 

is underway to understand the thermal stress distribution in 
situations where phase change with associated material removal 
occurs (see Hector and Sheu (1993) and Hector and Sheu 
( 1991 ) for examples of material removal processes involving 
a pulsed laser). 
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A P P E N D I X  
Dimens ionless  Form of  G and  Associated Derivat ives  

The dimensionless form of G is G*, where 

Z* 

Z* 

- 2 sinh ( /3*z*)]  

OG* =/3*  e ~*z* erf  t ~ -  ~-* + 
Oz* 

(A1) 

- e-~*~* erf t ~  - -r* 

- 2 cosh (/3*Z*)] 

OZG * , [ 4 
Oz *~ = ~ 4~- ( t ;L  ~-*) 

(A2) 

× exp - (t* - r*)  + (t*---~-*) 

+ f l*e  ~*z* erf ~ + 

Z* 

- 2/3* sinh ( /3*z*)]  . (A3) 
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A Fractal Model for the Rigid- 
Perfectly Plastic Contact of 
Rough Surfaces 
In this study a continuous asymptotic model is developed to describe the rigid- 
perfectly plastic deformation of a single rough surface in contact with an ideally 
smooth and rigid counter-surface. The geometry of the rough surface is assumed to 
be fractal, and is modeled by an effective fractal surface compressed into the ideally 
smooth and rigid counter-surface. The rough self-affine fractal structure of the effec- 
tive surface is approximated using a deterministic Cantor set representation. The 
proposed model admits an analytic solution incorporating volume conservation. Pre- 
sented results illustrate the effects of volume conservation and initial surface 
roughness on the rigid-perfectly plastic deformation that occurs during contact pro- 
cesses. The results from this model are compared with existing experimental load 
displacement results for the deformation of a ground steel surface. 

1 Introduction 
The geometry and structure of the interface between two 

solid surfaces in contact is of fundamental importance to the 
study of friction, wear, lubrication, and thermal and electrical 
conductivity. It is well known, that in a general case the actual 
contact between two real solids is realized only over a small 
fraction of the surface in a discrete number of areas. Conse- 
quently, the real area of contact is only a fraction of the apparent 
(nominal) area, and the parameters of the actual contact regions 
depend on the curvature and roughness of the contacting sur- 
faces. Early studies of the contact of rough surfaces are de- 
scribed in Archard (1957), Bowden and Tabor (1951, 1964), 
and Greenwood and Williamson (1966). More recent studies 
are due to Johnson (1985), Liu et al. (1986), Chang et al. 
(1987), Bhushan (1990), Borodich and Mosolov ( 1991, 1992), 
Majumdar and Bhushan ( 1991 ), Majumdar et al. ( 1991 ), Hand- 
zel-Powierza et al. (1992), and Bhushan and Majumdar (1992). 

In general, the structure of most surfaces appears to be ran- 
dom on a small scale. Statistical parameters such as the root- 
mean square (r.m.s.) of surface height a, slope a '  and curvature 
~r" are conventionally used to characterize the surface 
roughness. Several theories based on these parameters have 
been developed to model rough surfaces in contact. The most 
popular of these is the Greenwood and Williamson (G & W) 
(1966) model which is based on the assumption that the surface 
is composed of hemispherical asperities having equal radii given 
by 1/a". The centers of asperities are distributed normally about 
the mean plane, and it is assumed that the contacting asperities 
deform elastically according to the Hertz contact theory. Re- 
cently, Chang et al. (1987) modified the original G & W (1966) 
model to incorporate the effects of volume conservation when 
an asperity deforms both elastically and plastically. Several 
other theories of friction, wear, and lubrication based on the 
G & W (1966) model have been developed, and are discussed 
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by Bhushan (1990). However, as pointed out by Majumdar and 
Bhushan (1991), Majumdar et al. (1991), and Bhushan and 
Majumdar (1992), the parameters a, or', and a" are not unique 
to a surface, and they depend on the resolution and scan length 
of the roughness measuring instrument. Thus, the assumption 
of a surface being composed of hemispherical asperities belong- 
ing to a single length scale is an over-simplification of the real 
surface which contains several roughness scales. 

The multiscale nature of the surface roughness geometry sug- 
gests the use of a fractal representation. Lately the contact of 
rough surfaces has been approximated by fractal models (Liu 
et al., 1986; Borodich and Mosolov, 1991, 1992; Majumdar and 
Bhushan, 1991; Maj umdar et al., 1991; Bhushan and Majumdar, 
1992). The method developed by Majumdar and Bhushan 
(1991), Majumdar et al. (1991), and Bhushan and Majumdar 
(1992) uses the Weierstrass-Mandelbrot function, as described 
by Mandelbrot (1982), to simulate surface roughness. Modified 
Hertz equations are then employed to model the elasto-plastic 
deformation of the surface. In Liu et al. (1986), a fractal surface 
is constructed using the Cantor set, which is used to simulate 
the electrical contact properties of a rough surface interface. 
Similarly, the model developed by Borodich and Mosolov 
(1991, 1992) is also based on the Cantor set, and provides 
asymptotic expressions for a fractal die penetrating either a 
rigid perfectly plastic, or elastic half-space. Hill 's solution (Hill, 
1950) for a punch in contact with a rigid-perfectly plastic half- 
space is employed to estimate plastic deformation. For elastic 
deformation, the surface of the half-space is modeled using a 
Winkler foundation (Cook and Young, 1985) which corre- 
sponds to a distribution of mutually independent linear springs. 

As shown by Johnson (1985) and Majumdar et al. ( 1991 ), 
the contact between two rough surfaces may possibly be mod- 
eled as the contact of an effective composite surface with a 
rigid flat surface (see Appendix). Hence, a solution for the 
deformation of an equivalent surface generated using the Cantor 
set can be modified for the problem at hand. However, in this 
study only the case of a single rough surface in contact with a 
rigid flat surface is considered, therefore, the construction of a 
effective composite surface is not required. The method devel- 
oped by Borodich and Mosolov (1991, 1992) is generalized 
and extended in this paper by allowing the fractal surface to 
deform. It is assumed that the fractal surface behaves as an 
ideally rigid-perfectly plastic material, which is in contact with 
a smooth, rigid, and frictionless half-space. According to this 
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new model, the material volume below the fractal surface can 
be conserved during the plastic deformation process. Further- 
more, the applied Cantor set representation may also provide a 
simple framework for examining the effects of asperity interac- 
tion during frictional sliding which is a topic of much research. 

2 Characterizat ion of  a Fractal  Surface 
Following Borodich and Mosolov (1991, 1992), the Cantor 

set surface shown in Fig. 1 is constructed by joining the seg- 
ments obtained from successive stages of the Cantor set. At 
each stage of construction, the middle sections of the initial 
segments are removed so that the lengths of the remaining 
segments are 1 If.  times the length of the initial segments, where 
f. > 1. The depth of the recesses (measured from the last step) 
at the (n + 1)th construction step of the fractal surface is 1/fz 
times less than the depth at the nth step, where)~ > 1. Hence, 
the horizontal length of the (n + 1 )th step is 

L.+,: tZ)  L0, (1) 

while the recess depth is 

h.+, = h,. \ f z /  ho. (2) 

As pointed out by Mandelbrot ( 1985 ) and later by Majumdar 
et al. (1991), most rough surfaces have a self-affine scaling 
structure, which implies that length scales change by different 
amounts in different directions. This is also evident with the 
case of the structure constructed in Fig. 1. Because of this 
fact, methods used for self-similar fractals are not in general 
applicable to self-affine structures as described by Mandelbrot 
(1985). However, a relationship between the self-affine Cantor 
set structure, and a self-affine surface profile z(x)  may be con- 
jectured through the use of the structure function 

S(r )  = ([Z(X + r )  - Z(X)]2), (3) 

where S(r )  physically represents the mean square of the differ- 
ence in height expected over any spatial distance r,  and (*) 
implies averaging over the statistical ensemble of z(x).  It has 
been shown by Berry (1978) that the structure function for a 
fractal profile can be expressed in the form 

S ( T )  = A2D-27 "4-20. ( 4 )  

In (4), D is the self-affine fractal dimension, and A is a charac- 

teristic parameter of the fractal function referred to as the to- 
pothesy. The two parameters D and A completely characterize 
the fractal profile and are independent of r and, thus, scale 
independent. The self-affine fractal dimension D of a surface 
profile is dimensionless and falls in the range 1 < D < 2, while 
the topothesy A can take on any positive value and has the 
dimension of length. Furthermore, the r.m.s, height cr of the 
surface profile is related to the topothesy through the relation 
(Feder, 1988) 

2D 2 4-2D cr 2 _ A Lc 
4 - 2D ' (5) 

where Lc is the correlation length of the profile. Using (3) and 
(4) and the fact A is a constant, it follows that for self-affine 
scaling 

AZ ~ AX  2-D, (6) 

where 2-D is equivalent to the well-known Hurst exponent. 
As shown by Borodich and Mosolov (1992), a self-affine 

fractal dimension for the Cantor set structure in Fig. 1 can be 
obtained based on statistical considerations. At the nth genera- 
tion, the Cantor set surface contains N = s" segments, each of 
length 

= ( ! ) "  
6, \s f~} L0, (7) 

where the parameter s corresponds to the number of asperities 
on a repeating segment. For example, the Cantor set surfaces 
in Figs. 1 and 2 have s = 2 and s = 3, respectively. Changing 
the parameter s provides a generalization for the construction 
of an infinite number of different structures based on the Cantor 
set independent of the parameters fx and f~. 

During an iterative step in the construction of the Cantor set 
surface, scaling in the horizontal direction is 

\ fx,] 

In the vertical direction, the corresponding fluctuations Az. at 
the n th generation can be defined by considering the probability 
of obtaining the value 

z, = h0. (9) 

uh 
/ I 

t L1/2..--I1~,. I 

t 
fzho 

l 
Fig. 1 Fractal surface constructed from the Cantor set with s = 2 
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RII 
F i g .  2 

RI 
Cantor set model with s = 3 

The actual construction of the self-affine Cantor set profile is 
based on deterministic methods, however, it's relation to a sur- 
face profile exhibiting fractional Brownian motion requires 
some statistical considerations. At the nth generation, the sup- 
port of(9)  has a total length L,, - L,,+i, from which the probabil- 
ity of obtaining z,, is P ( z , )  = (L,, - L,,+~)/Lo and it is found 

P(z, ,)  = 1 - . (10) 

As shown by Borodich and Mosolov (1992), the fluctuation 
£xz,, at the nth generation can be obtained by assuming that Az,, 
scales as the expected value z,,P(z,,) in which 

Az,, ~ z,,P(z,,). (11) 

It then follows that the expected value of the fluctuation at the 
(n + 1 )th generation is related to the expected value of the 
fluctuation at the nth generation through the relation 

£,,+lP(Zn+l) = (fz~lfx)Z,,P(z,,), (12) 

such that the segment fluctuations are related as 

1 
~xz,,+l = ( - - ~  £xz,,. 

\ A f x /  
(13) 

Using (8) and (13) in (6) provides the relationship 

/ 
-SSz,, / = C S U ,  / , 

(14) 

from which the self-affine fractal dimension for the Cantor set 
surface is obtained as 

D = 1 lnf~ + ln____L_s (15) 
In s L In sf~ ' 

where 1 < D < 2. Furthermore, the last term on the right-hand 
side of (15) defines the fractal dimension Dc of the underlying 
Cantor set which is the dimension of the collection of an infinite 
number of points that falls in the range 0 < Dc < 1, and is 
uniquely defined through values of s and fx obtained from a 
random surface profile. 

For the case of a rough surface in contact with an ideally 
smooth and rigid counter surface, the fractal dimension D along 
with the parameters Lo and h0 can be determined experimentally 
from a surface profile of the rough surface. The fractal dimen- 
sion D can be directly obtained from the slope of the structure 
function of a surface profile that represents a fractional 

F i g .  3 F r a c t a l  surface profile intersected by two planes below the r . m . s .  

height ~r 

Brownian process, while L0 corresponds to the profile length, 
and ho is equal to twice the r.m.s, height cr which can be obtained 
from the topothesy. The self-affine fractal dimension of the 
material specimen is related to the self-affine fractal dimension 
of the deterministic Cantor set structure through the three geo- 
metric parameters s, fx, and fz as given in (15 ), which provides 
one equation with three unknowns. Two other relations for the 
parameters f~ and f~ can be obtained by considering the linear 
area that is in contact with a plane that intersects the experimen- 
tally obtained surface profile at two separate locations as illus- 
trated in Fig. 3. These linear areas can be equated with the 
linear areas obtained using the asymptotic results for the area 
displacement relation neglecting volume conservation as dis- 
cussed in the following section. Thus, this result together with 
D, L0, and h0 completely defines the equivalent Cantor set 
surface profile of unit depth which approximates a random sur- 
face profile of unit depth in a deterministic manner. 

For two rough surfaces in contact, the parameters D and A 
would have to be obtained from an effective composite surface 
profile as described in the Appendix. Through the use of (A5), 
D and A can be determined and an effective composite surface 
profile can be constructed using the Weierstrass-Mandelbrot 
function as described by Majumdar et al. (1991). From the 
simulated Weierstrass-Mandelbrot surface profile, the parame- 
ters fx and 3~ can be obtained in the manner described above. 

3 Rigid-Perfectly Plastic Deformation Model 
According to the proposed fractal surface model, it is as- 

sumed that a fractal surface profile of unit depth constructed 
with the Cantor set and composed of rigid-perfectly plastic 
material is in contact with a smooth rigid half space as shown 

P 

°11 
: : !  i 

. . . . . . . .  ~..:.., . . . .  ., . i  . . . . . . . . . . . . . .  i i . i . i  . . . . .  i i _ i i  . . . . . . . . . . . . .  

F i g .  4 Deforming Cantor set surface with s - 2 
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in Fig. 4. It is also assumed that the Cantor set surface is 
independent of the technique used to construct it, and that the 
limiting ( yield ) load for plastic deformation (per unit thickness ) 
of the asperities, is 

P = cryL. (16) 

In (16), cry is the local value of the yield stress of the deforming 
rigid-perfectly plastic material in compression, and L is the 
length of the deforming material in contact with the rigid half- 
space. The local value of yield stress implies the stress required where 
to produce plastic deformation at the length scale under consid- 
eration, and may be different from the value used on the macro 
scale. It is further assumed that each asperity behaves as a rigid- 
perfectly plastic axial loaded column and all the material from 
the (n + 1 )th generation of asperity pairs flows into the troughs 
between the asperities when the critical load P~+l is reached for 
the (n + 1)th generation of asperities. The material volume is 
conserved using this assumption, and simultaneously the height 
of the nth generation asperities is increased. 

With Pn+I being the critical load at the (n + 1)th generation where 
of asperities and P~ the critical load at the nth generation, the 
change in load in transition from the (n + 1)th generation to 
the nth generation is 

~P.+t = P, - p.+t. 

In terms of the yield stress Cry and parameters fx and L0 the 
change in load is 

~Pn+l = cry(fx - 1)L0 

In (18), the change in load is proportional to the change in 
linear area which is consistent with other models for the contact 
of rough surfaces under the assumption of plastic deformation 
of asperities (Oden and Martins, 1985). When the load is in- 
creased from P.+~ to P.  the asperities compress by an amount 

~ U n +  1 ~ bl n - -  Un+l  , 

Here, un+ 1 is the distance the fractal surface is deformed from 
its undeformed state due to the load P~+~, and u. is the distance 
corresponding to the load P..  Letting the number of generations 
of asperities tend to infinity, and simultaneously accounting for 
volume conservation of the deforming material, the displace- 
ments can be expressed by 

U n ~ 

where 

, ~ = Z  - -  , n=Aho. 
k=0 

Here, f~ > 1 and fz > 1, therefore, the series which defines 3/ 
is a geometric series. The expressions X and y are due to the 
volume conservation of the plastic deformation process. If vol- 
ume conservation is neglected the product X 3/is taken as being 
equal to unity. 

The incremental change in displacement can then be ex- 
pressed as 

/ 1 \.+1 
AU.+, = XHy(ffi - 1 ) l - ]  • \ : , /  

Dividing (18) by (22) gives 

z 2 k P n + l  - cry(fx __ L L L  0 ( . ~ n + l  
(23) 

ZXU.+l X ~ T ( ~ -  1) \ f ~ ]  ' 

In the limit as n + 1 ~ ~,  (23) can be expressed as the asymp- 
totic derivative 

dudPcrY(fX-~z ~ 1 ) L ° ( ~ )  ( ' n f x / ' n f Q - ' - l )  , (24) 

q~ = XHy. (25) 

The asymptotic expression relating the load to the plastic defor- 
mation is derived by integrating (24), and using the initial 
condition that P = 0 for u = 0. Thus, 

p=P_2(fx-a \ f f i -  1]1~(~) ~' (26) 

lnf~ 
Po = oyLo, ot = lnf~ (27) 

Equation (26) defines the asymptotic load-displacement relation 
(17) for a rigid-perfectly plastic fractal surface. As was the case with 

the results obtained by Borodich and Mosolov (1991, 1992), 
the solution in (26) is based on asymptotic behavior, and will 
most likely give the best results for u ~ h0. With this result it 
is observed that within the region of applicability, the expression 
(15) can be used in conjunction with the expression for a in 

(18) (27) to provide the relation 

1 - Dc 
a = 1 + D , . - D ' ( a  > 0) (28) 

which is in terms of the fractal dimension D and the Cantor set 
dimension De. 

Dividing (26) by cry gives the real linear area of contact at 
any displacement position u. The equality ~b = fzho corresponds 
to neglecting volume conservation. In this case the linear area 

(19) displacement relation is 

anuc L o ( ~ - l ] ( u  ~'~ 
= 7 \Y-c-i-:t i • (29) 

Evaluating (29) at two separate values of u and equating the 
corresponding values of Anoc with the linear area from an experi- 
mentally obtained surface profile at the respective distances u 
below the r.m.s, height cr, providestwo equations which can 
be solved for the geometric parameters fx and fz. This process 

(20) should be carried out over a large number of realizations in 
order to obtain statistically valid values off~ andfe. These results 
can then be used in conjunction with (15) to obtain the value 
of s which provides a spatial distribution of the asperities. From 
this result it is seen that the load displacement relation given 
by (26) can be characterized without use of the fractal dimen- 

(21) sion D, however, the relation offx andf~ to D provides further 
insight into how the geometric structure of the surface profile 
being modeled changes with length scale. 

A measure of the error involved with neglecting volume con- 
servation during plastic contact can be obtained from the ratio 
of the applied load with volume conservation to the applied 
load without volume conservation. Denoting this ratio by K it 
is found that 

K = > 1, (30) 

(22) which is entirely dependent on the geometric parameters fx 
and f~. 
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4 Results and Discussion 

Numerical results are presented in Figs. 5 ( a - f )  for the load- 
displacement relationship in a nondimensional form for the Can- 
tor set surface shown in Fig. 1. The parameters s = 2 and fx = 
1.5 were held constant in this illustrative example giving a 
constant Cantor set dimension Dc = 0.6309. Results were ob- 
tained with and without volume conservation. It is observed in 
Fig. 5(a) with D = 1.1, that a significantly larger load is re- 
quired to produce the same displacement if volume conservation 
is not neglected. This result is also observed in Figs. 5 ( b - f )  
as expected. It is further observed that iff~ is less than fz, the 
load scales as the displacement to a power less than one. This 
result is seen in Figs. 5, (a) and (b) which have the lowest 
values of D, and are physically the smoothest surfaces. By 
increasing D from 1.2 to 1.3, A becomes less than fx causing 
the character of the solution to change since the load scales as 
the displacement to a power greater than one. Physically, an 
increase in D is equivalent to decreasing f~ (i.e., increasing the 
height of asperities on each repeating segment) with the other 
parameters s and f~ held fixed. This result is consistent with 
curves that exhibit fractional Brownian motion as discussed by 
Voss (1988), where when the fractal dimension D is increased 
the curve becomes rougher with sharper peaks. Thus higher 
fractal dimensions give rise to more sharply peaked asperities 
which plastically deform at lower loads as observed in Figs. 
5 ( a - f )  with the Cantor set model. Increasing D from 1.6 to 
1.7 causes fz to decreases to a value less than one leading to 
results that are not physically realistic. 

Recently, Handzel-Powierza et al. (1992) have conducted 
surface deformation experiments on face turned, ground, and 
bead-blasted carbon steel specimens (0.45 percent carbon), 
which were in contact with a smooth rigid counter specimen. 
In all cases, the load-displacement relations follow a sigmoidal 
curve similar to that shown in Fig. 6 which exhibits a compari- 
son of the experimental data obtained by Handzel-Powierza et 
al. (1992) for the ground specimen with a theoretical prediction 
obtained using (28). The error in the experimental measure- 
ments was determined to be approximately _+0.5 #m for the 
displacements, and ±5 MPa for the load. In the early stages of 
deformation, the load scales as the displacement raised to a 
power greater than one. In the later stages of the deformation 
process, the curve changes direction and the load scales as the 
displacement raised to a power less than one, which is consistent 
with results observed with bulk plastic deformation. Handzel- 
Powierza et al. (1992) compare the early stages of deformation 
with a modified version of the G & W (1966) model which 
only considers elastic deformation of asperities. It is highly 
probable, however, that on the first loading in the early stages 
of deformation both elastic and micro-plastic deformation of 
asperities takes place, with the micro-plastic deformation possi- 
bly being much greater than the elastic deformation. With this 
in mind, it is observed that the Cantor set model can be em- 
ployed to simulate the results that follow the sigmoidal curve 
in the early stages of deformation, thus providing a model for 
micro-plasticity. As shown in Fig. 6, the agreement between 
the theoretical and experimental results is good in the early 
stages of loading. For this rough theoretical estimate, the yield 
stress was taken as 700 MPa for AISI 1045 steel. It was further 
assumed that the profile fractal dimension is D = 1.5 based on 
the results obtained by Majumdar et al. ( 1991 ) for ground stain- 
less steel surfaces. The corresponding Cantor set dimension was 
assumed to be Dc = 0.6228 with s = 3 giving fx = 1.9455 and 
f~ = 1.2418. The depth h0 was taken as 6.6/zm which corre- 
sponds to twice the r.m.s, height obtained by Handzel-Powierza 
et al. (1992). 

It is found that current surface roughness measuring instru- 
ments such as stylus profilometers, optical interferometers, 
scanning tunneling microscopes, and atomic force microscopes 
can be employed to obtain surface profiles of desired material 

specimens. Spectral techniques can then be applied to these 
surface profiles to determine if they exhibit fractal characteris- 
tics. It has been shown in general (Jossang and Feder, 1992; 
Warren et al., 1995) that for most fractal surface profiles at 
any particular length scale the Hurst exponent 2-D satisfies all 
positive moments used to define the height-difference correla- 
tion function (the structure function is the square of the height- 
difference correlation function defined by the second moment). 
Thus a multifractal representation is not required to define the 
fractal surface profile. However, in some cases (Bhushan and 
Majumdar, 1992; Warren et al., 1993) fractal surface profiles 
do exhibit different fractal dimensions at different length scales 
and may require what is referred to as a bifractal or trifractal 
representation. This type of representation has not been included 
in the present Cantor set model. However, if desired the model 
could be modified to incorporate a bifractal or trifractal repre- 
sentation at a later time. 

Thus, if a surface profile is fractal and can be represented in 
terms of a single fractal dimension the formulation for the pres- 
ent Cantor set model is applicable and unique values for the 
self-affine fractal dimension D, topothesy A, sample length Lo 
and parameters fx and f~ can be determined directly from the 
measured data. These parameters are used to reconstruct the 
surface deterministically based on the described Cantor set 
structure in which the statistics should remain the same since 
D and A are the same for both the real and artificial surfaces. 
This deterministically constructed Cantor set surface has the 
advantage in that it allows for techniques known in mechanics 
which are based on Euclidean geometry to be applied to non- 
Euclidean geometry since the element on which the technique 
is applied is Euclidean although the collection of elements is 
fractal. 

Because of the periodicity of the Cantor set model it under- 
goes the same construction procedure at each hierarchical level 
producing contact areas that are all the same size. Therefore, it 
is doubtful that this model will provide an exact simulation of 
the deformation of a random rough surface. However, the model 
does admit an analytic solution, and as proposed by Borodich 
and Mosolov (1992), it may in many cases be that (a) the 
specific character of a fractal model has little effect on the 
asymptotic behavior of the process, and (b) the fractal dimen- 
sion D which provides a measure of the rate at which a surface 
is changing is of most importance. The solution obtained here 
provides further insight into the effect that surface structure has 
on the deformation process, and it also provides indications of 
the effect that different surface forming processes may have on 
subsequent surface deformation. Furthermore, in an averaged 
sense the Cantor set model appears to provide fairly reasonable 
results, and gives an estimate of the error associated with ne- 
glecting volume conservation which is common to many present 
models. 

For future work this present Cantor set model may have the 
potential to be used in the characterization of frictional sliding 
of two bodies in contact. In order to describe the frictional 
sliding phenomenon, it appears imperative to define the spatial 
distribution of contact areas in order to determine the interaction 
effects that these areas have with each other. Currently, it ap- 
pears quite difficult to determine the statistical distribution of 
contact areas (Majumdar and Bhushan 1991; Majumdar et al. 
1991 ), and even if the distribution is obtained it is not clear as 
to how it can be applied to study frictional sliding. However, 
the spatial distribution of contact areas appears to be a natural 
outcome of this Cantor set model, and even though the distribu- 
tion of contact areas are periodic, it may provide further insight 
into the frictional sliding phenomenon. 
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A P P E N D I X  

Equiva len t  C o m p o s i t e  Surface  

The contact between two rough surfaces can often be modeled 
as the contact between one equivalent rough surface with a 
rigid fiat plane. For the equivalent rough surface, the structure 
function S(~-) is given as (Majumdar et al., 1991 ) 

S(7-)  = ( [ z ( x  + ~-) - z(x)]2),  (A1) 

where 

Z(X)  = Z l (X)  - z z ( x ) ,  (A2) 

and (*)  implies averaging over the statistical ensemble of z (x) .  
In (A2) ,  zt(x)  and z2(x) correspond to points on the lower 
and upper surfaces, respectively, which are measured from a 
reference plane below the lower surface, thus contact occurs 
when z ( x )  -> O. Using (A2) in (A1) gives 

S(7-) = ([zl(x + ~-) - z ,(x)]  2 

- 2[z~(x + ~-) - z ~ ( x ) ] [ z 2 ( x  + ~-) - z2(x)] 

+ [ z 2 ( x +  ~ - ) -  z2(x)]2). (A3) 

Since the two surfaces are statistically uncorrelated, the cross 
product term in (A3) vanishes so that 

S(~-)  = ( [ z l ( x  + ~') - zl(x)]  ~ + [z2(x  + T )  - z2(x)]2), (A4) 

which reduces to 

S(~-) = S~(~-) + $2(~-). (A5) 

Therefore the structure function of the equivalent surface is the 
sum of the structure functions of the individual surfaces. 
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Nonlinear Dynamics of a Rigid 
Block on a Rigid Base 
The planar rocking of  a prismatic rectangular rigid block about either of  its corners 
is considered. The problem of  homoclinic intersections of  the stable and unstable 
manifolds of  the perturbed separatrix is addressed to and the corresponding Melnikov 
functions are derived. Inclusion o f  the vertical forcing in the Hamiltonian permits the 
construction of  a three-dimensional separatrix. The corresponding modified Melnikov 
function of  Wiggins for  homoclinic intersections is derived. Further, the 1-period 
symmetric orbits are predicted analytically using the method of  averaging and com- 
pared with the simulation results. The stability boundary for  such orbits is also 
established. 

Introduction 
This paper investigates the response of a rigid rectangular 

block on a rigid base, in planar rocking motion about its comers. 
This problem has been studied by several investigators in the 
past. Housner (1963) drew attention to the fact that rocking of 
blocks is of relevance in earthquake engineering. Spanos and 
Koh (1984) observed that for slender blocks the equation of 
motion will be piecewise linear. This property was exploited to 
construct a symmetric periodic solution. They also conducted 
detailed numerical work to arrive at a boundary in the parameter 
space beyond which the block would topple. Hogan (1989, 
1990, 1992) in a series of papers has extensively studied the 
rocking response of blocks. He considered prismatic blocks on 
a rigid base under sinusoidal excitation. Initially the impacts 
with the base were assumed to cause no energy dissipation. A 
variety of periodic orbits and also chaotic motion were found 
possible. Further improvements, to include damping, have been 
handled numerically. The piecewise linearity of slender blocks 
has been used by Hogan also to construct periodic solutions. 
Tso and Wong (1989a) have used this property to predict the 
existence and stability of harmonic and subharmonic responses. 
They followed this study (Wong and Tso, 1989b) by an experi- 
mental investigation wherein the existence of three-period and 
quasi-periodic orbits were demonstrated. Yim and Lin (1991) 
have extended the study of rocking of slender objects by con- 
structing the Melnikov function. This helps in identifying re- 
gions in the parametric space where, chaotic response may be 
possible. Through numerical studies, they further exhibit the 
possibility of chaotic behavior in rigid blocks. Shenton and 
Jones (1991a, 1991b) have considered the periodic slide-rock 
motion of rigid blocks. Augustin and Sinopoli (1992) have 
derived the equation of motion of a rocking block including 
static and kinetic dry friction. They have also delineated the 
region where rocking is possible as functions of static friction 
and shape of the block. Recently Lipscombe and Pellegrino 
(1993) investigated through theory and experiments the effect 
of bouncing of short blocks after each impact with the base. 
Their study further highlights the extreme sensitivity of rocking 
response to geometric imperfections and errors in the relevant 
parameters occuring in the equation of motion. 
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The present study investigates the full nonlinear system with- 
out the assumption of slenderness and consequent piecewise 
linear property. The Melnikov functions for homoclinic inter- 
sections of two different types are derived. The effect of vertical 
base excitation is also included. It is shown that the modified 
Melnikov function of Wiggins (1988) can be constrructed when 
harmonic vertical and lateral base excitations are simultaneously 
present. Further an approximate analytical solution is presented 
for a one period orbit, valid for short blocks also. Numerical 
results are obtained in the parameter space to illustrate the appli- 
cation of the analytical solutions. 

Equation of Motion 
The system under consideration is shown in Fig. 1. Under 

the action of base accelerations u"(t) and v"(t) the prismatic 
rectangular block rocks about the edge passing through the 
points O and O1. Taking moments of the forces about a corner 
the equation of motion for the planar rotation 0 can be shown 
to be 

10" + I(1 - ~,)0'10'1~(0) + W R  sin ( a  sgn 0 - 0) 

× (1 + v"/g) + WR cos (a  sgn 0 - O)u'/g = 0. (1) 

Here the primes denote derivatives with respect to time, 6(" ) 
is the Dirac delta function and sgn ( . )  is the signum function. 
I is the moment of inertia of the block about a comer; ~, is the 
coefficient of restitution, defined as the ratio of the angular 
velocities immediately after and before an impact; W is the 
weight of the block and R is the distance of the centroid of the 
cross section from a comer. The angle 0 is taken to be positive 
when the block rotates about the comer O1. The base excitations 
are taken as u"( t ) /g  = um sin (•ht) and v"( t ) /g  = vm sin (hot). 
Now introducing the dimensionless parameters el = (1 - u), 
e2 = WR/Iv~,  e3 = Ume2, e4 = Vme2, f~ = ho/hh and changing 
the independent variable to 7- = kht/27r one gets 

+ Cl0101~(0) + 47r2e2 sin (a  sgn 0 - 0) 

= -47r2e3 sin (27rr) cos (o~ sgn 0 - 0) 

-- 47r2E4 sin (27rf~r) sin (a  sgn 0 - 0). (2) 

The above equation is valid only if rocking gets initiated. 
The condition for initiation of rocking is e3 ~ e2(1 : e4/e2) X 
tan a. In case the horizontal forcing is absent, the frequency 
ratio f~ in the above equation is undefined and hence minor 
modifications are needed. The equation of motion for a block 
driven by only vertical excitation is taken as 

+ e101016(0) + 47r2e5 sin ( a  sgn 0 - 0) 

= -47r2e6 sin (27rT) sin ( a  sgn 0 - 0). (3) 
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Fig. 1 Rocking rigid block 

Here the new dimensionless parameters e5 and e6 are defined 
as £5 = WR/ffA~, e6 = vines. In this case, in order that rocking gets 
initiated, the initial conditions should be nonzero and e4 > e2. All 
the parameters excepting e2 and e5 are taken to be small quantities. 
Further, the time variable T is replaced by t for convenience. 

Vert ica l  Input  as a Sma l l  Per turbat ion  

Equation (2) which represents the more general case can be 
recast as 

01 = f l  

02 = f2  + g2 

b = I ( 4 )  

where 

fl = 02,f2 = --4/r2~2 sin (a  sgn 01 - 01) 

g2 = -E10210216(01) - 47rZe3 sin (27rt) cos ( a  sgn 01 - 0,) 

- -  47l"2£4 sin (2TrOt) sin ( a  sgn 01 - 01). 

The  Separatr ix  

The above equations constitute an autonomous Hamiltonian 
system if el = e3 = e4 = 0, with 

H(01, 02) = 0.5022 "~- 47r2e2 COS ( a  sgn 01 -- 01). ( 5 )  

02 - ~  01 

The phase plane for such a system is shown in Fig. 2. The 
system has three singular points, namely a neutrally stable cen- 
ter at (0j ,  02) = (0, 0) and a pair of unstable saddle points at 
(01, 02) = ( ± a ,  0).  The saddle points are connected by the 
separatrix S, which is the level curve corresponding to H( ±a ,  
0)  = H0 = 47r2e2. An explicit expression for S can be found 
by solving the differential equation 

0.50~ + 47rze2 cos ( a  sgn 01 -- 01) = 47r2ez (6) 

with the initial condition 01 (0) = 0. The expressions for the 
homoclinic trajectories are 

01_+(0 = ±sgn ( t ) [ a  

- 4 tan- l{exp(-27re~/2t  sgn (t) tan ( a / 4 ) ) } ]  (7) 

02±(t) = ±[1 + t an2(a /4 )  exp{ -47re~/2t sgn ( t ) } ] - I  

× [87reEmtan ( a / 4 )  exp{--27re21/2t sgn ( t )}]  (8) 

The separatrix S is given by 

S .~- {01+, 02+ } U {01_, 02_ } U {0~,0} U {-0/,0} (9) 

where (a ,  0) and ( -  a,  0) are the limit points for the trajectories 
0t+ (t) and 01-(t) ,  respectively, as t ~ oo. It may be noted that 
in the above derivations, the relations sgn(0j+) = sgn ( t ) ,  sgn 
(0~_) = - s g n  (t) have been used. 

(01+, 02+) 
02 Separatrix 8 

i " - -  

i 

0 = -~/2 0 = ~2 
(or. 02.) 

Fig. 2 Phase plane of Eq. (5) 

M e i n i k o v  F u n c t i o n  
For the present problem possibilities of homoclinic intersec- 

tions of the stable and unstable manifolds exist. In such cases, 
simple zeros of the associated Melnikov function would indicate 
transversal intersections between the stable and unstable mani- 
folds. This in turn would hint at the possibility of chaos. Here 
it may be pointed out that the functions,3~ and g2 are C 1 except 
at 0 = 0. Even for such a case, it can be shown that the perturbed 
homoclinic trajectories are e-close to the unperturbed ones. Fur- 
ther, it may be geometrically demonstrated (Appendix) that 
transversal intersections between the stable and unstable mani- 
folds are not possible whenever 01 = 0. Therefore the transver- 
sality arguments (Wiggins, 1990) are not violated. Hence if 
q '  denotes the O(e)  correction to the unperturbed homoclinic 
trajectory, q, then q '  can be expressed piecewise continuously 
by the first variational equation 

q ' ( t ,  to) = D f  { q( t  - to) }q ' ( t ,  to) 

+ g { q ( t -  t 0 ) , t } , t ,  to E ( - o % 0 )  U (0, oc) (10) 

where f and g are vector functions defined as 

f =  {fl f ~ } r a n d g  = {gl g2} T (11) 

and D stands for the Jacobian of the vector function f with 
respect to its argument q. It may be mentioned that 01 = t = 
to = 0 corresponds to a point of discontinuity where the first 
variational Eq. (10) is not meaningful. 

Now, referring to Fig. 3, it may be argued that two types 
of transversal intersections are possible. In Type I, stable and 

02 
q+u = (e~+o,O2+u) 

\ / 

% = (Ov~,02.~) 

Fig. 3 

q,s + ~ . '  + 0(~ 2) 

q*s = (el+s,02+s) 

- ~ ÷ s )  

J --- 01 

% + eq.' + 0(~ 2) 

Poincar6 section of the perturbed phase plane of Eq. (4) 
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unstable manifolds of two different hyperbolic fixed points may 
intersect. Thus the existence of homoclinic points Pl E ' q+s N ' 
q+,, is investigated. On the other hand if e2 ~ 1, i.e., if the 
maximum distance of separation of the unperturbed stable and 
unstable manifolds of the same fixed point is O(e) ,  then it is 
possible that homoclinic points of the type P2 E ' q+~. N ' q- ,  
may exist even under a perturbative field of O(e) .  This is 
referred to as homoclinic intersections of Type II. 

Homoclinic In tersec t ions~Type  I 
With reference to Eq. (4),  the Melnikov function may be 

found from the well-known wedge product (Guckenheimer and 
Holmes, 1986) 

Mht = f {0,+(t,, 

A g { 0 1 + ( t ) , 0 z + ( t ) , ( t +  to)}dt. (12) 

Here the subscript ' h l '  stands for homoclinic intersection of 
Type I. It is noted that the Melnikov function corresponding to 
{ 0~-, 02- } would be identical to the above. Now expansion of 
the right-hand side of Eq. (12) followed by suitable simplifica- 
tion leads to 

Mhl = --87r2~1c2(1 -- cos a )  

- 64/,,Tr3e~/zc3 tan ( a / 4 )  sin (27rto) 

- 641dr3c21/2e4 tan ( a / 4 )  cos (27flit0) (13) 

where 

I, = f ~  {1 + tan / (od4)exp( -47re~nt )}  lexp(-27rel/2t) 

× cos (27rt) cos [4 tan-I { tan ( a / 4 )  exp(-27re~/2t)}]dt 

and 

= f o  {1 + tanZ(a/4) exp(-47re~/2t)} -1 L 

× exp(-27re~/2t) sin (27rf~t) 

× sin [4 tan-~{tan ( a / 4 )  exp(-27re~/zt)}]dt. (14) 

In deriving the above expressions for Mhj the properties of 
the separatrix, S, namely, 02+(t) = 02+(-t), and Oj+(t) = 
-O~+(-t) ,  have been used. Equation (13) contain L, and I~ 
which are infinite integrals. An alternative expression for Mh j 
can be derived which is computationally more convenient by 
observing that 02+dt = dOn+. Use of this in Eq. (12) leads to 

Mhl = --87r21112(1 -- COS a )  -- 87r213 sin 27rtoK,, 

+ 87r214 cos (27r~2to)K~ (15) 

where 

Io K, = cos [(l/e~/2) in {tan (0.25(a - 4 ) ) / t an  (0.25a)}1 

x c o s ( a -  ~ ) d ~  (16) 

and 

K~ = sin [(fUel/2) in {tan (0.25(a - ~) ) / tan  (0.25c~)}1 

× sin (a  - 4~)d4~. (17) 

It is to be noted that the Melnikov function for the combined 
forcing as given by Eq. (15) is valid only for rational values 
of fL Only in this case, we can find a least common multiplier 
0~ of the time periods of horizontal and vertical excitations 
given, respectively, by Tl = 1.0 and T2 = 1/f~ such that g2(01, 

02, t) = g2(Ol, 02, t + @c). In case the horizontal excitation is 
absent, the equation of motion is given by Eq. (3).  Again the 
Melnikov function can be found as 

Mhl  v ---- --871"2£1£5(1 -- COS O/) + 87r2£6 COS (27rt0)L,. (18) 

Here Lo is given by 

L~ = sin [ ( l /e~ n) In Itan (0.25(a - 40)/ tan (0.25a)}1 

× s i n ( a -  ~)dq5 (19) 

Homoclinic Intersect ion- -Type  II 

It is here assumed that e2 ~ 1. Referring to Fig. 3, the vector 
notation q+ = (q+s U q+,) = (Ol+s, 02+s) U (01 . . . .  02+u) is 
introduced for the upper half of the unperturbed homoclinic 
orbit. A similar notation is valid for q_, the lower half. The 
subscripts s and u stand for the stable and unstable manifolds. 
Clearly, the unperturbed homoclinic orbit is given by q = (q+ 
U q_). Now a separation vector is defined between the stable 
and unstable manifolds of the perturbed fixed point as d(to) = 
[Cq+.~(to) - c q-,,(to)]. Here, to is an arbitrary time when the 
Poincar6 section as shown in Fig. 3 is chosen. The time-depen- 
dent distance function is 

A(t ,  to) = f { q ' ( t -  to)} A { q ' ( t ,  to)-- q'_(t, to)} 

= A, ( t ,  to) - A,,(t, to) (20) 

so that the Melnikov function for homoclinic intersections 
would be given by 

mhz(to) = A(to, to) 

=f~/x~(t, to)dt-f~°/x,,(t, to)dt. (21) 

Here, q+ and q_ are the O(e) corrections to q+s and q_,, given 
by the first variational equation (10). Now, following Gucken- 
heimer and Holmes (1986), one can show that 

A~(t, to) = f { q + ( t - t o ) }  A g { q + ( t -  to ) , t} .  (22) 

Similarly, taking the time derivative of A , ( t ,  to) and using Eq. 
(10), one has 

A , ( t ,  to) = D f { q + ( t -  to)} f { q + ( t -  to)} /x q'_(t, to) 

+ f { q + ( t -  to)} A [ D f  { q _ ( t -  to)}q'-(t,  to) 

+ g { q _ ( t -  to ) , t } ] .  (23) 

It is noted here that A , , ( - ~ ,  to) = 0. Further, in the present 
problem, 

f l (0 , ,  02) = f , (0 , )  = 02 

and 

Ofz(Ol+, 02+)/00l+ = Ofa(Ol-, 02-)/001-. (24) 

Expansion of the right side of Eq. (23), use of the above condi- 
tions, and finally substitution of the resulting expressions in Eq. 
(21) followed by a change of variable from t to t + to leads to 
the following Melnikov function 

Mh2 = fo+ f {q+(t)} A g{q+(t ) ,  (t + to)}dt 

f°- 
+ f{q+( t )}  A g { q _ ( t ) , ( t + t o ) } d t  (25) 

for homoclinic intersections. Further simplification is possible 
by noting that along the unperturbed separatrix, O~+(t) = 
- 0 1 - ( 0  and 02÷(0 = -02_(t) .  This leads to 
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Mh2 = -87r2ete2(1 - cos a )  

- 87r2e3 sin (27rto)K, - 871-2e4 sin (27rf~to)K]o. (26) 

Here 

f; K~v = cos [ ( a / e l  ~) in { tan (0.25 (a  - 40)/ tan (0.25a) }1 

x sin ( a  - 4~)d~. (27) 

It is seen that for e4 = 0, we have Mh] = ~ / h 2 ,  Hence the 
onset of chaos via Type I and Type II intersections follow the 
same pattern for blocks driven by only the horizontal accelera- 
tion. In case, e~ = 0, one gets the following expression for the 
block driven by only a vertical excitation 

Mh2 ~ = - -87 r2e ]e5 (1  --  COS o/)  -- 87r2e6 sin (2Zrto)L]o (28) 

where 

f; L]~ = cos [(l/e~/2) In Itan (0.25(~ - 40)/ tan (0.25a))]  

× sin ( a  - 40d~.  (29) 

Vert ica l  Input  as P a r a m e t r i c  Exc i ta t ion  

Wiggins (1988) has developed a method which is more gen- 
eral than that of Melnikov. Parametric excitations with large 
amplitudes but with small frequencies can be handled by this 
approach. For this purpose, Eq. (4) is rewritten as 

0] = f ,  

O~ = f~ + g~ 

~ = f ~  

~b = 1. (30) 

Here 

f](01, 02) = 02 

f2 ( 0 ]  , 02)  

= -47r2e2 sin ( a  sgn O] - 0]){1 + (e4/e2) sin (27rz) } 

gz(O], o~, ~o) = - ~ A I O ~ I 6 ( O , )  

- 47r2e3 sin (27r~0) cos ( a  sgn O] - 0]) (31) 

where z and ~b are modulo 1/f~ and 1, respectively. 

T h r e e - D i m e n s i o n a l  Separatr ix  

It is observed that the above system is Harniltonian when e~ 
= e3 = 0. The time variable for such a system gets uncoupled 
from the rest of the equations. The hyperbolic fixed points for 
this case are ( - a ,  0, z) and (a,  0, z) for all e4 < e2 and for all 
z in the interval (0, 1/f~]. The corresponding phase space is 
illustrated in Fig. 4. The Hamiltonian is given by the energy 
functional 

H(Ol, 02, z) = 0.5022 + 47r2e2 cos ( a  sgn 0] - 0t) 

X {1 + (e4/e2) sin (27rZ) }. (32) 

To obtain the expressions for the homoclinic trajectories the 
above equation is solved for Ho(z) = 47r2e2{1 + (e4/e2) sin 
(27rz) }. This leads to 

O]±(t, z) = ±sgn ( t ) [ a  

- 4 tan-l{exp(-27r/ .z(z)t  sgn ( t ))  tan (od4)}]  (33) 

~ Z=Zo+l/~ 

vZ 

Fig. 4 Phase space for the system of Eqs. (30) 

and 

Oz±(t, z) = ±[1 + tan2(a/4)  exp{-47r#(z) t  sgn ( t)}]  -~ 

× [87r/z(z) tan ( a / 4 )  exp{ -27r~(z)t  sgn ( t )}]  (34) 

where/z(z) = [e2 { 1 + (e4/e2) sin (27rz) } ]1/2. 
The separatrix, S, for this case is given by 

s = { 0]+, 02+, z } u { 0]_, 02_, z } 

u { a ,  0, z } U { - a ,  0, z}. (35) 

W i g g i n ' s  Modi f ied  M e l n i k o v  Funct ion  

In further work, it is assumed that f~ < 1. This means that z 
is a slow time variable. The modified Melnikov function, Mw(to, 
z), which can detect the homoclinic intersections at a three- 
dimensional Poincar6 section based at to as given by Wiggins 
(1988) is 

Mw(to, z) = f ~  (fig2 - f2g])dt 

+ f~ f= {f~(Of2/Oz) - f2(Of~/Oz)I tdt .  (36) 
d - ~  

Here 

f ~ = f t { q ( t , z ) } ,  3~=3~{q( t ,Z )} ,  

gl = gl{q( t ,  z), (t + to)}, 

gz = g2{q(t, z), (t + to)} and 

q(t, z) = {Ol(t, z), 02(t, z)}.  

Use of Eqs. (32), (33), and (34) in Eq. (36) and subsequent 
simplification leads to 

Mw = -87r2e]e2{1 + (e4/e2) sin (27rz)}(1 - cos c~) 

- 87r2e3 sin (27rto)Kuw + 16'rr2e4 ~ cos (27rz)Kvw. (37) 

The integrals K.w and Kow are given by 

K,,w = cos [#(z) In {tan (0.25(a - 4~))/tan (0.25a)}1 

× cos ( a  - ~b)d~b (38) 
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K~w = [ 4 7 r z e = { I . Z ( z ) } ] l n { t a n ( O . 2 5 ( a - q ~ ) ) / t a n ( O . 2 5 a ) } ]  

x sin (a  - ~b)dq~ (39) 

If e3 = 0 in Eq. (37),  the Melnikov function with only the 
vertical force acting is obtained. 

Numerical Results 
First the Melnikov function, Mh~, as given by Eq. (15) is 

considered. Given o~, f~, c4, and el, the following relation be- 
tween e2 and e3 is obtained for the zeros of M~ 

~3 = (1 /K , ,  sin (27rt0){~4 cos (27r~2to)K~ 

-~,~2(1 - c o s a ) } .  (40) 
Fig. 6 Now for any e~, one can find e3(t0). The Melnikov boundary 0.20 

M~ in the parameter plane e3 - e~ is defined as the graph of inf 
{¢3(t0) for all to} versus ez. In Figs. 5 and 6, the effect of 
changing the damping parameter e~ and the shape parameter a 
on Mb is shown. These results refer to the case when only the 
horizontal excitation is acting. In this case, the condition for 
initiation of rocking would be E3 = E2 tan a. These rocking 
initiation curves (RIC) are also shown in these figures. When 
the effect of vertical excitation is included homoclinic intersec- 
tions of both the types are possible. For constructing the corre- 
sponding Melnikov boundaries one has to search for the zeros 
of Eqs. (15) and (26) such that e3(t0) is minimized. However, 
it is not readily possible to fix up such a to that minimizes e3 
in the e~-e2 plane. It is therefore required to plot several graphs 
of ¢3(t0) versus ez for various to values and then numerically 
find out the curve corresponding to inf { ~3(to) } versus ca. This 
final result is shown in Fig. 7. In Fig. 8, to locate the modified 
boundary of Wiggins, Eq. (37) is set equal to zero and several 
graphs of inf {e3(to, z)} versus e2 are plotted for different where 
values of z. The modified boundary Mw corresponds to z = 0.5 
except for extremely small values of e~. This result is also 
compared in Fig. 8 with the usual Melnikov boundary Mb as 
given by Eq. (15).  For the parameters chosen the modified 
boundary is weaker than the Melnikov boundary. However, 
Wiggin 's  modified approach will be valid for large values of 
~4 also. 

Symmetric One-Period Orbit 
The Melnikov boundary, for which numerical results are pre- 

sented, divides the parameter space into two regions. Below 
this boundary only periodic solutions are possible. Above the 
boundary, however, the solutions are not necessarily periodic. 
With this in view it would be interesting to ask whether bound- 
aries for specific types of periodic solutions can also be ob- 
tained. This requires extensive numerical work and is not under- 

0.15- 

Fig. 5 

R I C  ( ¢ , , - , 0 . 3 ) .  

/ 
0.1 

/ / ~  . 

0.05 ~.o.20 
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0 ' . . . .  , . . . .  , . . . .  i . . . .  , 
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Effect of damping on Mn, only horizontal forcing ~ = 0.3 

0 . 8  ] - - R I C  ( ~ , . 0 . 3 )  
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,,r 0.4 J "  

t - ~ g  ~ : . . . . . . . . . . .  ~,30 
0 ~.'~-: U, . . . . . . . . . . . . . . . . . . . .  

0 0.1 0.2 0.3 0.4 0.5 
et 

Effect of shape parameter on Mb, only horizontal forcing ~1 = 

taken here. On the other hand, an analytical solution is found 
for a symmetric one period orbit. No assumption on the slender- 
ness of the block is made, but the damping is assumed to be 
small so that, the discontinuity at 0 = 0 can be smoothed. The 
solution valid in the interval ( -c~ ~- 0 -< c~) is taken in the 
form 

O(t) = A cos/3, 0( t )  = -27rA sin/3 (41) 

where,/3 = 27rt + ~b. IfA and ~b are slowly varying, the classical 
averaging method leads to 

,,~ = X~ + X2 cos ~b + X3 sin q5 (42) 

= Yi + Y2 cos ~b + Y3 sin ~b (43) 

Xi = - 2 e i A  2 

X2 = 7rc3(Jo + J2) cos oz 

+ (8/3)e3{Jl  + (7/5)J3 + (23/35)J5} sin o~ 

X3 = - (4 /3)£3J1  sin c~ 

Yl = - T r  + 4 ( c z / A ) { J o  - (2/3)Jz  - (2/5)J4} sin a 

- 27r(e2/A)J1 cos 

Y2 = ( 5 / 6 ) ( e 3 / A ) J l  sin a 

Y3 = 7r(e3/A){-J0 + J2} cos o~ + (e3/A) 

X { ( - 2 5 / 6 ) J 1  sin o~ + (16/15)J3 + (17/210)J5)}.  (44) 

Here J , , (A)  are Bessel functions of the first kind and order 
n. While deriving the above expressions the first three terms in 
the Fourier expansions, 

cos (A cos/3)  = J o ( A )  - 2J2(A) cos 2/3 

+ 2J4(A) cos 4/3 - . .  

sin (A cos/3)  = 2J l (A)  cos/3 - 2J3(A) cos 3/3 

+ 2Js(A) c o s 5 / 3 - . . .  (45) 

have been retained. In the steady state, A = ~ = 0. This leads 
to the transcendental equations 

(X3Y2 - -  X2Y3)-2{ (X2Y~ - XiY2)  z 

+ ( X 3 Y ~ - X ~ Y 3 )  2 } -  1 = 0  (46) 

tan ~b = (X3Yi - X i Y 3 ) - I ( X i X 2  - X2Yi ) .  (47) 

Solution of these equations leads to the steady-state values of 
A and qb. 
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Fig. 7 E f fec t  o f  verlioal excitation on Mb E~ = 0.025,  a = 0.55, E4 = 0.2, 
= 0.2 

An advantage of analytical approaches is that one can perform 
a stability analysis on the solution. It is easily seen that the 
divergence of the vector field V/= {fl(fz + gz) } r as given by 
Eq. (4) is 

(VV/) = -2e102 sgn (02)6(01), (48) 

Since 02 sgn (82) > 0, the phase-space of the system contracts 
by jumps whenever 01 = 0. But the assumed continuous one 
period orbit, given by Eq. (41) cannot account for these jumps 
in every cycle. However, on an average with the assumed solu- 
tion the divergence over one cycle is 

Y? ((VVi)) = -2c1(1/21r) ( 2irA sin/3) 

× sgn (sin/3)6(cos/3)d13 = -4Ae l .  (49)  

Over a long period of time this average divergence contracts 
the phase space exponentially by the same amount as given by 
Eq. (48). Thus the stability of the averaged steady-state solution 
(A, ~b) can be studied by considering the variational equation 

+ 4AelO + { - - 4 7 r Z e 2  C O S  ( a  sgn 0 - 0) 

+41rZe3sin(27rt) s i n ( a s g n 0 -  O)}v=O (50) 

Here 0 is a known periodic function and hence through the 
eigenvalues of the Floquet transition matrix, one can study 
whether the variation v grows or decays exponentially. This in 
turn establishes the stability boundary of the one-period solution 
given by Eq. (41 ). 

The transcendental Eqs. (46) and (47) have been solved 
iteratively to obtain several possible symmetric one period solu- 

1.00 
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0.50 

0.00 

-0.50 
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O 

Fig. 9 Numerically and analytically computed symmetric 1--period or- 
bits el = 0.2, e= = 0 . 0 3 ,  ~a = 0.11, a = 0.55 

tions, for a block under only horizontal excitation. In Fig. 9, 
one such solution is presented and compared with the exact 
solution numerically obtained using the Runge-Kutta scheme. It 
is observed that the comparison is very favourable. The stability 
boundary of these solutions in the parameter plane (e2 - c3) is 
presented in Fig. 10 along with the Melnikov boundary for 
homoclinic intersections of Type I and the corresponding RIC. 

Discussion and Conclusions 
The purpose of this paper has been to bring into focus the 

importance of the Melnikov function in understanding the dy- 
namical behavior of a free-standing block rocking on a rigid 
base. The presence of homoclinic trajectories in the unperturbed 
phase space allows one to construct the Melnikov function and 
to check for the possibility of homoclinic intersections, when 
the system is perturbed by damping and external forcing. In 
previous studies, the assumption of piecewise linearity has been 
made to find the Melnikov boundary. Here this assumption has 
not been used. The effect of vertical excitation has also been 
included. There are two ways in which the vertical excitation 
can be handled. First, the amplitude can be taken to be small 
and thus the excitation can be treated as a small perturbation. 
The second approach is due to Wiggins wherein, the frequency 
parameter of the vertical excitation is treated as a small quantity. 
The Melnikov boundary (Mb) partitions the parameter space 
such that below the boundary only periodic trajectories are pos- 

Fig. 8 
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Fig, 10 Stability boundary of  1 - p e r i o d  solutions and Melnikov boundary 
~1 = 0.2, ~4 = 0.0, a = 0.55 
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sible. In the present problem, an interesting question is the 
toppling of the block. For this to happen the trajectories have 
to cross the unperturbed separatrix. Hence, one can take the 
boundary Mb or the modified boundary Mbw as limiting curves 
below which toppling cannot occur. Thus crossing this boundary 
in the parameter plane would be a necessary condition for top- 
pling of the block. It is interesting to note that a one period 
symmetric orbit not hitherto reported in the literature can be 
analytically obtained. The stability of this solution can also be 
analytically studied. This provides a further boundary in the 
(c~-c3) parameter plane (Fig. 10) to refine the region where 
complicated response may be possible. However, the present 
results provide only necessary conditions. Further structuring of 
this legion to demarcate multiperiod, quasi-period and toppling 
solutions is necessary. The concept of lobe dynamics and the 
transport of the points in phase space across the pseudo-separa- 
trix (Wiggins, 1992) may prove useful in studying the toppling 
characteristics of the block. 
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A P P E N D I X  

Proposition A1 

Let q~(t  - to) and ~q.~(t, to) denote the unperturbed and 
perturbed stable homoclinic trajectories for the system of Eq. 
(4) on a Poincar6 section based at to. Let "qs(to, to) - qs (O)  
= O(c).  Then 'q.~(t, to) - q , ( t  - to) = O ( c )  V t  c ( to,  ~ ) .  

A similar proposition holds true for the unstable homoclinic 
trajectory with time reversed. 

Proof. Let f and g be vector-valued functions as given by 
Eq. (11 ). The function g may be equivalently represented as 

g(~q,, t, e) = eg(~q, ,  t, e). (A1) 

This leads to 

I ' q s ( t ,  to) - q. ,( t  - t0)l -< I'q,(t0, to) - q~(0)l 

f, + I f (~q~(~ , to ) ) -  f ( q ~ ( ~ - t o ) ) l d ~  
o 

+ e IN('q.~(~, to) ,  ~, t ) l d ~ .  (A2) 
o 

Referring to Eq. (4),  the function g may be decomposed as 

g = ~ + ~ a  (A3) 

where 

~" = {0 - 0~10~16(0 , ) }  T (n4 )  

Since f and ~ are C o functions, hence 3M > 0, and L - 0, 
such that in an interval [to, tt], where tl > to and t~ - to = 
o ( 1 ) ,  

I~(°qs, t, ~)1 -< M 

and 

t f ( ' q ~ ( ~ ) )  - f (q s (~ ) ) l  -< Ll 'q~(~) - q~(~)l. (A5)  

Further, let there be I impacts of the block with the ground 
in [to, t~]. It may then be readily shown that 

f '  Ig~*('q,(~), ~, e ) ld~ = K,  (m6) 
0 

where K = ~=o 102i 1%=o. 
In other words, K is the sum of the absolute velocities at 

impacts. Substitution of (A6) and (A7) in (A3) followed by 
the use of Gronwall's lemma leads to 

I'q.~ - q~l -< []~q,(t0, to) - q,(0)l 
+ e ( K  + M / L ) ]  exp[L(t  - to)]. (A7) 

Hence 3 a constant Q independent of e, such that "q~ - qs ~ 
O(e) for to -< t -< to + Q / L .  Since 'q~ is a stable manifold, 'q.,. 
- q ~ = -  O(c) fort0_< t <  ~.  [] 

Proposition A2 
A transversal intersection of 'qs and ~qu is not possible at 0~ 

= 0 .  

Proof. ~q~ and ~q. has a transversal intersection at a point 
p ,  iff 

Tp(~q,)  + Tp(~q,)  = R 2. (A8) 

At 0~ = 0, ~qs and ~q, undergo a jump along the 0z-axis. 
Therefore the only way ~q, and °q, may intersect is along a line 
on the 02-axis. Let p '  E ~ q~ A ~ q, be one such intersection. 
Then 

Tp,(~q~) + Tp,(~q,)  = R ~. [] (A9) 
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Integral Equations for a Three- 
Dimensional Crack in an Infinite, 
Fluid-Filled, Poroelastic Solid 
With Zero Permeability 
in One Direction 
Fundamental solutions for an instantaneous point force and an instantaneous fluid 
point source are derived for an infinite, fluid-saturated, poroelastic solid with zero 
permeability in one direction. Applying these solutions and Cleary' s reciprocal theo- 
rem to the three-dimensional problem of  a pressurized plane crack yields two integral 
equations, which relate normal tractions and fluid pressure on the crack faces to 
crack opening and fluid injection rate per unit fracture area. An important application 
of these equations is the prediction of hydraulic fractures induced during water- 
flooding of reservoirs to enhance gas and oil recovery. Zero permeability in one 
direction may be a good approximation for the case in which the reservoir is sand- 
wiched between two impermeable rock layers. 

Introduction 
In our previous paper (Kurashige and Clifton, 1992), a pair 

of integral equations was derived for the three-dimensional 
problem of a pressurized plane crack in an infinite, isotropic, 
homogeneous, fluid-saturated, poroelastic solid with isotropic 
permeability, using the known fundamental solutions (Cleary, 
1977) for a point force and a fluid point source. These integral 
equations relate normal tractions and pore fluid pressure on the 
crack faces to the crack opening and fluid volume supply rate 
per unit fracture area. These equations were intended to apply 
to the prediction of hydraulic fractures induced during water- 
f looding--a  technique used to enhance the recovery of gas and 
oil by injecting water into some wells to force gas and oil to 
neighboring wells. Numerical solutions based on these equa- 
tions were obtained recently for the water flooding case (Clifton 
and Wang, 1991). 

The aim of the present paper is to obtain a similar pair of 
integral equations for a pressurized plane crack in an infinite, 
elastically isotropic, homogeneous, fluid-saturated, poroelastic 
solid having zero permeability in one direction. Because reser- 
voirs of gas and oil are sandwiched between impermeable for- 
mations, the water injected into the reservoir from the well bore 
or from the induced fracture flows mainly in the horizontal 
direction, when the height of the fracture is comparable to the 
height of the reservoir, as in most cases except at early times. 
Therefore, the assumption of zero permeability in the vertical 
direction but non-zero permeability in the horizontal directions 
may be a good approximation for many cases of practical impor- 
tance. 

In the first half of the paper, fundamental solutions are ob- 
tained for an instantaneous point force and an instantaneous 
fluid volume source in such an infinite solid with vanishing 
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permeability in one direction. Using these solutions for the 
stress field resulting from an infinitesimal segment of a disloca- 
tion line (Clifton and Abou-Sayed, 1979; Kurashige and Clifton, 
1992), the second half has derived the required pair of integral 
equations. 

Basic Equations 
Let us consider an elastically isotropic, homogeneous, fluid- 

saturated, poroelastic solid having zero permeability in one di- 
rection. Denote total stress, pore fluid pressure, average strain, 
pore fluid volume change per unit total volume, and pore fluid 
volume flux by au, P, eu, AV, qz, respectively. Constitutive 
equations for such a poroelastic material are given by (Cleary, 
1977) 

O'ij = LijpqCpq - -  o~p~i j  

( U ekk6U)--aptSi j, (1) = 2G % + 1 - 2"--'~ 

3(u.-u) ( 3 )  
/XV= 2aB(-1T-T)-(-{ + ~) ~k + ~ P  , (2~ 

qx = _tcOp Op 
0-'~' q y = O ,  q ~ = - K ~ Z ,  (3) 

where o~ is Biot's coefficient of effective stress given by 

3(u,  - u) 
a B(1 + u,)(1 - 2u) (4) 

and G, B, u, u,, • are the shear modulus, Skempton's pore 
pressure coefficient, drained and undrained Poisson's ratios, and 
permeability in the x and z-directions. We have made the zero- 
permeability direction coincident with the y-axis of the 
Cartesian coordinates (x~) or (x, y, z) so that the pore fluid flux 
vanishes in the y-direction as in Eqs. (3).  In what follows, we 
will use either (xj) or (x, y, z) depending on which is more 
convenient. 
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Since we shall deal with the quasi-static case with body force 
and fluid volume source r e per unit volume, the equilibrium 

equations and the pore fluid diffusion equation are 

~r0, ~ + f~ = 0, ( 5 )  

qi,i + O A g / O t  = r F. (6) 

As in the linear theory of elasticity, the average strains are 
defined in terms of the average displacement u~ by 

e0 = ½(uij + us, i). (7) 

In the above and what follows, the usual summation convention 
holds for repeated indices, unless otherwise mentioned, and 
commas denote partial differentiation. 

Equations ( 1 ) through (7) constitute a full system of govern- 
ing equations for an elastically isotropic, fluid-saturated, poro- 
elastic solid with zero permeability in the y-direction. After 
some manipulations with these equations, the equilibrium equa- 
tions and the diffusion equation are expressed in terms of the 
displacements and the pore fluid pressure as follows: 

1 o~ 1 
VZu' + 1 - 2------~ u~'~' - G p'~ = - G f '  (8) 

u.+ p °Y 

where 

_ O~o 1 
G j~'J - 0/c-- rF' (9) 

1 - 2u 3(1 - 2u,) 
ao = 2(1 - u ) '  a~ 2B(1 + u.) 

0/2 
3(1 - 2u)(1 - u,) 

2B(1 + u,)(1 - u) ' 

~u - -  L/ 
a~ = (10) 

2(1 - u,)(1 - u) 

Although it has not appeared in Eqs. (8) and (9),  o~3 is defined 
in (10) for later use. 

F o u r i e r  and Laplace  T r a n s f o r m s  

Fourier and Laplace transforms and their inverse transforms 
are used in the following sections. For an arbitrary function f (  xj, 
t), and for Fourier transform and Laplace transform parameters 
denoted by ~i (corresponding to xj) and s, the transforms and 
their inverses are defined as follows: 

1 L f(~j,  t) = ~ f ( x j ,  t) exp(i~jxj)dxj, 

(no s u m o n j )  (11) 

1 
f ~  f ( ( j ,  t) exp(-ixj(~)d(j ,  f (  xj, t) - ~/(27r) -= 

(no sum on j )  (12) 

f * (x j ,  s) = .g[f(x~, t)] = f (x~,  t) e x p ( - s t ) d t ,  (13) 

f ( x ~ , t )  = 1 f 2zr'--i ~ f*(xs ,  s) exp(s t )ds ,  (14) 
r 

where Br means the Bromwich integral path. Furthermore, the 
triple Fourier transform will be expressed by the same raised 
hat symbol used for the single Fourier transform. 

F u n d a m e n t a l  So lut ion  for Ins tan taneous  Po int  Fluid  
V o l u m e  Source  

Consider an instantaneous point fluid volume source with 
unit intensity at the origin of the Cartesian coordinate system 
(x~) at time t = 0. The associated forcing fields are 

r r = 6 ( x ) ~ ( y ) 6 ( z ) 6 ( t ) ,  f = 0, (15) 

where 6(. ) denotes the Dirac delta function. Note that, since 
the permeability vanishes in the y-direction but not in the other 
directions, the fundamental solution for the fluid source is axi- 
ally symmetric about the y-axis. Taking into account Eq. (15), 
and applying the triple Fourier and Laplace transforms to Eqs. 
(8) and (9),  one obtains, with the help of the relation aao + 
0/1 ~ 0/2,  

1 G/(a0/2) 
/3* = - -  , (16) 

(27r) ~': c ( ~  + ~ )  + s 

^.  1 0/o/a2 i~j (17) 
uj (2~r) 3~2 c (¢~  + ¢~) + s ( ~ ( ~ )  ' 

The pore fluid pressure p can be obtained easily by inverse 
transformation of Eq. (16) as 

G/(otot2) 6(y)  e_(x2+z2)/(4~o, (18) 
P = (27r) 2 2ct  

which shows that the fluid supplied at the source diffuses in the 
radial direction only in the plane y = 0 because of the zero 
permeability in the y-direction. 

To evaluate the infinite integrals associated with the Fourier 
inversions of Eq. (17), we must apply the following variable 
transforms to it: 

xl = r c o s 0 ,  x2 = y ,  x3 = r s i n 0 ,  (19) 

~1 = P COS ~, ~2 = ~, ~3 = P sin ~b, (20) 

u r = u ~ c o s 0 + u 3 s i n 0 ,  u o = - u ~ s i n O + u 3 c o s O .  (21) 

By these transforms and the inverse Laplace transform, we ob- 
tain the nonzero displacement components in the form of triple 
integrals: 

= 0/o/0/2 f ~  
ur (27r)---- 5 p2e-p2Ctdp 

× . cos ~be-iprc°s4'dq5 -~ p2 + ~ d~, (22) 

= O~0/O(2 f 0  ° Uy (27r)-----. 5 pe-P2"dp 

f × e -iPrc°~*dqb i~e-iY~ 
. _ = p 2 +  ~2d~' (23) 

In these equations, the last two integrals can be evaluated with 
the help of the formulae 

f 1 e-~"c°~*dc~ Jo(#), 
27r 

i f _  cos qbe-~U~°~6dqb = J l (# ) ,  (24) 
~r 

f ~  e --lYE 
p2 + ~2 d~ = 7rp e_plyl, 

f 
~ ~ e-lye 

p2 + ~2 d~ = - i  sgn (y)rce plyl, (25) 

where sgn (y) = - 1 ,  0, 1 for y < 0, y = 0, and y > 0, 
respectively. These formulae are found in references (Grad- 
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shteyn and Ryzhik, 1965; Sneddon, 1951) or derived from the 
formulae in them. The results of the evaluations are 

-- ~0/~2 f ~  Ur 4~ do Pe-p2~te-PlylJj(pr)dp' 

(ao/a2) sgn (y) fo Pe-:2Cte-PlYtJ°(pr)dp" 
bly = 47r 

(26) 

(27) 

Because of the axial symmetry, Uo = 0. Note that Uy has a 
discontinuity at y = 0. This discontinuity comes from the as- 
sumption of zero permeability in the y-direction. 

Fundamental  Solution for an Instantaneous Point 
Force in the y-Direct ion 

Consider an instantaneous point force with unit impulse act- 
ing in the y-direction at the origin, at t = 0. The forcing fields 
are 

f2 = 6(x)6(y)6(z)6(t),  f, =f3 = r F = 0. (28) 

Since the manner in which one obtains the solutions is similar 
to that for the case of the point fluid source, we shall show only 
the results: 

(ao/a2) sgn (y) 
P =  47r 

I- f) ] × L(r ~ + y2)3/2 C p3e-:2~te : lY lJo(pr)d  p , (29) 

y [ 6(t)r 
u~ = 8 ~  2(1 - u,)(r 2 + y2)3/2 

- aac f :  p3e-p2Cte-PlylJl(pr)dp] , (30) 

/~Y = ~ - G  2(1 - u.)(r 2 + y2)1/2 3 - 4u. + 

+ a3c f :  p2(1 - plyl)e pZCte-PlyIJo(pr)dp , (31) 

where use has been made of the following formulae: 

ff® ~e -iy~ iTr (p2 + ~z)2 d~ = - --2p Ye--plyl' 

f ~  ~2e-'~ ~r (p2 + ~2)2 d~ = ~ p ( 1  - plyl)e -:Iyl, 

f~ lyl Pe-Plyl Jo(P r)dp -- ( r  2 + yZ)3/2 ' 

f :  r Pe-PlYljl(pr)dp - ( r  2 + y2)3/2 • 

Note again that 
discontinuous at 

(32) 

(33) 

the pore fluid pressure given by Eq. (29) is 
y = 0 .  

Fundamental  Solution for an Instantaneous Point 
Force in the z-Direction 

Here, we consider the point force in the z-direction. The 
single principal axis of permeability falls on the y-axis, while 
the point force acts in the z-direction. Therefore, there is no 
axis of symmetry for the present problem, in contrast with the 
former two cases. However, there is no substantial difference 

in the approach for obtaining the fundamental solutions, al- 
though some more tedious manipulations are required. 

In this case, the forcing fields are given by 

f3 = 6(x)6(y)6(z)6(t),  fl =f2  = r r = 0, (34) 

for which the solutions obtained are 

6(t)r 
ao/a2 sin 0 y2)3/2 

P = 47r ( r  2 + 

- c f :  p3e p2Cte-PlylJl(19r)dpl , (35) 

bl x = 1 sin 0 cos OF 6(t)r2 
87rG / 2 ( 1  - /A,)(r 2 + y2)3/2 

- a 3 c  f f  p2(1 + plyl)e-O2Cte-PlylJ2(pr)dpl, (36) 

1 I 6(t)r 
Uy = 8 ~ y  sin 0 2(1 - u , ) ( r  2 + y2)3/2 

- a3c f :  p3e-p2Cte-PlYlJl(pr)dp] , (37) 

1[ ( r2 ) 
u z = - ~  2 ( l _ u . ) ( r 2  + y2)=/2 3 - 4 u . + - - s i n 2 0 r  2 + y 2  

+ a3c p2(1 +plyl)e-p2"'e -plyl 

× {Jo(pr) + cos 20J2(pr)}dpl , 
3 

(38) 

where we have used the following additional formulae: 

I f _ _  - -  cos 2the -i~c°S4'dq~ = - J2  (~),  (39) 
27r 

f fe_plyl j2(pr)d p [ ( r  2 + y2)1/2 _ l yl]2 (40) r2(r  2 + 2 2 )  1/2 ' 

f ~  pe-Plyl J2(pr)dp 

2 [ l Y_I ] I Yl 
= r-- ~ 1 ( r  2 + y2)1/2j ( r  2 + y2)3/2 • (41) 

Fundamental solutions for an instantaneous point force acting 
in the x-direction are easily obtained from Eqs. (35) through 
(38) by a coordinate transformation. Explicit expressions for 
these solutions are omitted here. 

Reciprocal Theorem 
Equations (1) through (7) ,  supplemented by appropriate ini- 

tial and boundary conditions, constitute a complete system of 
equations for an elastically isotropic, homogeneous, fluid-satu- 
rated, poroelastic solid with zero permeability in the y-direction. 
Solutions of this linear system of equations satisfy a reciprocal 
relation (Cleary, 1977; Kurashige and Clifton, 1992). The as- 
sumption of zero permeability in one direction has no influence 
on this relation. If we define the total fluid displacement Qi and 
the total volume of supplied fluid R F by 

qi = OQi/Ot, r F= ORr/Ot, (42) 
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the reciprocal theorem relates two independent "deformation" 
fields {u! 1), QI I~} and {u~ 2), Q}a)} and associated "stress" 

~ ( 1 )  n ( 1 )  ~ ( 2 )  ~ ( 2 )  fields { ~, ij , v } and { ~, ij , e } resulting from the "forcing" 
fields {f  }1), RF(.)} and { f  }2), RF(2)} by 

f s  [O-~(~),2:(2, -- p*<l,O*(2)lnid S 

+ f v  [f*(,)u*(:) - R~,, ,p*(2)]dV 

= f s  [o-*(~,u*m - p*(2)Qi*(~)]nidS 

+ f v  [f*(2)u*(') - g r * , ~ , p * , q d V ,  (43) 

where V and S are, respectively, the volume and the surface of 
the body under consideration. In this relation, we have neglected 
a body force acting on the pore fluid, because we do not need 
it to obtain the integral equations that we require. 

A p p l i c a t i o n  o f  R e c i p r o c a l  T h e o r e m  

The reciprocal theorem can be used to obtain a pair of bound- 
ary integral equations for the crack problem. To this end, con- 
sider three solutions of Eqs. (1) through (7). These solutions, 
designated by (d) ,  ( f ) ,  and (s) ,  are described below. 

Solution (d) corresponds to the sudden appearance of a 
closed dislocation loop that bounds a surface S, across which 
the jump in displacement is given by the Burgers vector 

( d )  bi = ulJ ) -  ui- , (44) 

and the jump in the fluid displacement is 

AQ, = Q~) - Q~d), (45) 

where the subscripts + and - denote evaluation on the lower 
and upper surfaces of S,., which has unit normal n~ = &+ = 
- - n  i . 

Solution ( f )  corresponds to the instantaneous appearance of 
a point body force at position r = r ' ,  described by 

f ~ ( f )  = £'[P~6(t)6(r  - r ' ) ]  = P~6(r - r ' ) ,  

P:Pj = 1. (46) 

where the asterisk and Jg mean the Laplace transform as defined 
by Eq. (13). 

Solution (s) corresponds to the instantaneous appearance of 
a point fluid volume source at r = r ' .  From the second equation 
of (42), the instantaneous point source is given by 

sR *F(') = £ ' [5( t )5 ( r  - r ' ) ]  = 6( r  - r ' ) .  (47) 

Using (d) and ( f ) ,  and (d) and (s) as two separate fields in 
the reciprocal theorem (Eq. (43)) ,  one obtains 

P j u ? ( r ' )  = -£ . c  [~7~':'(,', r ' ) b ? ( r )  

- p*(J)(r, r ' ) A Q ~ ( r ) ] n ~ ( r ) d S ,  (48) 

p * ( r ' )  = s f [~r~(.,(r*, r ' ) b f f ( r )  
v s c 

- p*(.~)(r, r ' ) A Q ~ ( r ) ] n i ( r ) d S ,  (49) 

where superscripts (d) have been omitted from the fields associ- 
ated with the dislocation loop. Interchanging r and r '  and using 
the fluid volume supply rate per unit fracture area, Aq,,, defined 
by (see the first equation of (42)) 

Aq,* = - s A Q j *  nj, (50) 

one obtains 

where 

u,,, ( r )  = u,,,(,,)(r) + u,,,(,,,(r), 

p * ( r )  = p * . . ( r )  + p%, . ( r ) ,  

(51) 

(52) 

P * | * , u,,,(,,)(r) = - (53) a (,,,)ij(r , r ) b ~ ( r ' ) n : d S ' ,  
Js c 

1 [" , , 
u ~ ( q ) ( r )  = - - p( , . ) (r  , r ) A q ~ ( r ' ) d S ' ,  (54) 

S ~Sc 

p*( , , ( r )  = s f a~0)ij(r', r ) b ~ ( r ' ) n : d S ' ,  (55) 
c 

p*, , ) ( r )  = fs  p~0)(r', r ) A q ~ ( r ' ) d S ' ,  (56) 

where n[ = n~(r ' ) .  In Eq. (50), the minus sign is required 
because AQjnj  is fluid flow into the fracture, since n~+ and n~ 
point into the fracture, while Aq,, is fluid supply from the frac- 
ture into the porous solid. In the last four equations, a(,,,)~j(r', 
r )  and po,,)(r ' ,  r)  are the stresses and pore fluid pressures at 
r '  caused by the instantaneous point force acting at r in the Xm- 
direction, while a(o)0(r', r )  and p(0)(r ' ,  r )  are the stresses and 
pore fluid pressures at r '  caused by the instantaneous point 
fluid volume source at r .  Superscripts (b) and (q) indicate 
contributions from the Burgers vector of the displacement dis- 
continuity and from the fluid supply, respectively. 

Dislocation Segment Solutions 
To obtain the stresses and pressure resulting from an infini- 

tesimal dislocation segment, as required for a numerical method 
analogous to that used in the elastic and isotropic poroelastic 
cases (Clifton and Abou-Sayed, 1979; Clifton and Wang, 
1991 ), consider u~(~)(r) and p * , , ( r )  given by Eqs. (53) and 
(55). Differentiating these equations with respect to x,, one 
obtains 

a u ~ , . ( r )  _ f~ b ~ ( r ' )  0 . , OX . . . .  OXS------" 70"(m)ij(r , r ) n j d S ' ,  (57) 

@*. , l ( r )  
- s b ~ ( r ' )  ~ " Ox, s. Ox" a~°)°(r" r ) n : dS ' ,  (58) 

where use has been made of 

0 . , = - - - c r ~ ) i j ( r ' , r )  (/3 = m ,  0). (59) ax-7~ ~ ) , j ( r  , r)  a 
ax '~ 

From equilibrium Eq. (5),  except at r '  = r ,  

b * ( r ' )  ~ aS~)ij(r', r)n~ = 0 (/3 = m, 0). (60) 
ax: 

Use of this equation in Eqs. (57) and (58) and application of 
the Stokes theorem gives 

0u*(,,)(r) %., O~ b* * ' - -  - ~ a( , , , )o(r  , r)dx,',, ( 6 1 )  

Op*,,,,(r) s%~. : * * ' ' 
Ox~ - bi ~(o)o(r , r)dx,,, (62) 

where cj.,, is the permutation symbol and, temporarily, the Burg- 
ers vectors b* are assumed to be spatially constant. These are 
extensions of Mura's formulae (Hirth and Rothe, 1982) to the 
case of a fluid-saturated, poroelastic solid; they are valid for a 
material which is both elastically and hydraulically anisotopic. 
From Eqs. (61), (62), and ( 1 ), the stresses and pressure gradi- 
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ent caused by dislocations with Burgers vector b* along line 
segment Ax" are as follows: 

Acrp*4~,(r ) + a6pqAp*¢b,(r) 
* * t = LpqmsCj,nbi a(m)u(r , r)Ax~',  (63) 

0 
- -  = -sembi ty(0)ij(r , r)Ax,' , ,  (64) Oxs Ap*<~)(r) * * ' 

where L~qm, are elastic moduli given by Eq. (1).  
Equations (63) and (64) are the general dislocation segment 

solutions. For applications in hydraulic fracturing, our interest 
( b )  is in the stress ~cr~ and pore fluid pressure Ap(b) on the plane 

z = 0 caused by a dislocation segment on the plane z '  = 0. For 
definiteness, consider a "horizontal" dislocation segment with 
Burgers vector b~ along the line segment A x '  = Axe;  later, a 
"vertical" dislocation segment with Burgers vector b~ along 
the line segment A y '  = - Ax~ will be included to allow repre- 
sentation of a general dislocation segment in the plane z '  = 0. 
See Fig. 1 for the sign convention. The position vectors in the 
plane z = 0 will be denoted by R and R ' ,  and the lengths of 
the relative position vectors by 

r = I r '  - r l ,  R = IR '  - RI. (65) 

With this notation, the inverse Laplace transforms of Eqs. (63) 
and (64) become 

Aa~)h(R,  t) + aAp(O)h(R, t) 

;o _ 2__G__ b~(~-)[(1 - u ) a ( ~ y ( R ' ,  R, t - r )  
1 - 2u 

- uae)~(li ' ,  R, t - r )]d~Ax' ,  (66) [ fo 
A p ( ~ ( R ,  t) = - b~(t) -~ a(O~y(R', r, O)dz 

Io °I° ] + b~(T) ~ _® cr(o)~y(R', r ,  t - T)dzdT Ax ' .  (67) 

Y 
I 

/ • 

X I  X 

a w  , 

V Ax'2=-AY ' / 
i A~=Axy 

_ . _ ~  

Fig. 1 Sign convention for dislocation segments A x '  and A y '  and crack 
opening w(x', y');  A x ;  in the extended Mura's formulae means the line 
segment along the dislocation loop in the three-dimensional body, 
whereas ~ x '  and ~ y '  are the line segments of "horizontal" and "verti- 
cal" dislocations on the plane z '  = O, respectively, so that A x '  = Ax~ 
and ~ y '  = - A x 2 ;  the minus sign in Eqs. (68) Is necessary because the 
Burgers vectors defined by Eq. (44) and the unit normals on the crack 
faces given by n~ = n~+ = -nj_ mean that the crack surfaces overlap due 
to these Burgers vectors while w(x',  y ' )  is the opening. 

For the vertical dislocation segment, one can obtain expressions 
that are similar to Eqs. (66) and (67) by replacing h, x, and y 
by v, y, and x, respectively. 

The crack opening w(x',  y ')  can be related to the Burgers 
vectors of the dislocation line segments (Clifton and Abou- 
Sayed, 1979) by 

Ow(x', y ')  b~ Ow(x', y ')  Ay' ,  b~ - Ax ' ,  (68) 
Oy' Ox' 

where the minus sign is necessary because the Burgers vectors 
defined by Eq. (44) and the unit normals on the crack faces 
given by n~ = n~+ = -n~_ mean that the crack surfaces overlap 
due to these Burgers vectors while w(x' ,  y ' )  is the opening 
(see Fig. 1). 

Substituting the above relations into Eqs. (66) and (67) for 
the horizontal dislocation segments and the similar ones for the 
vertical segments, combining the contributions from the both 
segments, and then integrating the resulting equations over the 
whole fracture area S, with area element dS' = Ax '  Ay'  yields 

a(b) t~ t) + ap(b~(R, t) ZZ \ l l ,  

_ 2G fs foOW(R',~-) l ~-2u ~ Ox~ [(1 - u) 

X a(~)~, (R' ,  R ,  t - ~-) 

- ua(t~z~(R', R, t - T)]dTdS', (69) 

p ~ ) ( R , t ) = f s  [ O w ( R " t )  f °  Ox'~ ~ ~r(0)~(R', r ,  O)dz 

fo OW(R , "r ) 
+ Ox$ 

X 0~ ~ ~7(0~z~(R', r ,  t - ~-)dzd~- dS', (70) 

where repeated subscripts/3 mean the summation over/3 = 1 
and 2 (or x and y). 

P o i n t  F o r c e  a n d  S o u r c e  S o l u t i o n s  

To obtain explicit expressions of a~b)(R, t) and p(b)(R, t) 
from Eqs. (69) and (70), one needs stress components tT(z)~, 
a(~)~, Cr(x)~, a~)~z at z = O, a(o)~, a(o)zy for arbitrary z, and 
• "U 0 
integrals f_~ a(0)~x(r, t)dz, f_~ a(o)~y(r, t)dz. All the needed 
stress components (see Appendix) can be obtained from the 
fundamental solutions in the previous sections by easy but te- 
dious manipulations. We show only the evaluation of the infinite 
integrals: 

f °  a(0)~(r, t)dz 

= Ga---L sgn (x) F pe-P2~te-PlylJl(plxl)dP, (71) 
27ra2 J0 

f~  CUO)zy(r,t)dz 

= Ga__.& sgn (y) f ~  pe-P2Cte-PlylJo(plxl)dp, (72) 
27raz do 

where use has been made of (Gradshteyn and Ryzhik, 1965) 

f :  Zz2),o/2 J~(p x~ + zZ)dz ( X  2 --~ 

1 
- pixie_ 1J~_,(plx[).(/3=l,2) (73) 
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The infinite integrals in Eqs. (71) and (72) for t = 0, which 
appear in Eq. (70), can be easily carried out. Using these evalu- 
ations, Eqs. (71) and (72), and the equations given in the 
Appendix, one obtains 

2G 1 
a~ ) (R ,  t) + c~pU')(R, t) - - -  

1 - 2v 47r 

fs  ~ 1 - 2 v , ,  ( R ' - R ' ) ' V ' w ( R ' , t )  X 
d S ' [ 2 ( 1  - u,,) R 3 

c 

f£ f~  dpp3e P2c(t-r)e-P]Y + a3c dr ' .t 

× [ Ow(R" 7-) ( ( 1 -  l + ply'  - _ x) 

+ 2v sgn (x' - x)Jl(plx'  - xl)~ 
/ 

J2(p]x' - xl) 

+ Ow(R',7-) (1 - 2v) ~ y  JiCPlx' - x l )  
Oy' Ix' - x[ 

+ 2vsgn(y '  - y)Jo(plx' - x l))  ] } , (74) 

P~b) (R ' t ) - -  27r~2G°~° f~ dS'[ ( R ' - R ) ' V ' w ( R ' ' t ) , :  R 3 

_ c f l d T - f f d p p 3  e p2~(, ~) e p l , "y t . )  

Ow(R', 7-) 
OX r 

sgn ( x ' -  x ) J ~ ( p l x '  - xl) 

O w ( R " 7 - ) s g n ( y ' - y ) J o ( p [ x ' -  xl)}] . (75) 
+ Oy ' 

Stres s  a n d  P r e s s u r e  C a u s e d  b y  F l u i d  S u p p l y  

Let us return to Eqs. (54) and (56) and seek stresses and 
pressure caused by the fluid volume supply through the crack 
surfaces. Employing Eqs. (1) and (7) to (54), one obtains 

a*("~(r)+°~P*'~(r)=2--G-Gs fs'c I 0p~z)(r' '  r ) 0 z '  

v Op~,,)(r', r)]Aq,,(r,)dS,. 
+ 1 - 2 - - ~  axe, J (76) 

Pressures PCm) in the above equation and P~0) in Eq. (56) are 
the solutions for the instantaneously applied point force problem 
and the instantaneously appearing fluid volume source problem, 
given by Eqs. (29), (35), and (18), respectively. Using these 
solutions in Eqs. (76) and (56), applying the inverse Laplace 
transform to them, and carrying out one of the double integrals 
after interchanging the order of integrations, one obtains for z 
= 0  

c4~)(R, t) + c~p~q)(R, t) 

r 5of; _ Golo dS' pe-p2c(t-r)e -ply'-yl 
27roe2 ~, sc 

J,(plx'  - xl) × dpAq.(R',  7-)d7-, (77) 
I x ' - x l  

p(q)(R, t) - - -  G fscdS, f ' 6 ( y ' - y )  

× e ¢~'-x?/4~°-~)Aq.(R'. 7-)d7-. (78) 

I n t e g r a l  E q u a t i o n s  

Here, let us seek the integral equations for the case of the 
zero permeability in the y-direction, Combine Eqs. (74) and 
(75)  and Eqs. (77) and (78), one obtains two coupled integral 
equations that relate the normal traction ez~ (R ,  t) and pore fluid 
pressure p ( R, t) at the crack surface to the crack opening w ( R ' ,  
r )  and fluid supply rate per unit fracture area Aq . (R ' ,  r ) :  

G fs {(R'-R)'Ww(R',t) 
crz~(R, t) - 47r(1 -- v,) c R 3 

fo[ + H l l ( R '  - R,  t - 7-) 
0w(R', r) 

OX t 

0 w ( R ' ,  7-) 
+ H i 2 ( R '  - R, t - 7-) 

Oy' 

+ H i 3 ( R ' -  R, t - 7 - ) A q . ( R ' ,  7-)ldT-}dS', (79) 

GB(1 +v, , ) fs  { ( R ' - R ) ' V ' w ( R ' , t )  
p ( R ,  r )  - ~ - uT,) ~ R 3 

fo[ + H21(R' - R ,  t - 7-) 
0w(R ' ,  r )  

OX r 

Ow(R', 7-) 
+ H = ( R '  - R,  t - 7-) 

Oy' 

+ H 2 2 ( R ' -  R, t -  r ) A q . ( R ' ,  r ) ld r }dS ' ,  (80) 

where 

LI u - -  LI 
Hu(R ,  t) - 

1 - - v  

1 + plyl 
× px 

- -  - -  C f ~  p 3 e - P 2 C t e - P l Y l  

- -  J2(plxl) - sgn (x)J,(plxl) ]dp, (81) 

Hiz(R, t) = --cu"l - u f~  p3e_pZcte_ply I 

Y J,(plxl) - sgn (y)Jo(plxl)]dp, × (82) 

H 1 3 ( R , r ) = - ~ B ( 1  + u")[~Tr 2(11~--:2v - - u )  6(y)e-*2/(4")ct 

- f~Pe-p2Cte-PlYl Jt(PlXl) dP] (83) 

H21(R, t )=-c  f f  p3e-P2C'e-Plyl'sgn(x)Jl(plxl)dp, (84) 

H=(R,  t) = - c  f f  p3e-p2Cte-Plyl" sgn ( y ) J o ( p l x l ) d p ,  (85) 

H23(R. t) = ~ 2B(1 + u.)(1 - v) 6(y) e_X2/(4ct). (86) 
47r 3(v.  - u) ct 
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Equations (79) and (80) are the required integral equations. 
For the nonporous case where u, = u and B = 0, Eq. (79) 
reduces to the integral equation for an elastic solid (Clifton and 
Abou-Sayed, 1979) and Eq. (80) vanishes. 

Although evolutionary functions H;s(R, t) involve infinite 
integrals with respect to p, except H23(R, t),  their integrands 
have no singularities and decay rapidly as p --* ~ ;  thus, the 
numerical evaluations of these integrals are not difficult. 

Some insight into the relative magnitudes of the normal trac- 
tions in Eq. (79) and the pressure in Eq. (80) can be obtained 
by noting that the two factors on the right sides of Eqs. (79) 
and (80) satisfy the inequality 

[G/47r(1 - u,)] _-> [GB(1 + u,)/6~r(1 - u,)], (87) 

since B =< 1 and u, =< ½. Equality holds only for B = 1 and u, 
= ½. Therefore, if, for example, the applied normal traction on 
the crack surface is stepwise (discontinuous) at t = 0, the 
induced pore fluid pressure p ( R ,  0+)  is less than the applied 
traction for the case of compressible constituents. Further in- 
sight into the behavior described by Eqs. (79) and (80) will be 
obtained by solving Eq. (79) for hydraulic fracturing applica- 
tioias where Aq,,(R' ,  r )  is regarded as prescribed. 
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A P P E N D I X  

After some tedious manipulations, the stress components nec- 
essary to obtain explicit expressions of a ~ ( R ,  t) and p~b)(R, 
t) from Eqs. (69) and (70) are obtained as follows: 

1 1 [ 1 - 2u. x26(t) 
~r(z)~(x, y, 0) - 4re x t 2(1 -- Uu) (X 2 --[- y2)3/2 

-}-0/3 c yO ~ p2(1 + plyl)e-P~"e-PFYlJz(px)dp}, 
1 [ 1 -  2u,, y6(t) 

c~<z)zy(X, y, O) = - 4-~ ~ 2-({--- ~,,,) (x z + y2)3;2 

+ oe3c f f  p3e-p2~te plyl ~ j l (p l x l )dp}  , 

1 ( 1_ Z 2u. x6(t) • 
cr(~)z~(x,y, O) = ~ \ 2 ( 1  - u.) (x 2 + y2)3/2 

-- Og3C y~  p3g-p2ctg -plyl 

1 + PlNI 
× px 

- - J z ( p x ) - 2 J l ( p X ) } d p ) ,  

1 ( 1_--2_2~_ y6( t )  
o'~3z~(x, y, 0) = ~ \ 2 ( 1  - u,) (x 2 + y2)3/2 

+o¢3cy~p3e  P~c'{2sgn(y)Jo(px) 

~ Jl(pX) } d p )  , 

(A1) 

(A2) 

(A3) 

(A4) 

G 0/o XZ 
~/0)~(x, y, Z) - 

27r a2  x 2 + Z 2 

× f f  p2e-P2~'e-PlYl "J2(p~x 2 + z2)dp, (A5) 

G ao sgn ( y ) z  
~o)zy(X, y, z) - 27r a2 (x 2 + z 2) ~/2 

I ® p2e-p2~, e plyl .jl(p~/7~ + z2)dp. X (A6) 
.Io 
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Punch Problems for an 
Anisotropic Elastic Half-Plane 
By combining Stroh's formalism and the method of analytical continuation, several 
mixed-typed boundary value problems of  an anisotropic elastic half-plane are studied 
in this paper. First, we consider a set of  rigid punches of arbitrary profiles indenting 
into the surface of an anisotropic elastic half-plane with no slip occurring. Illustra- 
tions are presented for the normal and rotary indentation by a flat-ended punch. A 
sliding punch with or without friction is then considered under the complete or 
incomplete indentation condition. 

1 Introduction 
The problem of plane punch indentation has been investigated 

for many years due to its broad application in engineering me- 
chanics. This is one of the mixed boundary value problems and 
may be considered as a particular contact problem because of 
the line contact region. For the contact problems, most of the 
analytical formula can be found in the books written by Galin 
( 1961 ), Gladwell (1980), and Johnson (1985). Muskhelishvili 
(1954) and England ( 1971 ) provided solutions for several types 
of punch problems in their books by using the method of analyti- 
cal continuation. Gladwell and England (1977) and Gladwell 
(1978) have investigated the use of certain orthogonal polyno- 
mial expansions in the solutions of some mixed boundary value 
problems such as crack and punch problems. Frictional punch 
of fiat-ended or wedge-shaped profile with crack initiating at 
one end of the contact region has been studied by Hasebe et al. 
(1989) and Okumura et al. (1990) who used a rational mapping 
function and complex stress function to carry out the analysis. 
Fabrikant (1986a, b) presented an integral equation based on 
the reciprocal distance established by himself to solve the prob- 
lem for a punch of arbitrary shape on an elastic half-space. A 
similar case for an elliptical punch on an elastic half-space with 
friction was analyzed by Shibuya et al. (1989) who used the 
generalized Abel transform method. 

The literature survey stated in the above paragraph is for the 
cases of isotropic materials. For anisotropic materials, Willis (1966) 
studied the Hertzian contact problem of anisotropic bodies by the 
Fourier transform method. Chen (1969) investigated stresses fields 
in anisotropic half-plane due to indentation and sliding by a friction- 
less punch with smooth end face. Tsiang and Mandell (1985) em- 
ployed a two-dimensional assumed stress hybrid finite element to 
obtain the characteristic matrices of the bodies brought into contact. 
Shield (1987) provided the variational principles for some elastic 
problems involving smooth contact and crack problem. Jaffar and 
Savage (1988) investigated the contact problem in which an elastic 
strip is indented by a ngid punch of arbitrary shape by using a 
numerical method proposed by Gladwell (1976). Klintworth and 
Stronge (1990) used a potential function approach to construct 
solutions for planar punch problems in an anisotropic half-plane 
where there is no slip on the surface of a fiat punch. In contrast to 
homogeneous materials, a multilayered medium bounded to an elas- 
tic half-space has also been examined by many researchers; for 
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example, Lin et al. (1991) applied the complex potential functions 
suggested by Green and Zema (1954) and Pan and Chou (1976) 
to obtain the closed-form solution for a transversely isotropic half- 
space subjected to various distribution of normal and tangential 
contact stresses on its surface, and Kuo and Keer (1992) used the 
Hankel transform to numerically solve the contact problem of a 
layered transversely isotropic half-space. 

Although there are many results obtained in the literature, to 
the authors' knowledge the analytical solutions for the general 
punch problems, such as a problem of arbitrary number of 
punches with arbitrary profiles, have not been found for the 
general anisotropic elastic half-plane. If such a general solution 
can be found analytically, the effects of material anisotropy and 
punch profiles can be studied easily, which is helpful for the 
physical applications to composite materials, road pavements, 
geotechnical engineering and tribology, etc. In the present pa- 
per, Stroh's formalism (Stroh, 1958, 1962) which has been 
proved to be elegant and powerful for anisotropic elasticity are 
combined with the method of analytical continuation (Muskhel- 
ishvili, 1954) to solve the problems of indentation of plane 
punches with arbitrary profiles into an anisotropic elastic half- 
plane. Explicit solutions expressed in complex matrix notation 
are obtained from the Hilbert problem of vector form (Muskhel- 
ishvili, 1954; Hwu, 1992). For the purpose of illustration, some 
special cases are deduced from this general solution, such as 
normal and rotary indentation by a fiat-ended punch. Moreover, 
in order to verify our results, the solutions are simplified to the 
cases of isotropic materials and the results agree with those 
given by Muskhelishvili (1954). The other case which has also 
been studied in this paper is the problem of a sliding punch 
with friction. An example of incomplete indentation by a 
wedge-shaped punch under normal pressure is solved explicitly 
and the condition to have complete indentation is discussed. 

2 Basic Formulation for Anisotropic Elastic Half- 
Plane 

(a) Stroh's Formalism and Analytical Continuation. 
The basic equations for two-dimensional anisotropic elasticity 
are the strain-displacement equations, the stress-strain laws, and 
the equations of equilibrium. By applying the Stroh's formalism 
(Stroh, 1958, 1962), a general solution satisfying these equa- 
tions may be expressed as 

u = A f ( z )  + A f ( z ) ,  

where 

~b = B f ( z )  + B f ( z ) ,  (2.1a) 

f (z )  = [fl(Zl) 

A = [al a2 a3], B = [bl b2 b3], 

f2(z2) f3(z3)] r, z, = x + pay, 

o~ = 1 ,2 ,3 .  (2.1b) 
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In the above equation, (x, y) is a fixed rectangular coordinate 
system; u and ~b represent, respectively, the displacements and 
stress functions; p~, (a, ,  b,),  ce = 1, 2, 3, are the eigenvalues 
and eigenvectors of the materials; and f(z)  is a holomorphic 
complex function vector to be determined by satisfying the 
boundary condition of the problems considered. The superscript 
T denotes the transpose and the overbar represents the conjugate 
of a complex number. Note that (Suo, 1990; Hwu, 1993) in 
the derivation throughout this paper, the argument of each com- 
ponent function of f(z)  is written as z = x ÷ py  without 
referring to the associated eigenvalues p, .  Once the solution 
of f(z)  is obtained for a given boundary value problem, a 
replacement of zt, z2, or z3 should be made for each component 
function to calculate field quantities from (2.1). 

The stresses cr~ are related to the stress function ~b by 

O'i l  = - - ~ i , 2 '  O'i2 : t~i,1.  ( 2 . 2 a )  

More generally, if t is the surface traction vector, then 

d4, 
t = - -  (2.2b) 

d s '  

where s is the arc length measured along the curved boundary 
in the direction such that when one faces the direction of in- 
creasing s, the material is located on the right-hand side. 

Through the use of the analytical continuation method, a 
Hilbert problem (Muskhelishvili, 1954) can be formulated for 
the half-plane problems. It will be assumed that the elastic body 
occupies the lower half-plane y < 0 which is denoted by S- ,  
so that the region S- is to the right if one moves in the positive 
direction along the x-axis. The upper half-plane is denoted by 
S ÷ (Fig. 1). 

Since ds is equal to dz on y = 0, the traction on the surface 
y = 0 of the half-plane S- can be represented as 

t = lira d y--,o- ~z {B f(z) + Bf (z )  }, (2.3) 

and the last term of (2.3) has the following relation: 

lim ~d Bf ( z )  = lim -~ Bf (~ ) .  
y ~ -  dz  y~o + dz 

From the theory of functions of a complex variable, we know 
that if f(z)  is holomorphic for z ~ S- ,  then f(z)  is holomor- 
phic for z E S ÷, and ( d / d z )  f ( ~ )  = f ' ( ~ )  where prime ( ' )  
denotes differentiation with respect to its argument. With this 
in mind, we introduce 0' (z) such that 

B f ' ( z ) ,  z E S-,  
O'(z)  = - B f ' ( ~ ) ,  z E S +, (2.4) 

Since f ' (z)  should be holomorphic in the elastic body S , 
0'  (z) is now holomorphic in S-  and S + , i.e., 0'  (z) is sectionally 
holomorphic in the whole plane except possibly on some seg- 
ments of x-axis. 

S* 

I I I I I I I I I I  I I I I I I  

b 

////>~ 

Fig. 1 Notation of the half-plane 

By the above definition and the following notation, 

lim O'(z)  = O' (x  ), lim O'(z)  = 0 ' (x+) ,  
y--~O- y'-~'0 + 

(2.3) can be rewritten as 

t(x) = lim B f ' ( z )  ÷ lira B f ' ( ~ )  
y--b0- y~0 + 

= O ' ( x - )  - O'(x+) .  (2.5) 

In a similar way, the differentiation of displacement vector 
u shown in (2.1a) for y -~ 0-  can be written as 

i l ( lu ' (x)  = O'(x  +) + 1VIM-10'(x-), (2.6) 

where M = - iBA -~ = H-~(I  + iS) = L( I  - i S )  - 1  is the 
impedance matrix, and S, H, and L are three real fundamental 
elasticity matrices (Ting, 1988). 

(b) Half-Plane Far-Field Condition. Consider an arc ab 
in the body S-  having the direction from a to b as its positive 
direction (Fig. 1). By using (2.2b) and (2.1a)2, the resultant 
force q on the arc ab can be represented as 

L q = tds  = [Bf (z )  + Bf(z) ]~ .  (2.7) 

If we consider the case where the stresses and rotation tend 
to zero as I z l tends to infinity, for large I z I the complex func- 
tion vector f (z)  has the form 

f(z)  = ((log z,))q* + O(1),  (2.8) 

where the angular bracket (( )) stands for the diagonal matrix 
in which each component is varied according to the Greek index 
a, q* is a complex constant vector to be determined by the 
half-plane far-field condition. With the arc ab lying on the 
boundary of the half-plane, i.e., x-axis, we let a = R~e i~, b = 
R2e i2". The resultant force q applied on the surface of the half- 
plane can now be calculated by substituting (2.8) into (2.7). 
The result is 

R2 
q = (Bq* + Bq*) log ~ + 7ri(Bq* - Bq*).  

Since Rt, R2 tend to infinity independently, we must conclude 

Bq* + Bq* = 0, q = 7ri(Bq* - Bq*),  (2.9) 

and hence 

q* = ~ B-lq.  (2.10) 
27ri 

By (2.4), (2.8), and (2.10), the half-plane far-field condition 
for O'(z)  is 

= - - B ~ [ ~ B - ' q ,  as Iz l -~ .  (2.11) O'(z)  1 
27ri \ \ z o / /  

If y ~ 0 - ,  the diagonal matrix (( 1/z~)) approximates (1 I x ) I  
since the second part of z~, pry ,  disappears. Therefore 

0' (x) q 1 = as Ixl ~oo and y - ~ 0 - .  (2.12) 
27ri x ' 

In summary, instead of finding f(z)  in S- ,  we define a new 
function 0' (z) which is sectionally holomorphic in the whole 
plane except on some segments of the boundary, and by solving 
(2.5) and/or (2.6) with the half-plane far-field condition de- 
rived in (2.12), O'(z ) ,  hence f(z) ,  can be determined for the 
half-plane problem. 

One thing that should be emphasized here is the applicability 
of f(z)  in the full field of the half-plane. As we know, the 
general solution shown in (2.1) requires that each component 
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of the complex function vector f ( z )  be a holomorphic function 
with argument z~, z2, and z3, respectively. This means that each 
component of the new function O'(z)  introduced in (2.4) may 
not be a function with only one argument z~ or z2 or z3. The 
question now is that f ( z )  is determined after O'(z)  is found 
through a certain Hilbert problem and how can we know the 
argument of 0 '  (z) is z~, z2, or z3 or any combination of them. 
In solving the Hilbert problem, which is set through the method 
of analytical continuation for a specific boundary, the full-field 
solution may be expressed in terms of the complex variable z 
= x + iy. In the case of half-plane problem, this specific bound- 
arry is x-axis in which y = 0, hence the full-field solution may 
be expressed in terms o f z  or z~ ( = x  + pay), a = 1, 2, 3, 
depending on the requirement of f ( z ) .  Therefore, the most 
appropriate way to get the solution, which is valid for the full 
field including the boundary, is dropping the subscripts of z 
during the derivation of O'(z)  and f ( z ) .  Once the solution of 
f (z )  is obtained from a certain boundary value problem, a 

replacement of z~, z2, or z3 should be made for each component 
function to calculate the full-field solution for the deformations 
and stresses. A translating technique for the above statement 
has been introduced by Hwu (1993) as follows. 

If an implicit solution is written as 

f ( z )  = C ( ( g , ( z ) ) ) q ,  (2.13a) 

with the understanding that the subscript of z is dropped before 
the matrix product and a replacement of z~, z2, or z3 should be 
made for each component function of f ( z )  after the multiplica- 
tion of matrices, the explicit solution can be expressed as 

3 

f ( z )  = Y~ ( (gk(z~)))CIkq,  
k = l  

(2.13b) 

where 

ii0 ] [00i I [i0 ] II = 0 0 , 12 = 0 1 , I3 = 0 . 
0 0 0 0 0 

(2.13c) 

3 Punch P r o b l e m s - - A  Type of  Mixed Boundary  
Value Problems 

In the following sections, a variety of mixed boundary value 
problems for the half-plane S -  will be considered. In all cases, 
the analytical continuation method described in Section 2 will 
be used to represent the stress and displacement fields in terms 
of a single complex function vector which may be determined 
by satisfying the Hilbert problem for a set of line intervals on 
y = O .  

In this section, we examine the case that a set of rigid punches 
of given profiles are brought into contact with the surface of 
the half-plane and are allowed to indent the surface in such a 
way that the punches completely adhere to the half-plane on 
initial contact and during the subsequent indentation no slip 
occurs and the contact region does not change. Let us suppose 
the contact region L is the union of a finite set of line segments 
Lg = (ak, bk), k = 1, 2 . . . . .  n, where the ends of the segments 
are encountered in the order a~, b~, a2, b2 . . . . .  a , ,  b, when 
moving in the positive x-direction. For this case the displace- 
ments of the surface of the half-plane are known at each point 
of the contact region, then the boundary conditions are 

u (x )  = (Uk(X), Vk(X) + Ck, 0) r = fI(X), X E L, 

t (x)  = (axy, Cryy, Crzy) T = O, x ~ti L, (3.1) 

where Uk(X) and Vk(X) are related to the profile of the kth punch 
and Cg is the relative depth of indentation. From (2.5) and (2.6),  
the boundary conditions lead to the following Hilbert problem: 

O'(x  + ) - O ' ( x - ) = O ,  x OiL, 

O'(x +) + l~TIM-lO'(x-)  = iMfi'(x),  x c L. (3.2) 

The solution to this Hilbert problem of vector form is (Hwu, 
1992) 

fL 1 [ x ~ - ( t ) ] - ~ " ' ( t ) d t  O'(z)  = Xo(z) t - z 

+ Xo(z)p . (z ) ,  (3.3a) 

where p . (z)  is an arbitrary polynomial vector with degree not 
higher than n, and Xo (z) is the basic Plemelj function satisfying 

Xd-(x) = X f f ( x ) ,  x ~ L ,  

X if(x) + iVIM-~X if(x) = 0, x E L, (3.3b) 

i.e., 

where 

Xo(z) = A t ( z ) ,  (3.3c) 

A = [k l ,  k2, k3], 
n 

F(z)  = ( ( [ I  (z - aj)-( '+*J(z - bj)~Q). (3.3d) 
j = l  

6, and ha, a = 1, 2, 3 of (3 .3d)  are the eigenvalues and 
eigenvectors of 

( M - i  + e27ri61~-1)~. = 0. (3.4a) 

The explicit solutions for the eigenvalues 6 are (see Appendix 
A) 

6~ = -½ + ie,, a = 1 , 2 , 3 ,  (3.4b) 

where 

1 1 + / ~  
el = e 27r in 1 - fl e2 = - c ,  c3 = 0, 

/3 = [ -½t r (S2 ) ]  l/z, S = i (2AB r -  I) .  (3.4c) 

tr stands for the trace of matrix. Moreover, for normalizing 
the eigenvector matrix A,  the normalization proposed by Hwu 
(1993) may be slightly changed to fit the present case, i.e., 

½Ar (M  -I + M - I ) A  = I .  (3.4d) 

To determine p , (z ) ,  we see that it is at most a polynomial 
of degree n - 1 

p , (z)  = do + d~z + . . .  + d,_~z "-~, (3.5) 

and also from (2.12) 

1 
d,-1 = - -  A - l q .  (3.6) 

27ri 

As to the remaining (n - 1 ) unknown coefficients of pn(z), 
additional physical assumptions are required before the problem 
is solved completely. Let us suppose that the resultant forces 
applied to each punch are known. Then if qk is the known 
resultant force vector on Lk, we find from (2.4) and (2.7) 

qk = - f  [ 0 ' ( x  + ) -  0 ' ( x - ) ] d x ,  (3.7) 
~ L  k 

for k = 1, 2 . . . . .  n. Substituting (3.3a) into (3.7) yields n 
equations for the determination of the n coefficient vectors di.  
It is apparent that one of these equations is redundant as (3.6) 
ensures the overall equilibrium of the elastic body with 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 71 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



q =  ~ q k .  
k=l 

However, these n equations completely determine the solu- 
tion (3.3a). 

Now the problem is solved in principle. For illustrating the 
solutions derived above, some special cases will be investigated 
as follows. 

( a )  I n d e n t a t i o n  b y  a F l a t - E n d e d  P u n c h .  We first exam- 
ine the case of indentation by a single punch with a fiat-ended 
profile which makes contact with S -  over the region I x l -< a, 
and the force q applied on the punch is given. Then 

f i ' (x )  = 0, (3.8) 

and from (3.3a), (3.3c),  and (3.6) we find 

O'(z) =--~-- -AF(z)A ~q, (3.9) 
2~i 

where 

By the use of (3.9) and (3 .11) - (3 .13) ,  Eq. (3.10) can be 
written in real form as 

t ( x ) - T r r = - - - - =  I + 7 S  r~+ sT q, 

where 

cR + ici = cosh (Trc)e -~ In a+x .  
a - - x  

For orthotropic materials, 

CR 

A ( ( c . ) ) A - '  = [ 
- -  C l ~ - -  - -  

0 

where Sl2, $21 are the {12 } 
t (x)  becomes 

I x l  ~ a ,  

(3.14) 

(3.12) can be expressed as 

Szl 0 
c~ - Sl--~ 

S12 , (3.15) 
CR 0 

S21 

0 1 

and { 21} components of S. Then 

f °i in:l 1 1 t a+i/ 
( - x ) q x - ~ f  s l / S l n ( e l n a - x ) q Y  

1 

t (x)  7r~.aT-S-~ 1 - ~  sin e In a + x a + qx+ cos e ln  qy 
a x a - 

qz 

, Ixl ~ a ,  ( 3 . 1 6 )  

The stresses under the punch can then be determined by using 
(2.5), (3.2)2, and (3.8), i.e., 

t (x)  = (I  + I ~ I M - 1 ) 0 ' ( x - ) ,  [xl ~ a. (3.10) 

Since the stresses t (x)  are real, the result of the right-hand 
side of (3.10) manipulated by some complex matrices should 
be real. Therefore it is of interest to obtain the real form of the 
solution, because it should provide a better understanding of 
the physical behavior of the stress field under the punch. To 
this end, the following equalities derived in a way similar to 
that presented in the Hwu's paper (1993) are used for the sim- 
plification of (3.10), i.e., 

(I  + lVlM - I ) A  = 2A((e . . . .  cosh (Tre~))), (3.11) 

and 

1 - cR ~ ~r  (3.12) A ( ( c . ) ) A  ' = I + ~ S  r~+ /3~ , 

where Cl = c, c2 = g, 63 = 1 and cR, ct are real and imaginary 
parts of c which is an arbitrary complex number. Also, for y 
0 -  and I xl  -< a ,  it can be shown that 

~/ (/ ie ~" a + x ~  
e-  i,, In 

r ( x - )  = \ \ ~ / ~ : Z x :  a - x / /  
(3.13) 

where qx, qb, and qz are the components of the force vector q. 
It should be noted that the general solutions shown in Section 

2 are valid only for the nondegenerate materials, that is the 
material eigenvalues p , ,  a = 1, 2, 3, are distinct or three inde- 
pendent material eigenvectors a , ,  b , ,  a = 1, 2, 3, can be found 
when p ,  is repeated. Otherwise, the general solutions shown in 
Section 2 should be modified (Ting, 1982). However, if the 
final solutions do not contain any material eigenvalues p ,  or 
eigenvectors A, B explicitly, and are composed of the real 
foundamental elasticity matrices such as S, I t ,  L,  and Ni (Ting, 
1988), they may be applied to any kind of anisotropic materials 
including the degenerate materials such as the isotropic materi- 
als. Following is the presentation for the reduction to isotropic 
materials. 

Consider that the special case of the isotropic body and the 
force q applied on the punch is given as (0, -qo,  0) r. Knowing 
that for an isotropic body 

s l[Z ill = 0 , 
K + I  0 

where K = 3 - 4u for plane-strain conditions and K = 3 - u~ 
1 + u for the generalized plane-stress condition, and u is the 
Poisson's ratio, we have by (3.4c) 

/3 K - 1  _1_ - , e = in ~. ( 3 . 1 7 )  
to+ 1 27r 

From (3.16) and (3.17), the stresses under the punch can then 
be found explicitly as 
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f O'xy 1 
t ( x )  = O'yy f O-zy .J 

1 + K  qo 

2~-2--~ 

s i n ( e l n a + X t \  a - x /  t 

-cos ( e ln a + X I 
\ a - x~ 

0 

, ( 3 . 1 8 )  

which agree with those shown in Muskhelishvili (1954). 

(b) A Flat-Ended Punch Tilted by a Couple. A second 
problem illustrating the above theory is the case of a flat-ended 
punch which adheres to the half-plane S- and is then tilted by 
the application of a couple m. Let us suppose the punch is of 
width 2a and is tilted through a small angle e measured in the 
counterclockwise direction. Then in (3.2) 

f i ' (x)  = e = ei2, Ixl -< a, (3.19) 

and from (3.3a) 

f 1 [X fig(t)]-~dtlVliz. (3.20) O'(z)=~Xo(z) , , t - z  

Note that the last term in (3.3a) vanishes since the resultant 
forces are zero. In order to evaluate the above integral of vector 
form, a special technique similar to that presented in the book 
of England (1971) for line integrals of scalar form has been 
developed in Appendix B. Applying that technique we find 

O' (z) = ie{ I - X0(z)((z + 2iae,))A-~ }(I + I(IM ~)-q~liz. 

(3.21) 

This now enables us to calculate the stresses over the contact 
region in terms of the angle of tilt e. However, in an alternative 
problem it may be assumed that the couple m acting on the 
punch is given and it is required to find the corresponding angle 
of tilt e. Hence it is necessary to evaluate the relation between 
the applied couple m and the angle of tilt e. 

For this purpose, we first calculate the stresses under the 
punch, by (2.5), (3.2)2, (3.19), and (3.4d), we have 

i 
t(x) = - ~ e(I + 1VIM-~)AF(x-)((z + 2iae~))Nris, 

Ixl -< a. (3.22) 

With this result, the couple m may now be calculated by 

L L m = XCryydx = xisrtdx, (3.23) 
a a 

in which the integral may be evaluated by a way similar to that 
presented in Appendix B. The result is 

71" 
m = - a2ei~A((1 + 4ez~))Ariz. (3.24) 

2 

For a given couple m, the angle of tilt e is determined by 

2m 
e = (3.25) 

~aSi~A((1 + 4e~))Ari2 " 

Substituting this value of e into (3.22), one obtains the stresses 
under the punch tilted by a given couple m. 

4 A Sliding Punch With Friction 
Using the analytical continuation method in the preceding 

sections, we may also solve the problems of a sliding punch 
with or without friction. Since frictionless problems may be 
covered by setting the friction coefficient to be zero in the 
friction problems, in this section consideration will be limited 
to the case where friction exists and the punch is on the verge 
of equilibrium. The boundary conditions for this kind of prob- 
lems may be expressed as 

T ( x ) = t a n h P ( x ) ~  , o n x E L ,  (4.1) 

v(x) = g(x) + constantJ 

T(x) = P(x) = 0, onx  ~ L ,  (4.2) 

where P(x) and T(x) are, respectively, the absolute values of 
pressure and tangential stress, k is the angle of limiting friction 
for the punch and is a constant under the punch, and g(x) is a 
given function for the profile of the punch. As before, if we 
suppose the elastic body occupies the lower half-plane y < 0, 
we have the relation T(x) = a~y if the punch is propelled from 
left to right and T(x) = -O-,y if the punch is propelled from 
right to left. Moreover, to ensure contact P(x) = -ayy and the 
first Eq. of (4.1) only holds provided Cryy < 0, which must be 
checked when the solution is obtained. 

By using (2.5), the relation between the pressure P ( = - ayy) 
and the tangential stress T (= ±crxy) shown in (4.1)~ may be 
expressed as 

O;(x +) -  O;(x-) = ¥(tanM[0~(x + ) -  O~(x )], x EL,  (4.3) 

where 0~ and 02 are, respectively, the first and second compo- 
nents of 0. Rearrangement gives 

lim [0~(z) ± (tan k)0;(z)l  
y , 0  + 

= lim [0~(z)± (tan k)0~(z)]. (4.4) 
y ~ 0  

Thus the function 0~ (z) ± (tan k)O~(z) is holomorphic in the 
whole plane including the point at infinity and it tends to zero 
as Izl --' ~ from (2.11), hence by Liouville's theorem one can 
conclude that 

O~(z) ± (tan X)O~(z) = 0. (4.5) 

The problem now reduces to determine a sectionally holomor- 
phic scalar function 02(z) (or 01 (z)) satisfying the displacement 
boundary condition of (4.1)2. This condition can be expressed 
in terms of 0 2 by employing (2.6) and (4.5) into (4.1)2, as 

d i , 
O~(x +) +-~O~(x ) = 71 g (x), (4.6) 

where d = -7-m~2 tan ~ + mz*2, m~2 and m~2 are the {12} and 
{ 22 } components of the matrix M -j . Equation (4.6) is a stan- 
dard Hilbert problem, the solution to it is (Muskhelishvili, 
1954) 

O~(z) = X(z)  fL g ' ( t )  dt + X(z)p,,(z),  (4.7) 
2~a x + ( ~ 7  L z) 

where 

X(z)  = l~I (z - ak)-6(z - bk) ~ l, 
k = l  

6 = 27r 

p,,(z) is an arbitrary polynomial with degree not higher than n 
and arg stands for the argument of a complex number. Note 
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qo 

S 

Fig. 2 A wedge-shaped punch under normal pressure 

that 6 is a real number and hence there are no oscillatory singu- 
larities in the solution. 

The problem now is solved in principle. For the purpose of 
illustration, we examine an example of incomplete indentation 
where the region of contact is unknown and has to be deter- 
mined by assuming the stresses are bounded at the ends of the 
contact region. 

Consider a wedge-shaped punch under a total pressure q0 
which induces the contact with half-plane S-  and the motion 
of the punch is to the left as shown in Fig. 2. The profile of the 
punch can be expressed as g(x )  = ex where the origin is taken 
so that the contact region is - a  ~ x ~ a. Then from (4.8), 
X ( z )  = (z + a ) -6 ( z  - a) ~-1 and from (4.7) we see that the 
evaluation of Ok(z) depends on the integral 

~ X + ( t ) ( t  - z) ' 

which has been evaluated by Muskhelishvili (1954) as 

o X + ( t ) ' ~  - z) = d + d LX(z )  - [z + (26 - 1)al  . 

(4.9) 

To determine the polynomial p , ( z ) ,  using the half-plane far- 
field condition (2.12) one obtains 

p , ( z )  = --iq°. (4.10) 
27r 

Substituting (4.9), (4.10) with g ' ( t )  = e into (4.7), O~(z) 
becomes 

i e t~{1  - [ z  + ( 2 6 -  1 ) a l X ( z ) }  + ~ X ( z ) .  O~(z) = d + 

(4.11) 

The pressure P ( x )  under the punch can now be calculated by 

P ( x )  = -O'yy -~ O~(x  +) - O ~ ( x - )  

- d + d [x + (26 - 1)a][X+(x)  - X-(x) ]  

Jr ~ [x+(x) - X-(x)] ,  I x l  --< a. 

By using the bipolar coordinates z + a = R~ei~, z - a = 
R2ei~2, it will be seen that 

e +_ire6 

X-+(X) = - -  121 ~ a .  
(a + x)e(a  - x)  1-6 ' 

Hence the pressure P(x )  can be simplified as 

sin 7r6 
P(x) = 

7r(a + x)6(a - x) 1-6 

[ x +  ( 2 6 -  1 ) a ] ~ .  (4.12) 
27r______~_ ) 

× qo ( d + d )  J 

The above expression is valid for general anisotropic half-plane. 
It can be shown that for isotropic bodies 

m1"2 = i(K - 1) m2"2 = 1 + K 
4# ' 4# ' (4.13) 

where # is the shear modulus. By using these values for the 
calculation of d and 6, we have 

d =  1 {1 + u + i ( K  1 ) t a n k }  
4# 

1 { 1_ +_ Kea'____~ ~ 
6 =  1 -  y , y = ~ a r g  u +e2~XJ '  

and Eq. (4.12) can be proved to agree with that given in (En- 
gland, 1971). If the motion of the punch is to the right, the 
same expression as (4.12) will be obtained except that 

d = - - i  {1 + K - - i ( K - -  1) t ank} ,  6 = y. 
4# 

As stated in the beginning of this section, to have a complete 
indentation, the applied force q0 should be large enough that 
the end-face of the punch touches the half-plane, i.e., the pres- 
sure P(x )  should be positive under the punch. By letting P ( ± a )  
> 0, we may find the minimum requirement for the applied 
force q0 to reach complete indentation; 

47re6 
qo --> _a .  (4.14) 

d + d  

However, if q0 is not sufficiently large to satisfy the above 
inequality, a state of incomplete indentation will result as illus- 
trated in Fig. 2. In this case the length of the contact region 
will depend on q0 and is determined from the condition that the 
stress is bounded at the point x = a where the punch and the 
half-plane meet smoothly. For a bounded stress at x = a, from 
(4.12) 

d + d  
a = - -  q0, (4.15) 

47r~6 

and hence 

s in  ; a - 
P(x )  (4.16) 

d + d "\a + x /  

5 Conclusions 
By applying Stroh's formalism and the method of analytical 

continuation, a general solution for the problems of punch in- 
dentation into an anisotropic elastic half-plane is derived in this 
paper. The generality of the present solution is shown as fol- 
lows. (1) The half-plane is a general anisotropic medium. 
(2) The number of rigid punches indenting into the surface 
is arbitrary. (3) The location of each punch on the surface is 
arbitrary. (4) The profile of each punch is arbitrary but must 
be continuous, and in the case of sliding friction, the solution 
must be checked to ensure that the contact pressure is greater 
than zero. (5) The punches may completely adhere to the 
half-plane, or slide with or without friction. (6) The cases of 
normal, tangential, and rotary indentation are all included. For 
the purpose of verification and illustration, some special cases 
are deduced from this general solution, such as normal and 
rotary indentation by a fiat-ended punch into anisotropic or 
isotropic half-plane. The results show that our solutions are 
simple, general, and exact. 
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A p p e n d i x  A 

C o n s i d e r  the  e i g e n p r o b l e m  

( M - i  + e2~el~i 1 ) ~ .  = 0, (A1) 

w h e r e  M is the  i m p e d e n c e  ma t r i x  de f ined  as M = - i B A  -I 
W i t h  the  ident i t ies  s h o w n  by  T i n g  ( 1 9 8 8 ) ,  we  h a v e  

M -I = i A B  -1 = ( I  - i S ) L  -I , ( A 2 )  

w h e r e  L ,  S are real  ma t r i ce s  c o m p o s e d  o f  e las t ic i ty  cons tan t s .  
Moreove r ,  it can  be  s h o w n  tha t  S L  -I  is a n t i s y m m e t r i c  and  L - 1  
is s y m m e t r i c  and  pos i t ive  defini te.  

Subs t i tu t ing  (A2)  into ( A 1 )  and  for  a nont r iv ia l  so lu t ion  o f  
k ,  we  ob ta in  

I1(1 - e/~ir)SL -~ + i(1 + e2~i~)L-~l I -- 0. (A3)  

Since L -I is positive definite, the determinant is nonzero if we  
set 6 = 0. Hence (1 - e 2~e) :e 0, and (A3) may be rewritten 
as 

IISL-' + i/3L-III = 0, (A4)  

1 + e 2rci6 

f l  - 1 - e z~i6" 

R e a r r a n g i n g  the  above  rela t ion,  we  h a v e  

e27ri, ~ _ 1 - - / 3  

1+/~" 

It can  be  s h o w n  tha t  i f  6 is a root,  so  is 6 + n w h e r e  n is an  
integer .  If  on ly  - 1  < R e ( 6 )  -< 0 are  cons ide r ed  (T ing ,  1986) ,  
we  h a v e  

6 = _ _ 1  + J _ l n  1 + f l  
2 27r 1 - /3 

T h e  t h e o r e m  p r o v e d  by  T i n g  ( 1 9 8 6 )  s ta tes  the  fo l lowing .  Le t  
/3 be  a root  o f  the  3 × 3 d e t e r m i n a n t  

IIW + i/3Dl[ = 0, 

w h e r e  D is a real,  s y m m e t r i c ,  and  pos i t ive  def ini te  mat r ix ,  whi le  
W is a real a n t i s y m m e t r i c  mat r ix ,  t hen  

- ½ t r ( W D - I )  2 > 0, 

and the three roots are all real given by 

fl = 0, fl  = + [ - / t r ( W D - I ) 2 ] l / 2 .  

By  the  above  t heo rem,  and  r ep l ac ing  W ,  D by  S L  - l ,  L - l ,  
we  h a v e  the  so lu t ion  for  the  e i g e n p r o b l e m  ( A 1 ) .  T h e  resu l t s  
are 

l 
6,  = - ~ +  it,s, o l =  1 , 2 , 3 ,  (A5 )  

1 1 + / 3  
el = e  In _ e 2 = - e ,  c 3 = 0 ,  

2~  1 

I 1 t r ( S 2 )  ] ltz. 
/3= - 2  (A6 )  
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Ck 

o Z  

Fig. 3 A lacet integral contour 

A p p e n d i x  B 
Consider the integral 

fL [X3(t)]-lg(t)dt' (B1) 
1 

j ( z )  = t - z 

where L is the union of a finite number of arcs Li, L2 . . . . .  L~ 
and X0(z) is the Plemelj function satisfying the relation 

X if(t) + I~IM-~X if(t) = 0. (B2) 

Suppose that g( t)  is a polynomial, a situation which often oc- 
curs in practice. Then the integral along each Lk may be ex- 
pressed in terms of an integral along a lacet Ck surrounding Lk 
as shown in Fig. 3, and assume that z remains outside these 
lacets. 

The contour integral around the lacet Ck may be represented 
as 

fCk 1 [ X 0 ( ~ ) ] - l g ( ~ ) d ~  
~ - z  

t" 1 1 
= / [X ~-(t)]-'g(t)dt - l [X ~(t)]-lg(t)dt 

dL k t - z  d L k t - - z  

+ lim f l  _1 [Xo(~)]_lg(~)d ~ 

+ lim L _1 [ X 0 ( ~ ) ] - l g ( ; ) d ; .  
p-,O ~--bkl=P ~ Z 

It may be shown that the last two integrals above tend to zero 
as p ~ 0. Hence from (B2) 

[x°(~)]-~g(~)d~ 

= r 1 [X ~ ( t ) ] - l ( I  + i , l M - l ) g ( t ) d t ,  
JL k t - - z  

then the integral j (z) may be expressed in the form 

fc [X° (~ ) ] - I ( I  + ~ I M - 1 ) - ' g ( ~ ) d ~ '  (B3) 
1 

j ( z )  = ~ z 

where C is the union of the lacets C1, C2 . . . . .  Cn. 
Replacing C by a counterclockwise circle contour C~ at a 

large distance R, we can obtain that 

fc [X° (~ ) ] - I ( I  + ' ) - l g ( ~ ) d ~ '  
1 

j ( z )  = 21riS - ~ ~ - z I~IM 

(B4) 

where S is the sum of residues of the poles of the integrand in 
(B3) lying between C and Ca. The second term has the form 

f ~ Rei° lim ReiO [Xo(Rei°)]- l (I  + l~IM-l)-lg(Reie)idO, 
R-~ -- Z 

(BS) 

where R is the radius of the contour C~. It can be shown that 
only terms independent of Re i° can contribute to the above 
integral. Then with a given function g( t ) ,  the integral j (z) can 
be explicitly evaluated from (B4) and (B5). 

For example, consider an integral along a single line L = 
( - a ,  a)  and let g( t)  = g, where g is a given constant vector. 
The sum of the residues is 

S = [Xo(z ) ] - l ( I  + l~ IM- t ) - lg .  (B6) 

To calculate the integral shown in (B5), by (3.3d) we express 
F2I (~)  for large It] as 

F=I(~)  : (4 + a) l+~(~ - a) -6~ 

Hence (B5) becomes 

) lim 1 + z 

x ((Re ~° + 2iae~ + ...))idOA 1(I + M M - l ) - l g  

= 27ri((z + 2iae~))A-~(I + l ~ l M - l ) - l g .  (B7) 

From (B4), (B6), and (B7) we obtain the final result of j ( z )  
as 

j ( z )  = 21ri{[Xo(z)] i _ ((z + 2iae~))A 1} 

× (I  + l~ IM- l ) - l g .  (B8) 
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The Folding of Triangulated 
Cylinders, Part II1: Experiments 
This paper describes an experimental investigation of  a type of foldable cylindrical 
structure, first presented in two earlier papers. Three cylinders of this type were 
designed and manufactured, and were then tested to find the force required to fold 
them. The results from these tests" show some discrepancies with an earlier computa- 
tional simulation, which was based on a pin-jointed truss model of the cylinders. 
Possible explanations for these discrepancies are explored, and are then verified by 
new simulations using computational models that include the effect of hinge stiffness, 
and the effect of geometric imperfections. 

1 Introduction 
Foldable structures are used for a variety of applications, 

ranging from umbrellas to solar arrays for spacecraft. This paper 
describes an experimental investigation of a type of foldable 
cylindrical structure, first presented in two earlier papers (Guest 
and Pellegrino, 1994a, b).  These structures are formed by divid- 
ing up the surface of a cylinder into a series of identical trian- 
gles, the sides of which approximate to helices. The side-lengths 
of the triangles are chosen such that (i)  the cylinder is bi-stable, 
having two strain-free configurations, one extended and one 
folded; (ii) the strains induced by the folding process are suffi- 
ciently small that the cylinder deforms purely elastically. 

The first paper in this series (Guest and Pellegrino, 1994a), 
henceforth referred to as Part I, introduced this type of foldable 
cylinders, and described the four topological and geometric pa- 
rameters that are required to identify a particular cylinder. The 
parameters are the number of starts of two of the helices on the 
surface of the cylinders, denoted by the letters a and b, and the 
ratios between the lengths of two sides of a triangle and the 
third. With the symbols introduced in Figs. 2 and 3 of Part I, 
the four parameters are m, n, lh/l,, and lc/l,, respectively. By 
considering a simplified, uniform folding mode, Part 1 obtained 
estimates of the strains induced by folding cylinders with m = 
1, n = 7, and m = 2, n = 7, for a wide range of ratios l~,/l,, 
and Ic/la. 

The second paper in this series (Guest and Pellegrino, 
1994b), henceforth referred to as Part II, looked in more detail 
at the folding process of three particular cylinders, and described 
a computer simulation of that process. The simulation showed 
that the folding process is broadly similar in the three cylinders 
and consists of two distinct phases. During the first phase, the 
cylinder forms a strained shape-transition region under a stead- 
ily increasing folding force. When this force reaches a peak and 
starts to decrease, the second phase begins. Now, the shape 
transition region moves along the cylinder under a small force, 
leaving behind a fully folded part of the cylinder. This type of 
behavior is observed in the collapse of many structures, and is 
generally known as a propagating instability (Kyriakides, 
1994). However, while propagating instabilities are usually de- 
structive, for these cylinders this behavior is highly desirable. 

This paper describes three foldable cylinders that have been 
designed, manufactured, and tested. The first two cylinders were 
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designed simply to validate the theoretical work in the previous 
papers. The third cylinder was aimed at a possible application, to 
produce a collapsible fuel tank for Hydrazine, a highly corrosive 
rocket fuel. As fuel is used, the tank would reduce its volume, 
thus preventing sloshing of the remaining fuel, and also reduc- 
ing the amount of fuel which collects away from the supply 
pipe, and hence is left unused. A summary of the geometry of 
the cylinders that were manufactured is given in Table 1. The 
observed experimental behavior shows complexities that were 
not predicted in Part II. However, a re-analysis of the folding 
process which allows for two effects that had been neglected 
previously, hinge stiffness along the connections between pan- 
els, and the presence of manufacturing imperfections, predicts 
the kind of behavior that is observed in practice. 

The layout of the paper is as follows. Section 2 describes 
the manufacture and compression testing of the models, and 
identifies the key discrepancies between the behavior predicted 
by the computer simulations in Part II and the actual behavior 
of the models. Possible explanations for these discrepancies are 
discussed in Section 3, and these explanations are investigate d 
in detail, in Section 4, by modifying the computer model and 
producing new simulations. Section 5 discusses these simula- 
tions, and concludes the paper. 

2 Experiments 

Irathane and Aluminium-Alloy Cylinders. Two of the 
cylinders described in Part I have been made from sheets of 
0.9 mm thick aluminium alloy plate, coated with a 0.7 mm 
thick layer of Irathane on both sides (Irathane is a flexible 
polyurethane). Hinges were made by forming a series of 
straight, parallel grooves, using a milling machine. Both one 
layer of the Irathane and the Al-alloy were removed, thus leav- 
ing only one layer of Irathane to form the hinge. Each sheet 
was milled to the correct fold pattern. The final cylinders were 
formed by joining together opposite edges of the sheets with 
small plates. The bases of both cylinders were fully restrained 
before testing. 

Each cylinder was tested using a Howden testing machine in 
a displacement controlled mode. The top of the cylinder was 
loaded using a plate attached to the testing machine through a 
central ball joint, thus allowing the plate to change its orienta- 
tion during folding. The total compressive load on the cylinder 
was obtained by adding the weight of the loading plate to the 
force measured by a load cell, at the top of the testing machine. 
Once the cylinder had been fully compressed the test was re- 
versed, as further compression would have damaged the connec- 
tion between the cylinder and the base plate. 

The results of the compression test on cylinder no. 1 are 
shown in Fig. l ( a ) .  This plot of force during folding shows a 
dear  periodicity, where the period is approximately 20 ram. 
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Table 1 Geometric parameters 

rn n l. (mm) lb (mm) lc (mm) 

Irathane and Al-alloy 
cylinder no. 1 1 8 50.0 50.0 90.1 

Irathane and Al-alloy 
cylinder no. 2 1 7 50.0 50.0 86.6 

Cu-Be and steel cylinder 1 7 124.8 104.7 205.3 

For this cylinder, the change in the relative height coordinates 
of two nodes on the a-helix is 2.7 mm between the extended 
and folded configuration, while this difference is 22 mm for 
two nodes on the b-helix. Hence, it can be concluded that the 
basic periodicity of the force plot has a wavelength correspond- 
ing to the relative height of successive nodes on the b-helix. 

The cylinder formed one transition zone at the top of the 
cylinder, which moved down the cylinder as the test proceeded. 
As displacement 6 was increased, no triangles would fold while 
the force was increasing, but several triangles folded in quick 
succession while the force was decreasing. 

The results of the compression test on cylinder no. 2 are 
shown in Fig. 1 (b) .  For this case the change in the relative 
height coordinates of two successive nodes between the ex- 
tended and folded configuration is 4.0 mm along the a-helix, 
and 28 mm on the b-helix. The behavior of cylinder no. 2 was 
similar to the previous cylinder, except that in this case there 
is no consistent periodicity in the results. 

Cu-Be and Steel Cylinder .  The third cylinder was manu- 
factured using a copper beryllium alloy (Cu-Be) as a hinge 
material. Cu-Be was used because, when correctly heat-treated, 
it has a large elastic strain range and hence a thin strip of Cu- 
Be can be elastically bent around a small radius. The cylinder 
was made from a flat, 0.1 mm thick sheet of Cu-Be. A series 
of stiff triangular panels were formed by sandwiching the Cu- 
Be between triangles of 0.5 mm thick steel plate. These plates 

60 
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.40 80 120 
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Fig. 1 (a) 

20 

Fig. 1 (b) 

Fig. 1 Force required to compress the Irathane and AI-alloy cylinders: 
(a) Cyl inder no. 1, (b) Cylinder no. 2 

Fig. 2 Folding of the Cu-Be and steel cylinder: initial state, ~ = 100 
mm; fi = 400 mm; 6 = 630 mm, fully folded 

were spot welded in place. Then, the two edges of the sheet 
were joined together, to form the cylinder. Note that steel plates 
could not be used for a Hydrazine tank, as the steel and the 
Hydrazine would react. A different stiffening material would 
have to be used. 

The steel triangles were placed 6 mm apart on the Cu-Be 
sheet to allow an elastic hinge to form. Also, the comers of the 
steel plates were rounded, to increase the width of the unre- 
strained Cu-Be sheet near the intersection of hinge lines. One 
problem with this method of construction is the detail of folds 
around a node. Inevitably there is an incompatibility where 
concave and convex folds meet. At this point a crease forms in 
the Cu-Be sheet, causing plastic deformation. Thus the aim of 
purely elastic folding was not entirely achieved in this design. 
The base of the cylinder was fully fixed, by casting it into an 
epoxy base. 

Four compression tests were performed, following the same 
procedure as for the Irathane and Al-alloy cylinders. Figure 2 
shows four photographs taken during the first test. It can be 
seen from the first photograph that the cylinder had to be ini- 
tially slightly folded to fit in the testing machine. A plot of the 
force required to fold the cylinder during this test, Fig. 3 (a ) ,  
shows a period of approximately 60 ram. The change in relative 
height coordinates of two successive nodes between the ex- 
tended and the folded configuration is 9 mm along the a-helix, 
and 64 mm along the b-helix, and so clearly the periodicity of 
the plot corresponds to the folding of successive nodes on the 
b-helix. 

One important effect shown in Fig. 2 is the formation of a 
second transition zone close to the base of the cylinder. This 
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Fig. 3 Force required to compress the Cu-Be and steel cylinder: 
(a) first test, (b) second, third, and fourth tests 

occurred when the cylinder had been compressed by 125 mm. 
For the rest of the test it was this transition zone which moved 
up through the cylinder. A likely reason for the formation of 
this second transition zone is the weight of the cylinder, which 
led to a compressive force approximately 55 N greater in the 
second transition zone than in the top transition zone. 

As for the previous tests, during this test no new triangles 
folded while the force was rising, but many triangles folded in 
quick succession as the force dropped. 

When fully folded, the cylinder had a height of 242 mm, 
compared with an original height of 872 mm. 150 mm of the 
compressed height was accounted for by the part of the cylinder 
fixed open at the base. 

When the test was reversed, and the top plate moved up, the 
cylinder showed some spring-back, and regained a height of 
540 ram. Closer inspection of the Cu-Be hinges, showed that 
the creases around the nodes had moved closer together by 1- 
2 mm. Stretching the cylinder caused these creases to move 
back towards their original position, and the cylinder to regain 
an extended configuration. The creases did not, however, return 
completely to their original position, and the cylinder only re- 
gained a height of 763 mm. 

Three further tests were performed on this cylinder. After 
each test the cylinder was pulled back towards its original con- 
figuration. The force required to fold the cylinder in each case 
is plotted in Fig. 3(b).  In each test the cylinder folded by 
forming a transition zone close to the base of the cylinder, 
which then moved up through the cylinder as the test proceeded. 
The force plotted is that in the transition zone, and so the origi- 
nal data has been modified to account for the steadily decreasing 
weight of the portion of the cylinder above the transition zone. 
Again during the test a number of triangles would fold each 
time the force decreased. 

For each of the further three tests performed the change in 
the relative height coordinates of two successive nodes between 

the extended and folded configuration is 7 mm along the a- 
helix, and 45 mm on the b-helix. Note that these values are 
smaller than for the original test, as the plastic deformation 
around the nodes has reduced the height of the cylinder. Again, 
the basic periodicity of these force plots has a wavelength corre- 
sponding to relative height of successive nodes on the b-helix. 

3 Discussion of Experiments 

All the cylinders tested initially formed a transition zone, 
which then moved through the cylinder. Generally the zone 
moved from the top down, but for the Cu-Be and steel cylinder 
it moved from the bottom up, due to the self-weight of the 
cylinder. The shapes of the corresponding force plots also have 
a number of similarities. They all show a periodic variation of 
the force. In two of the cylinders, the Cu-Be and steel cylinder, 
and the Irathane and Al-alloy cylinder no. 1, the wavelength of 
this variation corresponds to the folding of successive nodes 
along the h-helix, i.e., of n pairs of triangles on the a-helix. In 
the Irathane and Al-alloy cylinder no. 2 the period of variation 
shows no obvious pattern. 

Comparing these results with the computer simulation in Part 
II, a number of similarities can be seen. In both the simulation 
and the tests the modes of deformation of the cylinder are 
similar. A transition zone forms, which then moves through the 
cylinder. Comparing the plots of force from the computations 
with the experimental results, both cases show the force varying 
around a constant value as the transition zone moves through 
the cylinder. 

There are, however, also a number of discrepancies. One is 
that the force in the experimental results does not vary about 
zero, but about an average compressive force. This implies that 
some strain energy is being stored in the cylinder during the 
folding process. Another discrepancy is that the actual force 
variation does not correspond to the height difference between 
successive nodes on the a-helix. Indeed, for two of the cylinders 
tested it corresponded to the height difference between succes- 
sive nodes on the b-helix. A third discrepancy is the absence 
in the experimental results of any sign of an initial force peak, 
as the transition zone forms. 

There is a fairly obvious explanation for the first discrepancy. 
The computer model in Part II assumed momentless hinges 
between the triangles. With this model, stretching energy builds 
up in the transition zone, at the start of the folding process 
and--once  a certain energy level has been reached--the transi- 
tion zone moves along the cylinder while the energy stored in 
the system remains constant. There is no bending energy any- 
where in the cylinder. In reality, some energy must be put into 
the hinges to cause them to fold. Thus, as the transition zone 
moves down the cylinder, energy must be put into the cylinder 
to fold more hinges, and so the average compressive force must 
be greater than zero. It will be seen later that the effect of hinge 
stiffness explains the third discrepancy, the absence of an initial 
force peak. 

To explain the second discrepancy, it should be noted that 
the most critical part of the manufacturing technique described 
in the Section 2 is the final joining process between the two 
edges of the sheet containing all the triangles. It is difficult to 
keep the two edges perfectly aligned during this process, and 
hence it is reasonable to expect that only one of the b-helices 
contains a series of geometric imperfections. Thus, if these 
imperfections are sufficiently large, the periodicity of the force 
plot would correspond to the folding of complete turns of the 
a-helix, not to the folding of successive pairs of triangles. The 
more random periodicity shown by the Irathane and Al-alloy 
cylinder no. 2 could be due to more distributed errors, as this 
was an early attempt at making a cylinder, and it had already 
been damaged by a number of demonstrations prior to the test. 
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4 C o m p u t e r  M o d e l i n g  

In order to validate the reasons suggested in the previous 
section for the discrepancies between experimental results and 
those predicted by the computer simulation, two changes were 
made to the computer model described in Part II. The first 
change was to modify the model so that it no longer assumed 
momentless hinges between the triangles, and the second was 
to modify the model to simulate the effect of a final misalign- 
ment during the manufacture of a cylinder. 

Elastic Hinges. The aim of this section is to describe how 
elastic hinges were incorporated into the computational model 
described in Part II. The original model was a pin-jointed truss, 
with bars of equal cross section along the edges of the triangles. 
This model was analyzed using the Force Method of structural 
analysis, and hence by setting up and solving appropriate sys- 
tems of equilibrium and compatibility equations. To include in 
this model a series of elastic hinges that oppose relative rotations 
between adjacent triangles, the equilibrium, compatibility and 
flexibility matrices for a general hinge element are needed. In 
analogy with Section 2 of Part II, these matrices are derived 
directly in the global coordinate system. The stiffness matrix 
of a similar element was derived in Chapter 5 of Phaal (1990), 
using a transformation from a local coordinate system. 

Consider a typical elastic hinge, Fig. 4, between two triangles. 
The triangle P~P2P3, Fig. 4 ( a ) ,  has unit normal 

(P2 - Pi )  × (P3 - Pz) 
u = (1) 

II(P= - P , )  × (P3 - P=)II 

and triangle P4PsP6, Fig. 4 (b ) ,  has unit normal 

V = 
(P5 - P4) × (P6 - Ps) 

II(P5 - P4 )  × (P6  - Ps)II 

Let M be the moment exerted by the hinge, positive in the 
direction shown in Fig. 4(a, b).  Equilibrium of each triangle 
is maintained by three corner forces, normal to the triangle. 
Any in-plane force component exerts no in-plane moment, and 
hence makes no contribution to the equilibrium equations that 
are derived below. These in-plane forces are carried by the 
original truss model. 

Consider the triangle P iP2P3, shown in Fig. 4 (a) .  The magni- 
tude of the corner forces, r~, r2, r3, can be found by considering 
moment equilibrium along the three sides of the triangle. 

Taking moments initially about PIP2, 

flu(P   ) 
" lIPs + M = O, 

rearranging the scalar triple product gives 

- P~II + M = 0.  ( 4 )  

As u is a unit vector, and is parallel to (P2 - PJ) × (P3 - P2), 
this can be written 

q P3 /r3 (a) 

v r4 2 v ?, 

Fig. 4 Elastic hinge element 

( _--r3 ) 
II(P2 - P~) × (P3 - P=)[I lIP2 + M = 0 (5) 

and so 

liP2 - PIl l  
r3 = - M. (6) 

II(P2 - P , )  × (P3 - P211) 

Similarly, taking moments about P2P3 gives 

(P ,  - P3) × r,u" I ~  P2II 

+ liP2 ~11 " lIP3 P211/ 

which can be reduced to 

(Pa - P i ) ' ( P 3  - P2) 
rl = - M. (8) 

[l(P3 - P2) × (P, - P3)[I II(Pa - P,)II 

Also, taking moments about P3Pi gives 

(P2 - Pi)  × r2u" I1~- ~1 

( P 2 - P 1 )  ( P I - P ~  ~ M = 0  (9) 
+ I]Pf ~ [ I  " ~ P3H] 

which can be reduced to 

(P2 - P.)" (Pl - P3) 
r2 = - M. (10) 

II(Pl - P3 )  × (P2  - P l ) l l  II(P2 - Pa)l l  

Similar relationships can be found for triangle P4PsP6 

( 2 )  lIP5 - P411 
r6 = -- M (11) 

II(P5 - P 4 )  × (P6  - p ,  lr) 

(P5 - P4) ' (P6  - Ps) 
r4 = -- M (12) 

II(P6 - Ps) × (P4 - P6)lr [I(P5 - Po)II 

(P5 - P4)"  (P4 -- P6) 
r5 = -  M. (13) 

II(P4 - P6)  x (P5  - P4)ll II(P~ - P4)ll 

The equilibrium matrix for the general hinge element of Fig. 
4 (c )  relates the moment M to all of the external forces in 
equilibrium with it. At P1 = Ps, the total force is q u  + rsv, 
and similarly, at P2 = P4, the total force is r2u + r[v. At P3 
and P6 the total forces are r3u and r6v, respectively. Hence the 
16 × 1 equilibrium matrix, Ah, for this element is defined by 

(3) the following system of equilibrium equations. For brevity, the 
notation P0 = PJ - Pi has been adopted. 

- \ lIP=3 × P3,11 lint211/u \lIP64 × P4,11 lIP4,1[ } v 

_ (  P,2'P3, ~ _ ( P45"P56 
IIP3~P~2HIIP,2Jl) u \11P56 × P6411tlP451t/~ \ 

IIPl2~ ~u 
liP,2 × P2311/ 

\tlP45 × Ps611/ 

F rlu + rsV 1 
= ]"2u + r4vl (14) 

r3u ;0vJ 

The transpose of A h is the compatibility matrix of the hinge 
element, relating the rotation of the hinge to the displacement 
of the nodes P~ - P6. It is assumed that the hinge element is 
unstrained; i.e., the hinge rotation is zero, when the element is 
flat, to simulate the behavior of a cylinder made from a flat 
sheet. 
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The flexibility matrix relates M to the hinge rotation. It is 
defined in terms of the axial flexibility of the bars in the truss 
model, the hinge length, and a dimensionless constant f ,  which 
can be varied to simulate different hinge properties. For the 
element of Fig. 4 

[ 
f P,II] (15) Fh 

L A E  lIP2 - 

The hinge elements for the cylinder are incorporated into 
the truss model to give enlarged equilibrium, compatibility and 
flexibility matrices for the entire structure. For a cylinder with 
N nodes and B bars, there are now H hinge elements. Thus the 
vectors of generalized stresses and strains include, as well as 
all the terms defined in Part II, H additional components. Apart 
from these changes, the simulation algorithm is unchanged firom 
Part II. 

One of the cylinders analyzed in Part II has been reanalysed 
incorporating hinge elements along all internal bars. It has pa- 
rameters m = 1, n = 7, l~,/l,, = 1 and lc/l,, = ~f3. The particular 
model that has been analyzed has N = 36 nodes, B = 86 bars 
and H = 76 hinge elements. Each simulation of the folding 
process consists of approximately 300 compression steps of 
size 0.01/a. Simulations were performed using different 
values of the flexibility factor, f .  The results for 
f = 1 X 10 6, f = 1 X 10 5 and f = 1 X 10 4 are presented in 
Fig. 5. Note that decreasing fcorresponds to making the hinges 
stiffer. 

Figure 5 (a )  shows the force R required to compress the 
cylinder for the three different values of hinge stiffness. Each 
of the plots shows the force rising at the end, which is due to 
the interaction between the transition zone and the fully fixed 
base. 

12 

8 

f : 1 xl06 
I I 1 I i I 

2 3 

Fig. 5 ( a )  

% 

~Y 

L I I I I 
10 2O 

bar no. 
30 

Fig. 5 ( b )  

Fig. 5 Folding of cylinders with m = 1, n = 7, Ib l la  = 1, /c / I .  = ~/3: 
(al force required to compress cylinders with different hinge flexibilities; 
( b l  distribution of ~c, when ~ = 1.91/.  a n d  f = 1 x 104. Bars take the 
number of their bottom node, and nodes are numbered going up on the 
a-helix. Discrete values have been joined, for legibility. 

When f = 1 × 106 the force plot appears very similar to the 
results presented in Part II. The stiffness of the hinge has very 
little effect in this case. 

When f = 1 × 105 a larger peak force is required to form the 
transition zone at the top of the cylinder, and an approximately 
constant, nonzero force is required to move this zone down the 
cylinder. 

When f = 1 × 104, some clear changes in behaviour become 
evident, as the formation of the transition zone is now a two- 
stage process. During the first stage, the force R reaches a peak 
as the transition zone is initially formed at the top of the cylin- 
der. This zone includes some bars which are also elastic hinges, 
and some which are not. The second stage occurs as this transi- 
tion zone starts moving down the cylinder. R increases as the 
number of hinges in the transition zone increases. The transition 
zone is finally fully formed when all  the bars within the zone 
are also elastic hinges. After this, there is a steady-state part of 
the plot as the fully formed transition zone moves down the 
cylinder. The steady-state part for this particular simulation is 
rather short, as the cylinder that is being simulated is small, 
and the effect of the base quickly becomes important. Note that 
there is an average compressive force in the cylinder during the 
steady-state phase, as energy must now be put into the cylinder 
to fold the hinges. Also note that the force required to form the 
initial transition zone is now seven times higher than for the 
case with momentless hinges. Finally note that the steady-state 
part of this plot involves compressive forces larger than those 
in the initial force peak. 

Figure 5 (b )  shows the strain in the c-bars, defined in Fig. 2 
of Part I when the cylinder has been compressed by 6 = 1.91/,,, 
for f = 1 × 104. This value of 6 corresponds to a peak in the 
force plot. The plots for f = 1 × 105 and f = 1 × 10 6 a r e  

similar, but with slightly lower strains. The plot is presented 
for 6 = 1.91/, rather than 6 = 1.62/,, as used in Part 2, so that 
the transition zone has had time to fully form. The peak strain 
in the bars is only 2% higher when f = 1 x 10 4 than for the 
case with momentless hinges. 

Manufacturing Errors. The original computer model of 
the structure was also altered to assess the effect of misaligning 
the final seam of the cylinder during manufacture. These errors 
were simulated by imposing an initial strain e on the bars which 
cross the final join-line of the cylinder. Simulations were per- 
formed for cylinders with parameters m = 1, n = 7, lb/l,, = 1 
and lc / l ,  = ~ as before. The cylinders were compressed in 
approximately 300 steps of size 0.01 l,, for three different values 
of e, 0.1 percent, 1 percent and 2.5 percent. The results are 
shown in Fig. 6. 

When e = 0.1 percent, Fig. 6 ( a ) ,  the force plot is very 
similar to the case when the manufacturing error is zero. 

When e = 1 percent, Fig. 6 (b ) ,  however, the steady-state 
part of the plot becomes periodic with a wavelength correspond- 
ing to the folding of a set of n = seven pairs of triangles, 
forming a complete turn of the a-helix. The manufacturing error 
prevents the folding from proceeding smoothly. 

Similar results are obtained when e = 2.5 percent, Fig. 6 (c ) .  
Again the results are periodic with a wavelength corresponding 
to the folding of n = seven pairs of triangles. The variation in 
force is greater than for e = 1 percent as larger errors make it 
more difficult to fold parts of the cylinder. 

Comparing the strain in the bars for the three cylinders con- 
taining manufacturing errors with a perfect cylinder, it is found 
that the peak strain is little changed. The largest increase occurs 
for e = 2.5 percent, when the peak strain is increased by 16 
percent. However, because of the incompatibility introduced 
by making some bars longer, the manufacturing errors lead 
to generally higher levels of strain distributed throughout the 
cylinder. 
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Fig. 6 Force required to compress initially strained cylinders with rn = 
l ,  n = 7 , 1 b i l e  = 1 ,1e l l a  = ~ :  ( a )  e = 0.1 percent,(b) e = 1 percent, 
(c) e = 2.5 percent. 

5 Discussion and Conclusions 
This paper has shown the practical realization of the triangu- 

lated cylinders introduced in the previous two papers. In particu- 
lar, it has explored two reasons why the experimental behaviour 
of these cylinders differs from the predictions obtained from 
the simple pin-jointed truss model analyzed in Part II. 

The first effect that has been explored is the effect of hinge 
stiffness. It has been found that the effect of adding a series of 
elastic hinges to the truss model has the effect of raising the 
average compressive force to fold the models above zero, an 
effect seen in all of the cylinders tested. Indeed, sufficiently 
high hinge stiffnesses lead to the compressive force during 
steady-state folding being similar in size to the force required 
to form the initial transition zone. This explains why the initial 
force peak associated with the formation of the transition zone, 
predicted from the truss model in Part II, is not shown in the 
experimental results. 

The second effect that has been explored is geometric mis- 
alignment during manufacturing. It has been found that the 
simple truss model predicts significant changes in behavior 

when geometric errors are introduced. The force developed, 
while still oscillating about zero, no longer has a period corre- 
sponding to the folding of one pair of triangles, but corresponds 
to the folding of n pairs of triangles. Superimposed on this 
global behavior is the folding of individual pairs of triangles. 
This behavior is very similar to that seen in the experimental 
tests. 

Some consideration must be given to the values of the param- 
eters used during the simulations. The initial strains e used 
to simulate manufacturing errors can be easily justified. The 
maximum value of e, 2.5 percent, corresponds to a misalign- 
ment during final fabrication of 3 mm for the Cu-Be and steel 
cylinder, and of 1 mm for the Irathane and Al-alloy cylinder. 
Errors of this magnitude could certainly have been introduced. 

It is less easy to justify the particular ~alues of fu sed  during 
the investigation of the effects of hinge stiffness. The reason 
for this is the generic nature of the original model. In particular, 
the deformation of the bars in the original truss model was not 
meant to directly simulate the deformation of the triangular 
plates, but to investigate the effect of distributed elasticity 
within the model. In the Irathane and Al-alloy cylinders, for 
example, this deformation in fact takes place by shearing of the 
hinges. Thus as no quantitative measure of the bar stiffnesses 
has yet been considered, the values of f must be seen as a 
qualitative exploration of the effects of hinge elasticity on the 
folding process. 

To validate the proposed computational model, a simulation 
of the behavior of the Irathane and Al-alloy cylinder no. 1 (see 
Table 1) has been performed. The simulation included both 
hinge elasticity and manufacturing errors, and the following 
parameters were chosen to match the observed behavior of the 
cylinder: AE = 6. 105N, f = 1.25.107, e = 0.15 percent. 
The initial behavior of the cylinder has not been simulated, 
because in the experimental model, extra, partially cut triangles 
were added at the top of the cylinder to form a level edge. 

A comparison of the experimental results (reproduced from 
Fig. 1), and the simulation results, is shown in Fig. 7. The 
agreement between the results is remarkably accurate; both the 
periodicity, and the magnitudes of peaks and troughs, of the 
actual behavior are reproduced by the simulation. 

Finally, it is interesting to note how this paper fits in with 
the work described in the previous two papers. The two Irathane 
and Al-alloy cylinders were of the simple type described in 
Section 1 of Part I made from isosceles triangles that fold down 
to prismatic stacks of plates. The Cu-Be and steel cylinder is 
not of this simple type, and was the first to be designed using 
the more general geometric formulation presented in the remain- 
der of Part I to limit the amount of deformation required during 
folding. 

The computational modelling techniques of Part II have been 
shown to predict many of the characteristics seen in the folding 
process. Also, although the changes to the model described 
here have radically changed some aspects of the compressive 

20 I I l 

Sirnulotion 

15 . . . . . . . .  Experiment 

R ( N )  ~ /'~, f 

I I 
40 80 120 

6 (ram) 

Fig. 7 Comparison of the force required to compress Irathane and AI- 
alloy cylinder no. 1, and a computer simulation 
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Table  2 Comparison  of computat ional  results for cyl inders 
with m = 1, n = 7, l b / l .  = 1, and l c / l .  = 

l/f  = O, e = 0 5.0" 10 3 6.9 '  10 -3 8.7" 10 -3 1.8" 10 -3 
1/f= 1"10 4, 

e = 0 4 .8 .10  -3 7 .8 .10  -3 8.9"10 3 13.1.10 3 

l / f=  0, 
e = 2.5 percent 6 .8 .10  -3 8 .3 .10  -3 10.1 • 10 -3 1.8.10 3 

behavior of the cylinder, the internal deformation of the cylinder 
during folding has not changed greatly. The maximum internal 
deformation, as measured by the strain in the c-bars of the 
model, has risen by no more than 16 percent in any simulation 
performed. A complete comparison of the computational results 
is made in Table 2. The original model remains a valid tool 
for predicting and comparing many aspects of the behavior of 
foldable cylinders, particularly the amount of deformation they 
undergo during folding. Also, the usefulness of having a simple 
computational model has been shown, as it can easily be modi- 

fled to test the validity of different explanations for observed 
experimental behavior. 
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Dynamic Effects of Centrifugal 
Forces on Turbulence 
The dynamic effect of  suddenly applied centrifugal Jbrces on homogeneous and iso- 
tropic turbulence in the entrance region of  a curved pipe is analyzed by a perturbation 
method. The model is for  small-scale turbulence and is valid away from the pipe 
wall; hence is not restricted to a particular cross-sectional shape and can be applied 
even to external flows i f  the mean velocity profile is almost uniform, as in the region 
outside the turbulent boundary layer on a curved surface. The analysis indicates that 
the major effect of  centrifugal forces is to generate pure turbulent shear and this 
effect is cumulative. Thus, an initially isotropic turbulence become anisotropic due 
to linear effects. This result is in contrast with the effect of  solid-body rotation on 
isotropic turbulence, where rotation acts on an initially isotropic turbulence only 
through nonlinear interactions, and pure linear effects influence the double correla- 
tions only i f  the turbulence is initially anisotropic. 

1 Introduction 

Curved pipes and pipe bends are commonly found in pipe 
networks for engineering systems or human blood vessels. 
Therefore, an understanding of the flow through such devices 
is of paramount importance. Investigations of curved-pipe flows 
can be traced back as early as 1876 (Thomson, 1876). Since 
then, the problem has been extensively studied both theoreti- 
cally and experimentally for more than a century. A comprehen- 
sive review of these studies can be found in Berger, Talbot, and 
Yao ( 1983 ). Taylor (1929) showed that the transition Reynolds 
number in curved-pipe flows is much larger than that found in 
straight pipes. Relaminarization has been observed by Sreeniva- 
san and Strykowski (1983). They have shown that relaminari- 
zation starts to occur after about three turns in a helically coiled 
pipe, and the transition Reynolds number could be two to three 
times larger than that found in a straight pipe. The mechanism 
that causes relaminarization is probably due to the existence of 
low speed fluid near the inner bend as a consequence of the 
secondary flow induced by the centrifugal forces. The process 
takes a rather long distance to occur. In this paper, the turbu- 
lence structure near the entrance region of a curved pipe is 
examined. 

For a laminar developing flow in the entry region of a curved 
pipe, three axial regions have been identified (Yao and Berger, 
1975). At a distance of the order of the pipe radius from the 
entrance, the pressure gradient balances the centrifugal forces 
in the core region, and the secondary boundary layer flow near 
the pipe wall is gradually developed. This is a consequence of 
the fact that the centrifugal force effects are cumulative. Within 
this region, the magnitude of the secondary boundary layer is 
small compared to the axial boundary layer and the displace- 
ment effect of the boundary layer flow on the core flow is 
negligible (Singh, 1974). The second region is at a distance 
(aR) ~/2 from the entrance, where a is the radius of the pipe and 
R is the radius of the pipe curvature (see Fig. 1 ). Within this 
region, the boundary layer flow is further developed and be- 
comes three dimensional. However, its displacement effect on 
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the core flow is still negligible. It has been shown (Yao and 
Berger, 1988) that the solution describing the flow in the first 
region is included in that of the second region. A comparison 
of two solutions shows that the size of the first region is s 
< 0.1 (aR) I/2, where s measures the axial distance along the 
centerline of the pipe. This has been experimentally verified by 
Olson and Snyder (1985). A substantial change of the core 
flow is developed at a much longer distance, 0(a Re~D J/2), 
from the entrance, where Re = Woa/u is the Reynolds number, 
D = (a  Re)1/2 is the Dean number, W0 is the mean axial veloc- 
ity, and a = a/R is the curvature ratio. As suggested by Pedley 
(1980), this is the required distance for the transport of second- 
ary vorticity from the boundary layer to the core. Therefore, 
the interaction between the core flow and the boundary layer is 
small and can be ignored in the entry region of a curved pipe 
i f s  < a Re/D t/2. 

Even though centrifugal forces have a small direct effect on 
the development of the laminar core flow within a short distance 
from the entrance, their effects are much stronger for a turbulent 
flow because the redistribution of turbulent energy by the cen- 
trifugal forces are first-order effects. Moffatt (1981) has sug- 
gested that rapid distortion theory (RDT) could be used to 
analyze turbulent flow in a curved bend by relating the statistical 
properties of the turbulence immediately after the bend to those 
before the bend. The basis of RDT was originally suggested by 
Prandtl (1932) and Taylor (1935), and was used to estimate 
homogeneous turbulence behind a net of grid bat's in a wind 
tunnel contraction. Since then, the theory was extensively devel- 
oped by Batchelor (1953) and Batchelor and Proudman (1954). 
The theory provides a means of calculating the effect of a 
sudden change in mean velocity on a turbulent flow, and is only 
applicable when the time taken for a fluid particle to pass 
through the zone in which the mean velocity changes rapidly 
is much less than the time taken for the turbulence to change 
owing to viscous and nonlinear inertia forces. Therefore, it fol- 
lows from these assumptions that the problem involving a ran- 
dom process is linear and is tractable by straightforward mathe- 
matical methods. More explicitly, the theory is applicable when 
turbulent diffusion and dissipation are negligible when com- 
pared with the rapid change of the mean flow and the pressure- 
redistribution effects. Townsend ( 1970, 1980) successfully used 
the theory to interpret experimental shear-flow data. Hunt 
(1973) applied the theory to nonhomogeneous distortions. 

The turbulent flow in the entry region of a curved pipe shares 
some feature with that in a solid-body rotation field, although 
they differ in many important aspects. Bradshaw (1969) pointed 
out the similarities between the effects of centrifugal forces due 
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to streamline curvature, the effects of Coriolis forces due to 
rotation, and the effects of buoyancy forces due to density strati- 
fication on turbulent shear flows. He showed that a formally 
exact analogy can be drawn between meteorological parameters 
such as the Richardson number and the parameters describing 
the effect on turbulent shear flows of streamline curvature in 
the plane of the principal rate of strain or rotation about an axis 
normal to that plane. Thus, it is of interest to us to review the 
literature on the effects of rotation on turbulent flows. Our anal- 
ysis indicates that, contrary to popular belief, there are signifi- 
cant differences between the effects of centrifugal forces due 
to streamline curvature and the effects of Coriolis forces due 
to solid-body rotation on turbulent flows. As discussed in the 
Appendix, this difference is a consequence of the difference in 
the mean flow, which plays an important role in the production 
of Reynolds stresses. In order to compare and contrast the simi- 
larities and differences between the effects of centrifugal and 
Coriolis forces, we give a brief review of the literature on rotat- 
ing turbulent flows. 

The effects of rotation on turbulence has been studied experi- 
mentally by Traugott (1958), Ibbetson and Tritton (1975), 
Wigeland and Nagib (1978), and Hopfinger, Browand, and 
Gagne (1982). Traugott (1958) studied the effect of rotation 
on turbulence generated by passing air through several grids in 
the annular section between two rotating concentric cylinders. 
He found that rotation decreased the rate of decay of turbulence. 
Ibbetson and Tritton (1975) investigated the effect of rotation 
on turbulence generated in air by the sudden axial displacement 
of two grids in an annular container on a rotating table. They 
found that increasing the rotation rate produced a faster decay 
of the turbulence. Ibbetson and Tritton suggested that inertial 
waves carried energy to the boundaries of their apparatus, where 
it was dissipated in viscous boundary layers, thereby increasing 
the rate of decay of turbulence kinetic energy. They also ob- 
served that rotation produced a large increase in the integral 
scale parallel to the rotation axis, and a smaller increase in the 
integral scale perpendicular to the rotation axis. Wigeland and 
Nagib (1978) studied the decay of rotating grid-generated tur- 
bulence by passing a uniform flow through a rotating duct 
equipped with a honeycomb followed by a grid. Their experi- 
ments showed that in most cases, the turbulence decayed more 
slowly, and the time-integral scales increased more rapidly as 
the rate of rotation was increased. In a few cases they observed 
that the turbulence intensity decayed faster at small rotation 
rates but slower at larger rates of rotation. Hopfinger, Browand, 
and Gagne (1982) performed experiments in a deep rotating 
tank of water with an oscillating grid at the bottom. They ob- 
served that near the grid, where the Rossby number was large, 
the turbulence was locally unaffected by rotation. Away from 
the grid, the intensity of the turbulent velocity fluctuations de- 
creased and the scales of the turbulence increased. At a local 
Rossby number of about 0.2, they observed a sudden transition, 

which terminated the turbulent Ekmann layer. Above the Ek- 
mann layer, the flow consisted of concentrated vortices having 
axes approximately parallel to the rotation axis and extending 
throughout the depth of the fluid above the Ekmann layer. Hop- 
finger, Browand, and Gagne observed isolated propagating 
waves traveling along the axes of individual vortices. They used 
the phrase rotation-dominated rather than quasi-geostrophic to 
describe the turbulent velocity field. 

The effects of rotation on turbulent shear flows have been 
analyzed by Bertoglio (1982) using rapid distortion theory. He 
found that Coriolis forces induced by rotation about an axis 
normal to the plane of the mean shear had a stabilizing or 
destabilizing influence on the turbulence, depending on the 
sense of rotation. Bardina, Ferziger, and Rogallo (1985) used 
large eddy and direct simulations to analyze the effects of uni- 
form rotation on homogeneous turbulence. Their numerical sim- 
ulations indicate that the predominant effect of rotation is to 
decrease the rate of dissipation of the turbulence, and to increase 
the length scales, especially those along the axis of rotation. 
They showed that it was possible to duplicate the phenomena 
observed in the experiments of Wigeland and Nagib (1978). 
They demonstrated that the increase in the decay of turbulence 
observed in some cases by Wigeland and Nagib is due to inter- 
actions between the rotation and the wakes of the turbulence- 
generating grid which modifies the initial conditions in the ex- 
periments. Cambon and Jacquin (1989) studied the anisotropic 
effects induced by solid-body rotation on homogeneous turbu- 
lence by applying an eddy-damped quasi-normal Markovian 
model to evaluate the triple correlations, which allows aniso- 
tropic effects to be taken into account. A direct numerical simu- 
lation of the decay of initially isotropic turbulence in a rapidly 
rotating frame shows that the turbulence remains essentially 
isotropic during the major part of the decay (Speziale et al., 
1987). They found that the rapid rotation has the primary effect 
of shutting off the energy transfer; consequently, the turbulence 
dissipation is substantially reduced. The effects of uniform rOta- 
tion is included in a single-point model for initially isotropic 
turbulence by Mansour et al. (1991). The effects of rotation 
on turbulence have been reviewed recently by Hopfinger and 
Linden (1990). 

The effects of streamline curvature on turbulent shear flows 
has been studied by Castro and Bradshaw (1976), Townsend 
(1980), Muck, Hoffmann, and Bradshaw (1985), Hoffmann, 
Muck, and Bradshaw (1985), and Hunt, Leibovich, and Rich- 
ards (1988). Castro and Bradshaw (1976) made extensive one- 
point measurements of the turbulence structure in a highly 
curved mixing layer bounding a normally impinging plane jet 
with an irrotational core. They found that the Reynolds stresses 
decreased in the region of high stabilizing curvature and then 
increased rapidly further downstream, overshooting the plane 
layer values before finally decreasing. Townsend (1980) dem- 
onstrated that the behavior of the ratio of the shear stress to the 
turbulence intensity observed by Castro and Bradshaw (1976) 
in a curved mixing layer could be reproduced qualitatively using 
rapid distortion theory without any difficulty. He suggested that 
the curious behaviour of the stress ratio was due to inertial 
waves that can propagate in rotationally stable flows. To illus- 
trate this, he considered the effect of solid-body rotation on 
turbulence with an initial Reynolds shear stress. He obtained a 
closed-form solution of the rapid strain equations for this simpli- 
fied model, and showed that the Reynolds shear stress goes 
through damped oscillations. Townsend (1980) also studied 
the irrotational distortion of turbulence for an axisymmetric 
constant-circulation mean flow along a curved path. Muck, 
Hoffmann, and Bradshaw ( 1985 ) studied the response of a well- 
developed turbulent boundary layer to suddenly applied convex 
surface curvature, using conditional sampling techniques. In a 
companion paper, Hoffmann, Muck, and Bradshaw (1985) 
studied the response of a turbulent boundary layer to suddenly 
applied concave surface curvature. Their main conclusion was 
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that the effects of convex (stabilizing) curvature and concave 
(destabilizing) curvature on turbulent boundary layers was to- 
tally different. Mild convex curvature tends to attenuate the pre- 
existing turbulence without producing large changes in statisti- 
cal-average eddy shape. Concave curvature, on the other hand, 
results in the generation of longitudinal vortices, together with 
significant changes in the turbulence structure. Hunt, Leibovich, 
and Richards (1988) used an asymptotic analysis to study turbu- 
lent shear flows over hills with low slopes. They divided the 
flow into two regions, an outer and an inner region. The outer 
region was further divided into an upper and a middle layer, 
while the inner region was divided into a shear-stress layer and 
an inner surface layer. They derived analytical solutions for the 
inner region. 

In this paper, the turbulence structure in the entry region of 
a curved pipe is examined. The turbulence is subjected to a 
rapid influence of the centrifugal forces instead of the mean- 
flow distortion. The turbulence is inhomogeneous along the 
mean flow direction. The physical model consists of a short 
straight pipe followed by a curved section so that the displace- 
ment effects of the boundary layer is negligible. A homogeneous 
and isotropic turbulence in the straight pipe is generated slightly 
upstream of the entrance of the curved pipe. The scalings re- 
vealed by the perturbation solutions show that turbulent diffu- 
sion and dissipation induced by the centrifugal forces are 
O ( 3 s ) : ,  where /3 is the ratio of the convection time to the 
turbulent turnover time. This implies that the linearization is 
proper only when /3s ~ 1, which agrees with the condition 
previously established for RDT (Batchelor, 1953; Hunt, 1973). 
Even though the analysis has not been carried out to include 
the distortion of the mean flow by the Reynolds stresses, which 
are treated as smaller-order terms, the model can be improved 
up to 0(/3s) 2 by following the expansion procedure outlined in 
the paper. Two curvature effects can influence the flow develop- 
ment. One is the geometric effects due to the variation of curva- 
ture on the cross section of the pipe. This is the factor which 
has been extensively used to correlate the turbulence data for 
curved flows. It is important to match the curvature ratio in 
order to satisfy the geometric similarity. Second is the direct 
effect of the centrifugal forces induced by the circular path of 
the mean flow. This effect on turbulence, which has so far been 
overlooked, is the focus of the present paper. As shown by 
Dean (1927, 1928), the effect of the centrifugal forces ensures 
the dynamic similarity of the flows along a curved path. 

The mean flow analysed in Section 3 is for the model which 
consists of a short straight section before the curved pipe, as 
shown in Fig. 1. The velocity profile at the entrance to the 
straight pipe is taken to be uniform. The boundary layer dis- 
placement effect on the core flow is small in the entrance region 
of the pipe and is, therefore, not considered. Thus, the mean 
velocity profile in the core of the pipe remains uniform. In this 
respect, our model differs from the analysis of Townsend 
(1980) and Hunt et al. (1988), who considered a mean velocity 
gradient in their analysis. The impact of this difference in the 
mean flow is discussed in the Appendix, where the role played 
by the mean flow in the production of Reynolds stresses is 
analyzed. Two types of upstream influence on the turbulent flow 
exist because of the presence of the curved pipe: one is induced 
by the mean pressure field and the other is due to pressure 
fluctuations. Since the range of their influence is rather short 
and their magnitudes are exponentially small, these effects are 
indicated by "exp" so that the analysis can concentrate on the 
more profound effects of the centrifugal forces on the turbulence 
structure in the curved pipe. Consequently, the current analytical 
results are also valid for a curved pipe, connected to a large 
flow chamber, if the velocity profile at the pipe entrance is 
approximately uniform. 

In Section 4, grid turbulence whose scale, 1, is smaller than 
the radius of the pipe is considered. The analysis is carried out 
for the core region of the pipe and is not valid at a distance 

O( 1 ) from the pipe wall. Thus, our results cannot be compared 
with the turbulent boundary layer measurements of Muck, Hoff- 
mann, and Bradshaw (1985) and Hoffmann, Muck, and Brad- 
shaw (1985) for flow over slightly curved surfaces. The results 
of our analysis are not limited to circular pipe cross section, 
and can be applied to any cross-sectional shape or to external 
flows along a circular path if the mean velocity profile is uni- 
form, as in the region outside the turbulent boundary layer on 
a curved surface. Higher-order rational expansions can be de- 
rived for the mean flow as well as the turbulent quantities as 
outlined in this section. This may extend the theory to a larger 
domain by including some nonlinear energy-cascade processes 
in the model. In this paper, however, only the leading-order 
terms of turbulence are obtained. Thus, the current model is 
identical to RDT. The key centrifugal force effect is to turn the 
principal Reynolds stresses 45 deg on the plane on which the 
centrifugal forces act and of the mean-flow direction. The impli- 
cations of the present findings are then summarized and possible 
extension of the current results to a curved turbulent flow with 
variable curvature is discussed in Section 5. 

Our analysis indicates that under the dynamic influence of 
centrifugal forces, an initially isotropic turbulence in the core 
region of a curved pipe becomes anisotropic due to linear ef- 
fects. In this aspect, the effects of centrifugal forces differs from 
that of Coriolis forces due to solid-body rotation. Coriolis forces 
due to uniform rotation act on an initially isotropic turbulence 
only through nonlinear interactions, and pure linear effects in- 
fluence the double correlations only if the turbulence is initially 
anisotropic (Bardina et al., 1985; Cambon and Jacquin, 1989). 
This difference between the effects of centrifugal and Coriolis 
forces may be traced to the difference in the mean velocity 
profiles in the two cases. The mean flow plays an important 
role in the production of Reynolds stresses. In the case of solid- 
body rotation, if the turbulence is initially isotropic, there is 
no linear mechanism to generate Reynolds stresses and the 
turbulence can become anisotropic only through nonlinear inter- 
actions. On the other hand, if the mean velocity profile is uni- 
form, as in the core of a curved pipe, centrifugal forces can 
generate Reynolds shear stress through linear effects. This is 
discussed in detail in the Appendix. 

2 F o r m u l a t i o n  

The flow through a pipe of circular cross section, radius a, 
that is straight for s < 0 but at s = 0 suddenly bends to form 
an arc of a circle of radius R (see Fig. 1) is considered. If the 
axial and the radial distances are measured by a ' s  and a ' r ,  

respectively, and the velocity components are normalized by 
the mean axial velocity W0 of the flow and the pressure by 
p W  o 2, then the Navier-Stokes equations in toroidal coordinates 
take the form (see Yao and Berger, 1975), 

O___u + u + _10uu + j F  Ow + a ( u  sin ~0 + v cos ~b)] O, 
Or r r oy [ O s  J 

Ou Ou v Ou Ou v 2 
" ~  + u Or + - - -  + Jw  aJw  2 sin ~0 

r o y  Os r 

_ O p  + O(Re 1), 
Or 

Ov Ov v Ov Ov uv 
- -  + u - -  + - -  + J w  - -  + - -  - aJw  2 cos 0 
Ot Or r Oy Os r 

lop 
rOy 

+ O(Re l), 
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Ow v Ow Ow 
Ow + u - -  + + Jw + aJw ( u sin ~0 + v cos ~0) 
Ot Or r Oy Os 

= _ j O p  + O(Re_,)  ' (2.1) 
Os 

where J = 1/(1 + ar  sin 0 ) ,  a = a /R ,  Re = Woa/v, and 
p and v are the density and kinematic viscosity of the fluid, 
respectively. The Navier-Stokes equations in cylindrical polar 
coordinates for the upstream straight pipe (s < 0) can be ob- 
tained by setting a = 0 in Eqs. (2.1). 

The flow quantities in (2.1) are expressed in terms of 
their mean and fluctuating components, ~b = • + /3¢', where 
/3 = qo/Wo. The turbulent kinetic energy of the straight- 
pipe flow is q0 = (ko) m = [ u t 2  "}- 1)'2 + w ' 2 ]  I/2 and (u ' ,  
v ' ,  w'  ) are the dimensional turbulent velocities. Since it will 
not cause confusion, the prime associated with the fluctuation 
quantities will be dropped in order to simplify the notations 
in the following analysis. The equations describing the mean 
flow, obtained from (2.1),  are 

O_if_ + U + ! O_V + j [  OW + a ( U  sin 0 + Vcos 0 ) ]  = 0, 
Or r r Oy LOs  J 

OU V OU OU V 2 
U - -  + - - -  + JW aJW 2 sin O 

Or r Oy Os r 

OP 
_ _ _ _  + O ( R e - t , / 3 2 ) ,  

Or 

U O__V + V O___V + JW OV + U_.__V _ aJW2 cos 0 
Or r Oy Os r 

10P 
_ + O ( R e - l , / 3 2 ) ,  

r Oy 

U O__W_ + V O._._W_ + JW OW + a J W  ( U sin tp + V cos O) 
Or r Oy Os 

= _ j  OP + O(Re_~,/32) . (2.2) 
Os 

It can be concluded from the above equations that the straight- 
pipe flow forms the zeroth-order solution of (2.2) if s "~ Re/ 
0 1/2, where D = (a  Re) In is the Dean number (Dean, 1927, 
1928). Within this region, the displacement effect of the bound- 
ary layer is small. In Section 4, the effects of the centrifugal 
forces are shown to be characterized by a set of linearized 
Navier-Stokes equations if 3s ~ 1. Since the physical meaning 
of 13 is the ratio of the convection time to the turbulent "turn- 
over" time, the present analysis coincides with that of RDT. 
Equations (2.2) indicate that the influence of the Reynolds 
stresses on the mean flow is of O(3s) 2. It can also be shown 
that turbulent diffusion and dissipation induced by the centrifu- 
gal forces are small and are of O(3s ) .  Therefore, the solution 
for the problem can be expanded in a double series of a and 
/3. The leading term is the solution for a straight-pipe flow and 
the dominant effects of the centrifugal forces are described by 
the rapid distortion theory in the entry region of a curved pipe 
for s < 1 /3  and s < Re/D in. Therefore, the primary concern 
of this paper is the analysis of the effects of centrifugal forces 
on turbulence. 

Explicitly, the expansions are assumed to be 

W = 1 + a W  l sin ~0 + O(a 2,/32), 

U = aUl sin ip + O(a 2,/32), 

V = aV, cos ~ + 0 ( a  2,/32), 

P = P~ + aPi sin ip + O(a 2,/32), (2.3) 

for the mean flow and 

W = W s + OgW 1 + 0(O/2, /~),  

u =  us + oeu~ + O(a 2 , 3 ) ,  

v = vs + av~ + O(a 2 , 3 ) ,  

P = Ps + apl + 0 ( a  2,/3), (2.4) 

for the fluctuating components, where the subscript " s "  is used 
to denote the quantities associated with straight-pipe flows. Both 
the mean-flow and the fluctuating components associated with 
the straight-pipe flows are known. Taylor's hypothesis is appli- 
cable to the fluctuating quantities in the straight pipe; therefore 
they are function of (r,  O, s-t). The quantities with the subscript 
" 1 "  are due to the centrifugal forces and can be determined 
and expressed in terms of the known straight-pipe solutions. 

The equations for the turbulent fluctuating components can 
now be obtained by subtracting (2.2) from (2.1). The equations 
of 0 ( a ) ,  which are consistent with (2.3)-(2.4) ,  are 

0u_._21 + u~ + 1 Or__ ! + Ow____ 2 

Or r r Oy Os 

{( ow ) }  
= r s i n ¢ - ~ - - u ~ s i n ~ 0 - v ,  cosq0 H(s)  , 

_ _  __ @1 ff Our Oul + Oul _ 2w, sin tOH(s) - + r sin ~O 
Ot Os Or [ Os 

[ (  Ou, OUl Ou, OU, ~ 
- L \ U ' - ~ +  u , - ~ - +  W , - ~ - +  w, Os ] s i n $  

l( Us ) ]) 
+ -  V~ + Ulv, - 2V~v, c o s 0  

r ~ 

Or----! + Or--'! -- 2W, cos qJH(s) = - 10p__2 
Ot Os r Oy 

Ors 
+ rs inqJ  0---s 

( OUs 01) s U 1 - Vi  
- U l ' ~  + W,~s + - r  vs) sin 0 

OV~ 
+ us Or 

+ - - - -  + W s - -  + * cos ~b , 
r 0~0 Os 

Ow----! + Ow----2 + (us sin ~0 + v, cos ~ ) H ( s ) 
Ot Os 

O p l + { r s i n o O W s  [ (  Ows OW, 
- -  o-7 W -  v,  -g-  + . ,  o-7 

Ows OWl 
+ W l - ~ - + w ,  Os ] s i n 0  

l(0w  ) ]} 
+ -  V1 + Wlv, c o s 0  , (2.5) 

r 

where H(s )  is the Heaviside step function. The above equations 
reveal that the turbulence field is distorted, to first order, by 
two elements: the centrifugal forces and the effect induced by 
variable curvatures. The terms within the curly brackets on the 
right-hand side of the above equations represent the effect of 
variable curvature. Among them, the most important curvature 
effect is the energy produced by induced mean flow motions 
(terms in square brackets). Turbulent diffusion and dissipation 
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are of 0 (3)  in the transport equations governing the fluctuating 
quantities. Therefore, they have no effects on the solutions 
which is larger than 0(fl) (see Eqs. (2.4)). The variable-curva- 
ture effects ensure the geometric similarity and are negligible 
for small turbulent eddies or for slightly curved pipes. In the 
following analysis, we focus on the effect of the centrifugal 
forces to ensure the dynamic similarity of the flows. In Sections 
3 and 4, it will be shown that the disturbances induced by 
the centrifugal forces can propagate upstream because of the 
"pressure" effect. Also, the energy production by the induced 
mean flow decays fast and is negligible compared with the 
effect of centrifugal forces. 

3 Mean Flow 
The equations describing the first-order mean flow can be 

obtained by substituting (2.3) into (2.2) and collecting terms 
of 0 (a ) .  They are 

OUi U l -  Vl OWl 
- - + - - +  = 0 ,  
Or r Os 

OUl OPi 
- -  = H ( s )  - - - ,  

Os Or 

OVl Pi 
- -  = H ( s )  - - - ,  
Os r 

OWl OPl 

Os Os 
(3.1) 

Eliminating Ui, 1,'1, and Wl among the above equations results 
in 

02pi 10PI  P1 OzPt 
Or 2 + + - -  = 0. (3.2) r Or r 2 OS 2 

Since (OUl/Os) = 0 at r = 1 (slip condition) and (OV~/Os) = 
0 at r = 0 (symmetry condition), the boundary conditions for 
Pt can be determined from the second and third equations of 
(3.1) and are 

OPl 
- - = H ( s )  at r =  1, and P~ = 0  at r = 0 .  (3.3) 
Or 

It should be noted that the slip condition imposed at r = 1 is 
equivalent to setting Ut = 0 at r = 1. Applying Fourier trans- 
form in the sense of generalized functions (Lighthill 1970), it 
can be shown that the solution of (3.2) satisfying (3.3) is 

I 

11 ( Xr ) 
× e x p ( - i h s ) d k  (3.4) 

x/0(x) - / , ( x )  

where the l 's  are modified Bessel functions and 6 is the Dirac 
delta function. U~, Vi, and W~ can then be calculated from (3.1) 
using (3.4). It is easier to interpret the physics of the flow by 
examining the asymptotic expansion of (3.4), which is 

P l = r H ( s ) - s g n ( s )  r -  e x p ( -  8 ~ s ) ,  (3.5) 

where sgn (s) denotes the sign of s. Equation (3.5) clearly 
shows that the first-order mean flow induced by the centrifugal 
forces consists of two parts. First, the pressure gradient is estab- 
lished in the curved pipe in order to balance the centrifugal 
forces. Secondly, the induced secondary flow (exponential de- 
cay term) exists within three radii both in the upstream (s < 
0) and the downstream (s > 0) regions if one uses 1 percent 

as the criterion to determine the penetration depth. The magni- 
tude of the induced secondary flow drops below 5 percent when 
s > 2. This agrees very well with the measurements of Ito 
(1960) who shows that the secondary flow exists before the 
fluid enters the curved pipe. Since the induced secondary flow 
is only important within such a small region, it is ignored in 
the following analysis. This allows the discussion to concentrate 
on the more profound effects of the centrifugal forces on the 
turbulence structure in curved-pipe flows. Including the induced 
secondary flow in the analysis will not present any extra diffi- 
culty, but the algebra will be more tedious. 

It is convenient to summarize the mean flow before solving 
(2.5) for the fluctuating components. The mean flow becomes 

W = 1 + a exp + O(ot 2, /32), 

U = a e x p  + O(a  2,32),  

V = a exp + O ( a  z, /32),  

P = constant + a [ r H ( s )  + exp] + O ( a  2, 32) ,  (3.6) 

where "exp" denotes the exponentially small terms. It is worth- 
while to note that the turbulent flux terms in (2.2) are of 0(/32). 
Therefore, the mean flow can be accurately calculated up to 
0(/32 ) by incorporating the Reynolds stresses determined in 
Section 4 into the mean flow analysis. 

4 Turbulence 
Substituting (3.6) into (2.5) and neglecting the exponentially 

small terms results in 

Ou___2 + u_! + _1 Or__ 2 + Ow___! = O, 
Or r r Oqs Os 

O'u---2 + Ou--..2 - 2ws sin OH(s)  - Opl 
Ot Os Or 

00-----2 + Or--2 - 2w, cos OH(s)  = - _l Op_.2 
Ot Os r OrS 

Ow---2 + Ow----! + [u, sin ~0 + v, cos ~O]H(s) = - Op---2 (4.1) 
Ot Os Os 

If the turbulence scale "1"  is small relative to the radius of 
the pipe, the turbulence structure in the core of the pipe is not 
influenced by the boundary conditions at the wall. It is conve- 
nient to use Cartesian coordinates to describe the solution for 
this limiting case (see Fig. 1). This is because the turbulence 
in the core of the pipe is homogeneous in x and y. Accordingly, 
we introduce stretched coordinates J~, y, ~-, -f defined by 

rsin~0 = rosin~Oo + e~, rcos~0 = rocos~bo-  ey, 

s =  eg-, t = d ,  (4.2) 

where e = 1/a is a small parameter, and (r0, qJo) is a reference 
point in the cross-sectional plane of the pipe. The corresponding 
Cartesian components of velocity are related to the toroidal 
components by 

f f = u s i n ~ p  + v c o s ¢ ,  

= - u c o s 0  + v s i n q J ,  

w = w. (4.3) 

We assume that the turbulence upstream of the bend is statisti- 
cally stationary and homogeneous. Thus, it can be Fourier ana- 
lyzed in the sense of generalized functions as 

ff~.i(r, t) = f~= S,(K) exp[i(e 'Krro + K , ~  

+ KzY+ K3~-- Kff)]dK, (4.4) 
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where K~ = Kl sin ~o -- Kz cos 00, K denotes (Ki, K2, K3) and 
K~ is a dimensionless wave number defined in terms of the 
dimensional wave number k~ as K~ = lk~. Here, we have used 
the index notation (x~, x~, x3) to denote (x, y, s) and (u,.~, u~.z, 
u,..3) to denote (ff~, g,, ~ ) .  

Since the turbulence is stationary in time, the turbulence be- 
comes inhomogeneous in the streamwise direction due to the 
sudden application of centrifugal force at s = O. The local 
turbulence can be expressed in terms of the spectra of the up- 
stream turbulence through transfer functions Q~ (s-, K),  Q~(s-, 
K),  Q3(~, K),  Q~,(s-, K) ,  M, (~-, K) ,  M~(y, K),  M3 (s-, K) and 
Mp(S-, K) as 

ff,(r, t ) ]  = ,J-= Ql(S-, K ) ]  
V~(r, t) [ 1"~ Qz(s-, K) S~(K) 

K) O,(r ,  t) [ Q3(~-, 
ff,(r,  t) J a,,(s-, K) 

× exp[i(e-~K~ro + K ~ +  K ~ y -  K~) ]dK 

M~ (~-, K) [  

f ~  K)  S~(K) 
Mz(S-, 

+ e M3(S-, K)  
M,, (.r, K) 

× exp[i(e-~K,.ro + K ~  + K 2 ~ -  Kff)]dK. (4.5) 

The transfer function for pressure, Q~,(,~-, K),  is obtained by 
solving 

(O ~ - K~)Qp = 2iK~ exp(iK~s')n(~) (4.6) 

where 

K,z = [K~ + K~]t/z, and DZQ~, = d2Q 
dy2 • 

Equation (4.6) is derived by the standard procedure of taking 
the divergence of the momentum equation and using the conti- 
nuity equation in (4.1). The pressure perturbation must vanish 
far upstream of the bend. Thus, Eq. (4.6) has to be solved 
subject to the boundary condition S---* -0% Q, ~ 0. The solution 
of (4.6) which remains bounded as s ' ~  ~, may be expressed 
as  

2iKi 
Qp(s', K)  - KZ exp(iK3~-)t-l(~-) 

+ Ki[K3 + iKj2 sgn (s-)] exp(--Klzl~-I), (4.7) 
Ki2K 2 

where K = [K 2 + K 2 + K~] 1/2. Equation (4.7) indicates that 
the sudden change in curvature of the pipe at s- = 0 has an 
upstream influence on the fluctuating pressure, which decays 
exponentially upstream of the bend. The region of upstream 
influence is longer for the larger eddies, and is negligible for 
the smaller eddies. 

Once Qp has been determined, the transfer functions for the 
fluctuating velocity components may be obtained by solving the 
momentum equations: 

( D - iK3)Q~ = -iK~Qp + 2 exp(  iK3~-)H(.~-), 

(O - iK3)Qz = - iKzQ, ,  

( D - iK3 ) Q3 = -DQp.  (4.8) 

The associated boundary conditions are, as s -~  - ~ ,  Q~ ~ 0, 
Q2 ~ 0, 03 ~ 0. The solution is given by 

Ql(g; K) 

[ ( 1~"/ Kz~'~- 4iK21K3] K 4 = 2 1 - "T;TJs exp( iK3g3g(g)  + exp, 

Q2(g, K) = [-/2K1Kz S-+ 4iKIKzK31 ] exp(iK3~-)H(~-) + exp, 
K 4 J 

Q3(~-, K) = - L[ 2K,K3K 2 g +  2iK,(K~4_- K~2)] 

× exp(iK3~-)H(~) + exp. (4.9) 

The transfer function, MF(,V, K) ,  is obtained by solving 

(D 2 - K~2)Mp = - iK3 exp(iK3g-)H(f) ,  (4.10) 

subject to the boundary conditions g-~ -o% Mp ~ O. The solution 
of (4.10) which remains bounded as s-~ oo is given by 

iK3 
M,,(s-, K) = - ~  exp(iK3~)H($) 

_ K3[K3 + iKl2 sgn (s)] exp(_Ki2ls_l). (4.11) 
2K12K 2 

The transfer functions, Mi (g, K) ,  are then determined by solv- 
ing the momentum equations: 

(D - iK3)ml = - i K ,  Mp, 

(D - iK3)M2 = -iK2M,,,  

(D - iK3)M3 = -DMp - exp(iK3g-)H(ff). (4.12) 

The solution of Eqs. (4.12), subject to the boundary conditions 
. ~  -c% M1 --* 0, may be expressed as 

2iK,K~] KiK3 $-+ exp(iK3.~')H(~-) + exp, 
M , ( ~ , K )  = L K2 K4 J 

M2(~, K) = [ K2K3 2iK2K~] exp(iK3~-)H(~) + exp, 
L KZ ~-+--~-j 

[ ( K ~  ) i K 3 ( K ~ - K ~ 2 ) ]  
Ms(g-, K) = ~_ - 1 ~r+ ~Z 

× exp(iK3S)H(S-) + exp. (4.13) 

4.1 Velocity Correlations. The transfer functions (4.9) 
and (4.13) are used to calculate the correlations in terms of 
upstream spectrum 

1 
f~® R~.ij(x, 0) e x p ( - i K . x ) d x ,  qS~.0(K ) = (2r)3 

where R~.u(x, T) = ff,.~(r, t)ff, j ( r  + x, t + ~-) is the velocity 
correlation in the straight pipe. In the following, only one- 
point correlations without time delay will be presented. The 
correlations may be expanded as a perturbation series in a: 

Ro : Rs.6 + OtRl.q + . . . .  

where 

Ri./: = ff~.i(r, t)ffL/(r, t) + fft.i(r, t)ff~j(r, t) ,  (4.14) 

is the correction due to centrifugal forces. Substituting Eqs. 
(4.4) and (4.5) into Eq. (4.14), and using the orthogonality 
relation of the Fourier modes 

S~(K)S:*(K')  = ~b~.0(K)6(K - K ' )  (4.15) 

where 6 is the delta function of Dirac and the asterisk denotes 
the complex conjugate results in 
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t ~ 
Rl.ij = e J_= [Q:(~-, K) exp( - iK3Y) f s . i3 (K)  

+ Qi*(~, K) exp(iK3~-)f~.3j(K)]dK 

f + e [M~(~-, K)  exp(-iK3~-)fs,~x(K) 

+ M,*(~-, K)  exp( iK3~-) f , .v(K)]dK.  

In order to simplify the calculations and elucidate the physics 
of the problem we now assume that the upstream turbulence is 
isotropic, so that 

E ( K )  (KZ6o. K~Kj), (4.16) 
~b~.~:(K) = 47rK----- 7 

(Batchelor 1953), where E ( K )  is the dimensionless form of 
the energy spectrum function. The velocity correlations become 

Rl,~x = Rl.yy = Rl,s~ = Rl.xy = Rl.ys = O, 

R,.~ 7 e~-H($-). (4.17) 

Equations (4.17) indicate that at order a,  the only effect of the 
centrifugal force is to generate turbulent shear stress in the x-s 
plane. Since the mean flow through the pipe remains unchanged, 
there is no mechanism to stretch or squeeze the fluid elements. 
Thus, the turbulent normal stresses in the x, y, and s directions 
do not change. The trace of the velocity correlation tensor, 
R~ + Ryy + R~, represents the kinetic energy of the turbulent 
fluctuations. At order a,  there is no mechanism to transfer en- 
ergy to the turbulent fluctuating velocity field. Hence, the turbu- 
lent kinetic energy remains unchanged. Since there is no compo- 
nent of the centrifugal force acting in the y-direction, the turbu- 
lent shear stresses in the x-y and y-s planes are zero. Thus, 
under the influence of centrifugal force, the principal axes of 
Reynolds stresses become inclined at an angle of 45 deg to the 
x and s axes. 

It may be noted that although Eq. (4.17) predicts no change 
in the intensity of the turbulent velocity fluctuations in the x, y, 
and s directions, in a real flow situation, the turbulence intensity 
decays due to the dissipation of turbulence kinetic energy, as 
observed in experiments on the effects of rotation on turbulent 
flows (Ibbetson and Tritton, 1975; Wigeland and Nagib, 1978). 
However, Townsend (1970, 1980) and Maxey (1982) have 
demonstrated that RDT can predict the ratio of the Reynolds 
stresses to the local turbulence kinetic energy fairly well even 
in cases where the turbulence is decaying. Thus, the range of 
applicability of the RDT predictions (4.17) can be increased 
by taking the ratio of the Reynolds stresses to the turbulence 
kinetic energy. 

Equations (4.17) reveal that an initially isotropic turbulence 
becomes anisotropic due to the linear effects of centrifugal 
forces. It is worthwhile to note that in the closely related prob- 
lem of solid-body rotation, an initially isotropic turbulence be- 
comes anisotropic only through nonlinear interactions, and pure 
linear effects influence the double correlations only if the turbu- 
lence is initially anisotropic (Bardina et al., 1985; Cambon and 
Jacquin, 1989). As discussed in the Appendix, this difference 
between the effects of centrifugal forces due to streamline cur- 
vature, and the effects of Coriolis forces due to solid-body 
rotation is due to the difference in the mean flow, which plays 
an important role in the production of Reynolds stresses. 

The diagonal components of the Reynolds stress tensor along 
the principal directions are given by 

Ree = ½ [1 + ~ aeg/-/(~)] , 

R~, = ½ [1 - 126 aeS/-/(S-)] , (4.18) 

where ~ and ~ are the principal axes of Reynolds stress on the 
x-s plane, inclined at angles of 45 deg and 135 deg, respectively, 

_ _  m 

= 2 and u¢ and uo are the compo- to the x-axis, R~¢ = u~, R,o uo, 
nents of the turbulent velocity fluctuations in the ~ and ~7 direc- 
tions, respectively. Equation (4.18) indicates that under the 
influence of centrifugal forces, the intensity of fluctuations of 
the turbulent velocity components is increased in the ~ direction, 
and reduced in the r 1 direction. Downstream of the bend, the 
Reynolds stresses R¢¢ and Roo increase linearly due to the contin- 
uing distortion of the turbulence structure under the influence 
of centrifugal force. The linear growth of the effect of centrifu- 
gal forces in (4.18) is a consequence of ignoring the nonlinear 
energy transfer and dissipation in RDT. As discussed before, 
this limits the model for/3s ~ 1. Further downstream beyond 
the validity range of the current model, the nonlinear process 
will restrict the linear growth; then, turbulence will reach a new 
equilibrium state. The true range of validity of the current results 
can not be determined without comparing with experimental 
data, which are not available at present. Equation (4.18) indi- 
cates that the perturbation series breaks down when ae~-= as 
becomes O(1) ,  that is, when s becomes O (a -1 ) ,  or in other 
words, when the distance in the streamwise direction is of the 
order of the radius of curvature of the pipe. For a slightly curved 
pipe, a ~ 1, which implies that a - l  >~ 1. Thus, this condition 
is not too restrictive. Equation (4.18) also indicates that the 
dynamic effect of centrifugal forces is independent of the radius 
of the pipe and the size of the turbulent eddies. It is worth 
noting that the model in the second region of the pipe entrance is 
identical to the current analysis as discussed in the Introduction. 
Thus, the perturbation results are limited by much less restric- 
tion and can be applied as long as s ~ 1/a  LS. 

4.2 Pressure-Strain-Rate Correlations. The pressure- 
strain-rate correlation 

t ) [  0if/ ( r ,  t ) +  ~ 2  ( r ,  t ) ]  (4.19a) 
tri~ = p (r ,  L Oxj oxi 

may be written as a perturbation series in a: 

cr U = acrl.o + . . . ,  (4.19b) 

where 

~rl.0 = p , ( r ,  t) [_---U ~ ( r ,  t) + ( r ,  t) (4.19c) 

is obtained by substituting (4.4) and (4.5) into (4.19c) and 
using (4.15). This gives 

O'l,ij = --~5 f_~ Qp(g-, K )  e x p ( - i K 3 ~ - ) [  i I ~ f , , i 3 ( K )  

+ iKi~ ,3 j (K)]dK - e f ~  Mp(~-, K) exp(-iK3g-) 

× [iKjf, , , ,(K) + iK, f~ . l j (K)]dK.  

For an isotropic upstream turbulent velocity field, the pres- 
sure-strain-rate correlations are given by 

O ' l , x x  = O' l , yy  ~ O' l , ss  -~  Crl ,xy  ~ O' l , y  s ~ O ,  

al,x, = - ~0 H(~-). (4.20) 

Equation (4.20) indicates that crxs tends to reduce the magnitude 
of Rxs induced by the action of centrifugal force. 

The pressure-strain-rate correlations, which can hardly be 
measured at present, play an important role in models of turbu- 
lence in which the Reynolds stresses are determined from the 
solution of transport equations for these variables (Launder, 
Reece, and Rodi 1975; Launder, 1975; Gibson and Rodi, 1981 ). 
Launder et al. (1975), Launder (1975), and Gibson and Rodi 
(1981) have approximated the pressure-strain-rate correlation 
tensor, ~r 0, as 
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where 

= (I) + ~r~), (4.21a) o i j  cr ij 

O'}j 1) = - C  1 ~ u i u  j - ~ q~6 o , (4.21b) 

and 

cr~f ) = - C 2 (  Po - ~P60). (4.21c) 

Here q2 = u~u~ represents (twice) the turbulence kinetic energy, 
ed is the rate of dissipation of turbulence kinetic energy, P~j and 
P are the rate of production of Reynolds stress, u~u~, and turbu- 
lence kinetic energy, (½)q:, respectively, and the coefficients 
C~ and C: are taken as constants in high Reynolds number 
turbulence. The term ~r })~ represents the contribution of nonlin- 
ear turbulence interactions to the pressure strain-rate correla- 
tions and is due to Rotta (1951). It is based on the hypothesis 
that the rate of return of anisotropic turbulence to isotropy is 
prqp_0rtional to the local level of anisotropy. The ratio 
(½)q2/ed in Eq. (4.21b) represents a characteristic decay time 
of the turbulence. The term ~r~ ~ represents the contribution to 
the pressure strain of the linear interactions of the turbulence 
field with the strain rate of the mean flow, and was first proposed 
by Naot, Shavit, and Wolfshtein (1970), as a replacement for 
Rotta's term. Launder et al. (1975) identified cry ) as the domi- 
nant term in a more general expression and combined it with 
~r}J ) to obtain good results for a number of simple free shear 
flows. Launder et al. (1975) considered only the interactions 
of the turbulence with mean shear. Launder (1975) extended 
the model to include the additional effect of buoyancy forces 
due to mean density stratification in a gravitational field. He 
suggested that in the presence of body forces, the rate of produc- 
tion of Reynolds stress, Po, should be taken to stand for the 
total production of ~ due to the combined effects of shear 
and body forces. For small-scale turbulence in the core of a 
curved pipe, these production terms are given by 

P .  = 4a~lu3 + 2aulu~,  

P= = O, 

P33 = - 2 a u ~ 3  - 2aulu~,  

P i 3  = 2olu32 - o~u l  2 + a ( u ~  - u ~ u 3 ) ,  

P12 = 2 a u ~  + o~u2u~, 

P 2 3  = - o g U l U 2  - O~NlU2U3, 

P = otulu3, (4.22) 

where variable curvature effects have been neglected. 
In the limit of rapid distortion, the approximate estimates of 

the linear (rapid) part of the pressure strain-rate correlation, 
cr I~ ), may be compared with the results calculated directly using 
rapid distortion theory. Such a comparison has been done by 
Maxey (1982) for turbulent shear flows. Using the values of 
uiu----~ predicted by rapid distortion theory for an initially isotropic 
turbulence to evaluate the production terms in Eq. (4.22), the 
values of ¢rlj z) are found to be 

~r( ~ O(a2) ,  xx 

~r(~) = O(a~) ,  y~ 

~r~p = 0 (o~ ) ,  

a(~) O ( a ~ ) ,  xy 

0-(2)  = O ( a 2 ) ,  ys 

Cz _¢2) - a  + O(oe2). (4.23) u xs = - -  
3 

A comparison of Eqs. (4.20) and (4.23) reveals that in the limit 
of rapid distortion, the pressure-strain-rate correlations pre- 
dicted by the turbulence closure model of Launder et al. (1975) 
have the same form as those predicted directly from rapid distor- 
tion theory. In particular, if C 2 = 0.3, the value of cr!~ ) is 
identical to the value of cr~ predicted by RDT. 

4.3 Integral  Length Scales. The transfer functions (4.9) 
and (4.13) are used to calculate the integral length scales for 
the distorted turbulence. The integral length scales L0.t defined 
by 

Lo J 1 f ~  = = ff/(x)ffj(x + ret)dr ,  (4.24a) 
~.~ 

where e~ is the unit vector of the x~ coordinate axis, may .be 
expressed as a perturbation series in a: 

where 

Lo., = L}f.] + aL~j~,? + . . . .  (4.24b) 

ija - - -  ff~.i ( x ) ~ 0 ( x  + red dr (4.24c) 
Us,i Us,j 

is the integral length scale of the upstream turbulence in the 
straight pipe, and 

l i f o  ~ L~It ) - ffl.i (x)ff~.j(x + red  dr 
Us,i Us ,j 

+ ffLi(x)~.j(x + r e t ) d r -  L~OS,,LO ] , (4.24d) 

is the change in the integral length scale due to the effect of 
centrifugal forces. 

For an initially isotropic turbulence, the integral length scales 
are given by 

L(i) = 1 ( 1 )  / - ( 1 )  = f ( l )  j r ( l )  
11, L~22,1 ~ L~33,1 L ' I1 ,2  = £-~22,2 

r( l)  ,(1~ r( l )  t o )  0. (4.25) = t-J33,2 = /-'11,3 = L~22,3 = /-"33,3 

Equation (4.25) indicates that at order a there is no change in 
the integral length scales in the directions parallel to the x, y, 
and s-axes due to the effect of centrifugal forces. The major 
effect of centrifugal forces is to generate pure turbulent shear 
in the x-s plane; this does not affect the integral length scales 
in the x, y, and s directions. On the other hand, one would 
expect the length scales in the directions parallel to the principal 
axes of Reynolds stresses to change due to the distortion of the 
eddy structure induced by the turbulent shear stress generated 
by the effect of the centrifugal forces. In order to investigate 
this, we consider a coordinate system (.g~, Y2, Y3) where the .~2- 
axis coincides with the &-axis, and the axes & and ~3 are in- 
clined at angles of 45 and 135 deg, respectively, to the xl-axis, 
and calculate the integral length scales L¢~ defined by 

L~ a = = 1  I ~ tqu( r~t)dr,  (4.26) 
uiuj ~o 

where 

/go(r) = & ( x ,  t)aj(x + r,  t ) ,  

ai is the component of the turbulent velocity fluctuation in the 
-fi direction, and ~t is the unit vector in the .~ direction. For an 
initially isotropic turbulence, these length scales are given by 

Zjj.l = lj[1 + ~ ae~/-/(y) + O ( a Z ) ] ,  

L22.1 = lz[1 - ¼  ac~/-/(~-) + O(aZ)] , 

- ~ ac~H(~) + O(a2)]  L33.1 = 12[ 1 ~ 
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L.,2 = 1211 - ½ aesH(s-) + O(a2)]  , 

L22.2 = 11[1 + O(a2) ] ,  

L33,2 = 1211 + ½ aegH(g) + O(a2)]  , 

L,1.3 = 1211 + ~0 o~esH(~-) + O(a2)]  , 

= ' c~efH(g-) + O(cez)] L22.3 12[ 1 + a 

L33.3 = ll[1 - 3 aes-H(~-) + O(22)] , (4.27) 

where l~ is the longitudinal integral length scale for isotropic 
turbulence, and 12 = (½)l~ is the transverse integral length scale 
for isotropic turbulence. Equation (4.27) indicates that under 
the dynamic influence of centrifugal forces, the longitudinal 
integral scale, L~ ~.~, in the & direction increases and the longitu- 
dinal integral length scale, L33.3, in the Y3 decreases by an equal 
amount, while the longitudinal integral length scale, L=.2, in 
the Y2 direction remains unchanged at order c~. Thus, an initially 
spherical eddy becomes elongated in the & direction and flat- 
tened in the )?3 direction under the effect of centrifugal forces 
as it passes round the bend. The transverse integral length scales 
L22.1 and L33.1 in the & direction decrease due to an increase in 
the negative loop in the correlation spaces of/¢22(r, 0, 0) and 
/~33(r, 0, 0). Similarly, .the transverse integral length scales 
L11.3 and L22.3 in the g3 direction increase due to a decrease in 
the negative loop in the correlation space of/~H(0, 0, r) and 
/722(0, 0, r).  In the g2 direction, the transverse length scale 
L~.2 decreases, while L33.2 increases by an equal amount. These 
results show that the effect of centrifugal forces on the integral 
scales of the turbulence differs from that of Coriolis forces due 
to solid-body rotation. Coriolis forces due to solid-body rotation 
tend to increase the length scales in all directions, especially 
those along the axis of rotation (Ibbetson and Tritton, 1975; 
Wigeland and Nagib, 1978; Bardina et al., 1985). Centrifugal 
forces, on the other hand, do not change the longitudinal integral 
scale in the y-direction, which is the direction normal to the 
plane of curvature; the integral scales increase in the direction 
of one of the principal axes of Reynolds stress in the x-s plane, 
and decrease in the direction of the other principal axis. 

4.4 One-Dimensional Spectra. The transfer functions 
(4.9) and (4.13) are used to calculate the one-dimensional spectrum 

®0(~-, K3) = 2--~ N(x ,  y, s, t )~ (x ,  y, s, t + r)  

× exp(iK3r)dr, (4.28a) 

which may be expressed as a perturbation series in a:  

®~i(~-, K3) = ®,.0(K3) + o~®~.0(x-, K3) + . . . .  (4.28b) 

where 

1£ 
®,.i;(g3) = ~ ~.~(x, y, s, t)ff, j ( x ,  y, s, t + r )  

× exp(iK~r)dr (4.28c) 

is the one-dimensional spectrum of the turbulence in the up- 
stream straight pipe, and 

1 [ f ~ ( x , y , s , t ) f f l . ~ ( x , y , s , t + r )  OI'o'(S' K3) = 2-7 

X exp(iK3r)dr 

+ f ~  ffl.~(x, y, s, t)ffso(x, y, s, t + r)  

× exp(iK3r)dr] (4.28d) 
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is the change in the spectrum due to the effect of centrifugal 
forces. 

For an initially isotropic turbulence, the changes in the one- 
dimensional spectrum are given by 

®l.xx = ®l.yy = O1.+, = Ol,+y = Ol.y+ = 0, 

®~.x, = F(K3)~H(f) ,  (4.29) 

where 

1 f f  K~2 E((K~2 + K~)dK~2, (4.30) 
F ( K 3 )  = ~ ( K ~ 2  + K32) 2 

and E(K) is the dimensionless form of the energy spectrum 
function defined in Eq. (4.16). Equation (4.29) indicates that 
at order c~, the only effect of the centrifugal forces is to produce 
a change in the spectrum ®x,(K3). This result may be contrasted 
with the measurements of one-dimensional spectra obtained by 
Ibbetson and Tritton (1975) in experiments on turbulence in 
a rotating fluid. Ibbetson and Tritton (1975) found that the 
normalized distribution of the energy spectra of the azimuthal 
(streamwise) and vertical velocity components changed with 
time. Equation (4.29), on the other hand, shows that centrifugal 
forces do not induce changes in the energy spectra of the veloc- 
ity components in the x, y, and s directions. 

In order to evaluate the integral (4.30), it is necessary to 
know the form of the energy spectrum function E(K) over the 
whole wave number range. Here, E(K) has been taken to have 
the commonly observed form 

55 g~/aK4 
E(K) = - -  (4.31) 

27rr (g2 + K 2 )  17/6 ' 

where g2 = 0.558 (von Karman, 1948), which reduces to the 
Kolmogorov spectrum in the inertial subrange. Figure 2 shows 
the variation of F(K3) with K3 for the spectrum (4.31). For 
small wave numbers, F(K3) is nearly constant. In the large 
wave number range, the curve has a slope of --~, as expected. 
It may be noted that the changes in the power spectral density 

2 of the turbulent velocity fluctua- of the fluctuations u~ and u~ 
tions in the directions of the principal axes of Reynolds stress 

and ~7 are given by 

0~,~ = F(KOfH(g-), 

O,.~ = -F(K3)S-H(g). (4.32) 

Thus, the spectrum ®~.~¢ increases, while @1.~,7 decreases. Since 
the integral of the one-dimensional spectra ®1.¢~ and ®l.~v 
over the entire wave number range represent the chg_oge in the 

2 respec- mean-square turbulent velocity fluctuations u~ and u~, 
tively, the resul_! (4.32) is consistent with an increase in u~ and 

2 a decrease in u, 7. 
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5 C o n c l u d i n g  R e m a r k s  

An asymptotic analysis of turbulent flows in the entry region 
of a curved pipe shows that the turbulent fluctuations can be 
described by the linearized Navier-Stokes equations if the con- 
vection time is much smaller than the turbulent turnover time. 
This condition coincides with the RDT assumption. The analysis 
neglects the small boundary layer displacement effect on the 
core flow near the entrance of a curved pipe and concentrates 
on the centrifugal force effects on the turbulence structure in 
the pipe core. Since the zeroth-order perturbation solutions are 
the turbulent flow in a straight pipe and are assumed known, 
the flow properties in the entry region of a curved pipe can be 
related to these solutions. 

The pipe curvature influences the turbulence in two ways. 
One is contributed directly by the centrifugal forces and is of 
first-order magnitude. The other is due to the variation of curva- 
ture on the pipe cross section which ensures the geometric 
similarity of the flows. For small turbulent eddies or in slightly 
curved pipes, the variation of curvature is small and its effects 
can be neglected. The dynamic effect of the centrifugal forces 
is to generate a pure turbulent shear on the x-s and this effect 
is cumulative. Thus, the original isotropic turbulence become 
anisotropic due to linear effects. In this aspect, the effect of 
centrifugal forces on an initially isotropic turbulence in the core 
of the entry region of a curved pipe differs from the effect of 
Coriolis forces due to solid-body rotation. In the latter case, 
rotation acts on an initially isotropic turbulence only through 
nonlinear interactions, and pure linear effects influence the dou- 
ble correlations only if the turbulence is initially anisotropic. 

For a flow path of variable radius of curvature, the superpos- 
ition principle can be used to extend the current results. This 
is because that the transfer functions derived in Section 4 are 
governed by linear differential equations. 
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A P P E N D I X  

In order to understand the difference between the effects of 
centrifugal forces due to streamline curvature and the effects 
of Coriolis forces due to rotation on homogeneous and isotropic 
turbulence from the standpoint of rapid distortion theory, it is 
instructive to consider the linearized equations for the turbulent 
velocity fluctuations in cylindrical polar coordinates. These 
equations, relative to a stationary frame of reference, are 

Our + u,__ + 10Uo Ouz = O, 

0-7 r 7 N + 0--2 

Ouz,. + Uo Ou, _ 2Uou.._____2o _ Op 

Ot r O0 r O r '  

0-7 + + O r /  r 0 0 '  

Ouz Uo Ouz Op 
- -  + , (A1) 
Ot r O0 Oz 

where (r, 0, z) are coordinates in the radial, azimuthal, and 
axial directions, (ur, uo, us) are the components of the turbulent 
velocity fluctuations in the r, 0 and z directions, and the mean 
flow is given by (0, Uo(r), 0),  that is, the mean flow is in the 
azimuthal direction. The corresponding Reynolds stress equa- 
tions are 
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where 

Du'--~ = --  2Ur O~P r "4" Pry ,  

DuE = --2 uo Op 
r ~ + Poe, 

- -  Op 
Ou~ 2 = -2uz  07 + Pzz, 

Op 1 Op'~ 
D u ~ = -  U O ~ r + T U r ~ )  +Pro, 

D - ~ = _ u O P  + u O P  + p ,  
Or Oz 

D u ~  = - uz ~ + Uo oZ / 

4Uo 
Prr  = UrUO, 

r 

ezz ~ O~ 

Pro = 2UOr u~ - + Or ] ' 

2Uom 
Prz = - -  ttoUz, 

r 

(_~ ouo ~__ 
Poz = - + Or ) lgrblz' 

represent the production of Reynolds stress, and D denotes dif- 
ferentiation with respect to time. We note that if the turbulence 
is isotropic, the production terms are given by 

Prr = Poo = Pz~ = Prz = Poz = O, 

p r o = (  U° OU°~q  2 
r Or / 3 ' (A4) 

. ~  2 represents (twice) the turbulence where q2 u, 2. + u~ + uz 
kinetic energy. 

If the mean flow is one of solid body rotation, then Uo = rf~, 
where f2 is the (constant) angular velocity, and the production 
term Pro = 0. Thus, if the turbulence is initially isotropic, all 
the production terms in Eq. (A3) are zero at time t = 0. Further- 
more, if the turbulence is isotropic, the pressure-strain-rate cor- 
relations are individually zero. Hence, all the terms on the right- 
hand side of Eq. (A2) are zero at time t = 0. Consequently, 

(A2) the Reynolds stresses do not change with time, that is, rapid 
distortion theory predicts that an initially isotropic turbulence 
will remain isotropic at all times, as there is no linear mecha- 
nism to produce anisotropy. This agrees with the direct numeri- 
cal simulation by Speziale et al. (1987). This was noted by 
Bardina et al. (1985), who reached the same conclusion by 
considering the Reynolds stress equations in Cartesian coordi- 
nates relative to a rotating frame of reference. 

On the other hand, if the mean flow is uniform, that is, if Uo 
= C, where C is a constant, as in the core of the entry region 
of a curved pipe with uniform i__nlet velocity conditions, the 
production term Pro = ( C / r ) ( q  2/3) is nonzero. Hence, the 
Reynolds stress U~Uo will change with time, and the turbulence 
will become anisotropic due to linear effects. 

It is worth noting that if the mean flow is irrotational, with 
constant circulation, that is, if Uo = K/r ,  where K is a c__gnstant, 
the production term PrO is given by Pro = (2K/r2)(q2/3) .  In 
this case also, the Reynolds stress UrUO will change with time. 
However, since the production term Pro for a constant-circula- 
tion mean flow along a circular path is different from that for 

(A3) a uniform mean flow along a curved path, the magnitude of the 
Reynolds stress UrUo is different in the two cases. 
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The Freestream Matching 
Condition for Stagnation Point 
Turbulent Flows: An Alternative 
Formulation 
The problem of  plane stagnation point flow with freestream turbulence is examined 
from a basic theoretical standpoint. It is argued that the singularity which arises in 
the standard K - e  model results from the use of  an inconsistent freestream boundary 
condition. The inconsistency lies in the implementation of  a production-equals-dissi- 
pation equilibrium hypothesis in conjunction with a freestream mean velocity field 
that corresponds to homogeneous plane strain--a turbulent flow for  which the stan- 
dard K -  e model does not predict such a simple equilibrium. The ad hoc adjustment 
that has been made in the constants of  the c-transport equation to eliminate this 
singularity is shown to be inconsistent for  homogeneous plane-strain turbulence as 
well as other benchmark turbulent flows. An alternative means to eliminate this 
singularity--without compromising model predictions in more basic turbulent 
f lows-- is  proposed based on the incorporation of nonequilibrium vortex stretching 
effects in the turbulent dissipation rate equation. 

1 Introduction 

The calculation of stagnation point turbulent flows has a vari- 
ety of important engineering applications in boiler tubes, gas 
turbines, and ramjet combustors. Most of the earlier analytical 
work on this subject (see Galloway (1973) and Gorla (1984)) 
was based on the use of algebraic eddy viscosity models that do 
not allow for the detailed calculation of the turbulence statistics 
which can play an important role in determining wall friction 
and heat-transfer coefficients. Consequently, more recent work 
on the subject has been based on the use of more sophisticated 
two-equation turbulence models of the K -  e type which have the 
advantage of allowing for the direct calculation of the turbulent 
kinetic energy and dissipation rate (see Strahle (1985) and 
Strahle, Sigman, and Meyer ( 1987 )). Unfortunately, a problem 
with a singularity in the turbulent kinetic energy has arisen 
when the traditional dissipation rate transport equation of the 
K - e  model is applied to plane stagnation point turbulent flow. 
Strahle (1985) and Strahle, Sigman, and Meyer (1987) intro- 
duced an ad hoc modification of the constants in the c-transport 
equation to eliminate the singularity. While this readjustment 
of constants did alleviate the problem, we find it to be rather 
unsettling since it yields an e-transport equation which is incapa- 
ble of collapsing most of the homogeneous turbulence data that 
is commonly used to benchmark turbulence models. 

In this paper, it will be shown that the singularity in the 
turbulent kinetic energy that occurs when the standard K - e  
model is applied to plane stagnation point flows arises from the 
use of an inconsistent freestream boundary condition. To be 
more specific, the commonly used formulation of plane stagna- 
tion point flow is ill-posed for the standard K -  e model since a 
production-equals-dissipation equilibrium hypothesis is im- 
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posed in the freestream in conjunction with a mean velocity 
field that corresponds to homogeneous plane s t ra in- -a  turbulent 
flow for which this model does not possess such an equilibrium 
solution. In homogeneous plane-strain turbulence, the turbulent 
kinetic energy and dissipation rate obtained from the standard 
K - e  model grow exponentially with time. This is consistent 
with physical and numerical experiments on homogeneous 
plane-strain turbulence which indicate the same type of expo- 
nential growth (see Tucker and Reynolds (1968) and Lee and 
Reynolds (1985)). The ad hoc adjustment in the constants of 
the e-transport equation which has been used to eliminate the 
singularity (Strahle (1985) and Strahle, Sigman, and Meyer 
(1987)) will be shown to be inconsistent for homogeneous 
turbulence since it erroneously predicts that plane-strain turbu- 
lence is stable with no exponential time growth of the turbulent 
kinetic energy. A more physically consistent means for eliminat- 
ing the singularity in plane stagnation point f lows--without 
yielding erroneous predictions for homogeneous turbulence or 
other benchmark turbulent f lows--wil l  be proposed based on 
the inclusion of nonequilibrium vortex stretching effects in the 
turbulent dissipation rate equation along the lines suggested by 
Bernard and Speziale (1992). 

2 The Standard K -E  Model in Stagnation Point 
Flows 

The problem to be considered is that of plane stagnation point 
flow with freestream turbulence as illustrated in Fig. 1. Outside 
of a boundary layer of thickness 6, the mean flow is assumed to 
be irrotational and incompressible with a background turbulence 
superimposed on it. This outer mean flow is taken to be of 
the form (see Strahle (1985) and Strahle, Sigman, and Meyer 
(1987)) 

~= = x ,  ~®= - y  (1) 

where V~ = ff~i + ~®j is the nondimensional mean velocity. 
The mean velocity (v = ffi + ~ j )  near the wall is a solution 
of the Reynolds-averaged continuity and Navier-Stokes equa- 
tions which take the dimensionless form 
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Fig. 1 Plane stagnation point flow 
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where P is the mean pressure, Re  is the Reynolds number, and 
r u is the Reynolds stress tensor. For simplicity, since it will not 
alter the critical conclusions to be arrived at in this paper, we 
are considering the inner flow to be incompressible. The system 
of Eqs. ( 2 ) -  (4) for the inner mean flow (if, ~) are not closed 
and must be supplemented with a turbulence model. In the K -  
e model, the Reynolds stress tensor is given by 

r u = -5Kfu + C f f ~ -  + (5) 
e \ Oxj Ox~ / 

where K is the turbulent kinetic energy, e is the turbulent dissi- 
pation rate, Cu is a dimensionless constant which is usually 
taken to be 0.09, andf~ is a wall damping function that vanishes 
at the wall and approaches one sufficiently far from the wall. 
The turbulence quantities K and e are determined from modeled 
versions of their transport equations which, for the Lam-Brem- 
horst (1981) model that was considered by Strahle and co- 
workers as well as for other near-wall models, take the general 
form 

OK OK 1 0 ( K 2 0 ~ )  
ff - -  + g - -  = - -  V2K + Cu fu - -  

Ox Oy Re Oxx e 

( K gy) 0 C u f . - - O K  +~'l)- e (6) 
+ Oy e 

0e 0e 1 
f f - - + g  -- 

Ox Oy Re 

0 (C. fu  K2Oe)  

( g) c2 0 C,f~ K 20e + Cdfl e ,it, - Ce2f2 (7) 

where 

I' = rij Oxj (8) 

is the turbulence production. In ( 6 ) - ( 7 ) ,  ~ ,  C~l, and Ca are 
dimensionless constants which typically assume the values of 
1.3, 1.44, and 1.92, respectively; fl and f2 are wall damping 
functions that vanish at the wall and approach unity sufficiently 
far from the wall (see Lam and Bremhorst ( 1981 )). Sufficiently 
far from solid boundaries, at high Reynolds numbers where the 
molecular viscosity can be neglected, the modeled transport 

equations ( 6 ) -  (7) reduce to those of the standard K - e  model 
of Hanjalic and Launder (1972). 

The equations of motion (2) - (7) for stagnation point turbu- 
lent flows are solved subject to the boundary conditions 

1 02K 
U = V  = K = - - O K =  0 ,  e -  ( 9 )  

Oy Re @2 

at the wall y = 0, along with the freestream boundary conditions 
(for y ~ w) 

u = u=, v =v= (10) 

1 
K= 2r-uVC e=. (11) 

All of the boundary conditions except for ( 11 ) can be obtained 
as a rigorous consequence of the Navier-Stokes equations as- 
suming that if, g, and K are Taylor expandable near the wall. 
Boundary condition (11) is obtained by a production-equals- 
dissipation hypothesis, i.e., by assuming that 

~? = c (12) 

in the freestream based purely on an extrapolation of experimen- 
tal observations for similar, although not identical, stagnation 
point turbulent flows (see Strahle (1985), Strahle, Sigman, and 
Meyer (1987), and Traci and Wilcox (1975)). 

It will now be shown that the outer flow boundary condition 
( 11 ) is inconsistent with the mean velocity field ( 1 ). This outer 
mean velocity has the following nonzero gradients: 

0if= 0g~ 
- - =  1,  - 1 ( 1 3 )  
Ox @ 

and, hence, corresponds to the case of homogeneous plane- 
strain turbulence (see Tucker and Reynolds ( 1968 ) and Rogallo 
(1981)). It is now well established that homogeneous plane 
strain-turbulence is an unstable turbulent flow; the turbulent 
kinetic energy, dissipation rate, and length scales grow exponen- 
tially with time. l 

As an illustration, the time evolution of the turbulent kinetic 
energy (nondimensionalized by its initial value) taken from 
the direct numerical simulations of homogeneous plane-strain 
turbulence conducted by Lee and Reynolds (1985) is shown in 
Fig. 2. These results are suggestive of an exponential time 
growth of the turbulent kinetic energy which has been postu- 
lated based on alternative arguments (see Rogallo ( 1981 )). The 
commonly used K - e  model (where C~ = 1.44 and C,2 = 1.92) 
properly mimics this behavior as can be seen in Fig. 3. These 
computations, which were conducted using a fourth-order accu- 
rate Runge-Kutta numerical integration scheme, indicate that 
after an early decay (the turbulence was initially undergoing 
an isotropic decay), the turbulent kinetic energy then grows 
monotonically and becomes unbounded in the limit as t ~ oo. It 
can be shown analytically that the long-time growth of turbulent 
kinetic energy predicted by the traditional K -  e model is expo- 
nential (see Speziale and Mac Giolla Mhuiris (1989)). 

For general homogeneous plane-strain turbulence, with con- 
stant mean velocity gradients 

Ogi--( F O F )  ( 1 4 )  
Oxj 0 

(where F is the strain rate), the standard K - e  model yields 
transport equations for K and e that simplify to 

l It is precisely this exponential growth of the length scales in numerical simula- 
tions of homogeneous plane strain turbulence that force a termination of such 
computations after relatively short elapsed times (see Rogallo 1981 ). 

96 / Vol. 63, MARCH 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



2 ,0  

1.5 

1.0 

0.5 

0,0 

K* 

2.5 

J 

I I I 

2 3 4 

t *  

Fig. 2 Time evolution of the turbulent kinetic energy taken from the 
homogeneous plane-strain numerical experiments of Lee and Reynolds 
(1985) (FK0/~0 = 10) 

g 2 
d K  = 4 C ~ - -  F2 - e ( 1 5 )  
d t  e 

& e 2 
d--t = 4C°'C"KI-'2 - C~a ~ .  (16) 

These equations can be manipulated into the alternative dimen- 
sionless form 

dK* _ 4C~ - K* (17) 
dt* e 

()2 
. . . .  1) ~K dt* ~ 4C,(C~, 1) - (Ca (18) 

where t* = Ft, K* = K/Ko, and 

- -  = K *  
• o \ •o / 

(19) 

given that ( ')0 denotes the initial value. Equation (18) has an 
equilibrium solution of the form 

= ~ (20) 

(in the limit as t* --~ ~)  where 

C , 2 -  1 
a - - -  (21) 

C d -  1 

which is approximately two for the standard K -  • model. 2 Then, 
from Eqs. (17) and (19), it follows that for t* > 1 we have 

K * -  e x p [ 2 ~ / - ~  (a - l ) t * ]  (22) 

e* ~ e x p [ 2 ~ / - ~  (o~-  1) t*]  ( 2 3 )  

It is therefore clear that the traditional K -  e model predicts an 
exponential time growth of the turbulent kinetic energy and 
dissipation rate where a structural equilibrium is reached with 
respect to their ratio--the turbulent time scale K/e  (in fact, 
FK/e  has a universal equilibrium value in the limit as t ~ 

2 It is a simple matter to show that o~ is the equilibrium value of  the ratio of  
production to dissipation and that the fixed point (20)  is a stable node of the K -  
e model (Speziale and Mac Giolla Mhuiris (1989)) .  

that is completely independent of the strain rate F as well as 
the initial conditions K0 and e0). 

As shown above, the standard K - e  model (where c~ > 1) 
predicts an exponential time growth of the turbulent kinetic 
energy and dissipation rate for plane strain turbulence which 
appears to be consistent with physical and numerical experi- 
ments. On the other hand, if we take Cd = C~ 2 as suggested by 
Strahle (1985) and Strahle, Sigman, and Meyer (1987), the K -  
• model erroneously predicts a stable flow (with P = •) where 
both K and • approach a finite asymptote within a few eddy 
turnover times. This solution is of the form 

1 
K~ = ~ e~ (24) 

where •= is bounded and is determined by the initial conditions 
and the strain rate (it can be shown that •=/•o = 
(2~/-C~FKo/•o) ~ where /3 = C,i/(C,~ - 1)). It is clear that 
if Eq. (24) is nondimensionalized it becomes identical to 
Eq. (11). 

Now, we will return to the problem of stagnation point flow. 
By a Galilean transformation 

y = Uot (25) 

(where U0 is the characteristic mean velocity), the temporally 
evolving version of homogeneous plane-strain turbulence can 
be converted to a spatially evolving problem (in the coordinate 
y) governed by the equations 

dK K2F 2 
U 0 7  = 4 C u - -  - • (26) 

ay E 

de e 2 
Uo ~y = 4CdCuKF 2 - C~2 K "  ( 2 7 )  

This spatially evolving version of the problem (which is actually 
the way that the physical experiments are conducted; see Tucker 
and Reynolds 1968) has the same solution as the temporally 
evolving version if we set 

t* = y--~ . (28) 
U0 

As before, the standard K - e  model predicts an exponential 
growth of K and • in y which properly mimics the experiments; 
the modified K -  e model where C,1 = C,2 erroneously predicts 
a stable flow with 7' = • where K and e approach finite asymp- 
totes as y ~ ~ (see Fig. 4). These results have a direct bearing 
on the stagnation point flow problem. The boundary conditions 
( 1 0 ) - ( 1 1 )  must be matched in the limit as y ~ ~.  This is 
usually accomplished by marching in the y-direction from the 
wall starting at y = 0 (see Fig. 1). However, as can be seen 
from the previous analogy, if we march in the y direction from 
the wall with velocity Uo, the standard K -  e model predicts an 

K* 

2.5 

2.0 

1.5 

1.0 

0.5 

0.0 I I I I 

2 4 6 8 10 

Fig, 3 Time evolution of the turbulent kinetic energy for homogeneous 
plane strain predicted by the standard K -~  model (FKo/E0 = 1) 
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7 
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Fig. 4 Time evolution of the turbulent kinetic energy predicted by the 
modified K-~  model (where C,~ = C,2) for homogeneous plane strain 

exponential growth in the turbulent kinetic energy and dissipa- 
tion rate: 

el K* ~ exp 2 ( a -  1 ) ~ 0  (29) 

Yl 
e* ~ e x p  2 ( a -  1 ) ~ 0  (30) 

for yF/Uo >> 1. If a freestream boundary condition is used 
where K= and e= are bounded, an ill-posed problem results. 

Although the singularity in the plane stagnation point flow 
problem can be eliminated by setting C,] = C,z, it is highly 
undesirable to do so since this results in a rniscalibration of the 
K - e  model for homogeneous turbulence to the point where 
qualitatively incorrect results are predicted. Furthermore, this 
recalibration yields a reduction of ce from approximately two 
to one which substantially degrades the predictions of the K -  
s model for inhomogeneous benchmark turbulent flows such 
as free jets and the backstep problem (see Thangam (1991), 
Younis, Gatski, and Speziale, 1994). Consequently, the specific 

quantitative results obtained from this alternatively calibrated 
K -  e model for stagnation point flows are likely to be question- 
able. Rather than rendering the problem well posed by an incon- 
sistent recalibration of the model, it would appear to be prefera- 
ble to consider an alternative formulation of the problem that 
is not intrinsically ill-posed. Such an alternative formulation 
would require an outer flow with a mean velocity field that is 
compatible with a bounded turbulent kinetic energy and dissipa- 
tion rate that are statistically steady. One such example would 
be stagnation point flow that arises about a semi-infinite Ran- 
kine solid (see Fig. 5 ). For this problem, the outer mean velocity 
is obtained by the superposition of a uniform stream with a 
source located at point P (a velocity field that can be written 
in closed form). It is a simple matter to show that in the limit 
a s  r - -~oo 

if= = V=, ~= = 0 (31) 

for this flow. The mean velocity (31 ) has no spatial gradients, 
and hence no source for turbulence production; consequently, 
any background turbulence will decay yielding equilibrium val- 
ues of 

K = = 0 ,  c = = 0  (32) 

in the limit as r ~ c~. In addition, within the turbulent boundary 
layer there will be a region where production is approximately 
balanced by dissipation (the logarithmic region), so that (11 ) 
would be an appropriate boundary condition therein. No prob- 
lems with singularities would arise with this alternative formula- 
tion of stagnation point flow that is more realistic from an 
aerodynamic standpoint. 

3 A n  A l t e r n a t i v e  K -  E M o d e l  W i t h  V o r t e x  S t r e t c h i n g  

While the ill-posedness of the stagnation point flow problem 
can be overcome by considering more realistic aerodynamic 
configurations, it would nonetheless be useful to have the ability 
to compute idealized cases such as plane stagnation point flow 
with freestream turbulence. This would be worthwhile if a more 
physically consistent means were used to remove the singular- 
ity. One possible approach is to incorporate the effect of non- 
equilibrium vortex stretching in the dissipation rate transport 
equation, consistent with the theory of self-preservation (see 
Bernard and Speziale (1992) and Speziale and Abid (1993)). 
When this nonequilibrium vortex stretching effect is incorpo- 
rated, a production-equals-dissipation equilibrium is obtained 
for plane-strain turbulence in the limit as t ~ ~: a feature that 
removes the singularity in the plane stagnation point flow prob- 
lem since a bounded turbulent kinetic energy and dissipation 
rate are predicted. 

For homogeneous plane strain turbulence, the dissipation rate 
equation with this nonequilibrium vortex stretching effect is 
given by (see Bernard and Speziale, 1992) 

- -  = ( "  R i / 2  c 2 _ c 2 dedt 4C°'C~Xr2 + ,.,3 , .~ C,2 ~ (33) 

Fig. 5 Stagnation point flow for a semi-infinite Rankine solid 
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where R, -= K2/ue is the turbulence Reynolds number and C.3 4 0  
is a constant. The term containing C~3 arises when there is 
an imbalance between the production of dissipation by vortex 
stretching and the destruction of dissipation by viscous diffu- 
sion. When (33) is combined with ( 15 ), we obtain the transport 
equation 3 0  

~ ( ~ - = ~  =4Cu(C, i -  1 ) +  C~3R~/2(~-~12 
a t  \ l ~ /  \ t t~ / 

e* 2 0  

from which the fixed point can be obtained. 1 0 
Equations ( 15 ) and (33) were solved by using a Runge-Kutta 

numerical integration scheme. The initial conditions, which cor- 
respond to an isotropic turbulence, are taken to be FKo/e0 = 1 
and R,0 = 100. Figures 6 and 7 show the time evolution of K* 
and e* for a range of different values of C,3. The inclusion of 
vortex stretching has little effect on the short-time solution, but 
has a dramatic effect on the long-time behavior of K* and e*. 
In fact, an equilibrium state is reached where the turbulent 
kinetic energy and dissipation rate saturate to bounded equilib- 
rium values after a significant period of exponential growth. 
The saturation values are obtained by setting the right-hand 
sides of (17) and (34) to zero: 

= / 
Ko R,o \ Ce3 / \ CO / 

' I ' I ' I ' 

C~ 4C~ ( r e 2 -  C e 1 1 2 ( ~ 1 2  
eo R,o \ ~e3 / \ eO / " 

(36) 

The relations (35) and (36) indicate that the value of rE3 deter- 
mines the saturation level of K and e. 

Using (35) and (36), the following equilibrium values are 
obtained: 

K, 

60 

40 

20 

0 

' I ' ' I ' • G3 = 0.004 

!=o= 
/ ~ .  . .C,3= 0.007 

, , , 2 , = 0 0 ,  ' 

0 20 40 60 80 

t, 
Fig. 6 Time evolution of the turbulent kinetic energy for homogeneous 
plane strain predicted by the K-E model with vortex stretching {FK0/~o 
=1) 

~ C,3 = 0.004 

0 
0 20 40 60 80 

t* 

Fig. 7 Time evolution of the dissipation rate for homogeneous plane 
strain predicted by the K-~  model with vortex stretching (FKo/~o = 1) 

F K )  1 

-7-  ~ - 2V~. 
(37) 

(C{2 Z C,~ ~2 
R,® = C,3 / . (39) 

These results demonstrate that a K -  e model with vortex stretch- 
ing predicts an equilibrium state where production is equal to 
dissipation. Therefore, the singularity in the K - e  model for 
stagnation point flow would be eliminated by this modification. 
However, unlike the ad hoc change in the constants discussed 
above, this modification yields results that are completely con- 
sistent with physical and numerical experiments on homoge- 
neous plane strain turbulence. K and e grow exponentially until 
Ft  = 3 0 - - a n  elapsed time that is far larger than any that have 
been considered in previous experiments. As discussed by Ber- 
nard and Speziale (1992), it remains an open question as to 
whether homogeneously strained turbulent flows ultimately sat- 
urate to a production-equals-dissipation equilibrium. The only 
thing that is beyond question is that they are unstable f lows- -  
where there is an exponential time growth of K and e - - fo r ,  at 
least, several eddy turnover times. 

4 C o n c l u d i n g  R e m a r k s  

It has been demonstrated in this paper that the problem of 
turbulent plane stagnation point flow, as it is usually formulated 
with two-equation models, constitutes an ill-posed problem. 
This ill-posed formulation arises since the outer mean flow 
corresponds to a homogeneous plane-strain turbulence for 
which the standard K -  e model predicts a turbulent kinetic en- 
ergy and dissipation rate that grow exponentially with time. 
This precludes the application of a production-equals-dissipa- 
tion equilibrium boundary condition in the freestream and ren- 
ders the problem singular. 
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There is no doubt that the singularity in the standard K - e  
model for plane stagnation point flow can be eliminated by 
setting C,1 = C~z in the dissipation rate transport equation as 
suggested by Strahle (1985) and Strahle, Sigman, and Meyer 
(1987). However, in the opinion of the authors, it is highly 
undesirable to do this since the recalibrated model yields com- 
pletely incorrect results for most homogeneous and some inho- 
mogeneous turbulent flows (e.g., the erroneous prediction that 
plane strain and plane shear flow turbulence are stable, in con- 
tradiction of the results of physical and numerical experiments, 
and the degradation of results for free jets as well as the backstep 
problem). An alternative formulation of the stagnation point 
flow problem based on a semi-infinite Rankine solid was dis- 
cussed which is well posed for the standard K -  e model (i.e., no 
singularities would arise from the implementation of boundary 
conditions). Of course, other alternative formulations of turbu- 
lent stagnation point flows exist which are also well posed for 
two-equation models (for example, flow past a circular cylinder 
or the three-layer model of Traci and Wilcox (1975) for plane 
stagnation point flow). It is true that while these alternative 
formulations involve more realistic aerodynamic configurations, 
they are not quite as easy to compute since a similarity solution 
may not exist. Hence, an alternative means to remove the singu- 
larity in plane stagnation point flow was proposed based on a 
modification of the dissipation rate transport equation that in- 
cludes nonequilibrium vortex stretching. Unlike the modified 
dissipation rate equation where C~1 = C~z, this alternative pro- 
posal yields results that are not in contradiction of any existing 
results from physical and numerical experiments on homoge- 
neous turbulence. If we are to obtain more reliable predictions 
of turbulent stagnation point flows, we must avoid making ad 
hoc adjustments in the constants of turbulence models which 
render incorrect predictions for basic benchmark turbulent 
flows. 

Computations of plane stagnation point flow using the vortex 
stretching modification proposed herein were not presented 
since they are beyond the scope of the present paper for a 
variety of reasons. There are serious questions in regard to the 
near wall modeling that must first be addressed; this constitutes 
a nontrivial issue that can have a profound effect on the solution 
of wall bounded turbulent flows such as the plane stagnation 
point flow problem. Furthermore, state-of-the-art two-equation 
models should be used that have a more physically based repre- 
sentation for the Reynolds stress tensor than the isotropic eddy 
viscosity model that forms the basis for the standard K -  e model 
(the shortcomings of the standard K -  e model are well known in 
this regard; cf. Speziale 1991 ). Such models have an anisotropic 
eddy viscosity with strain-dependent coefficients that are sys- 

tematically derived from a full second-order closure (see Gatski 
and Speziale, 1993). A computational study of the plane stagna- 
tion point flow problem that properly accounts for these im- 
portant physical effects will form the basis of a future paper. 
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Dynamic Stability of a Rotor 
Filled or Partially Filled 
With Liquid 
The dynamic stability of  a high-spinning liquid-filled rotor with both internal and 
external damping effects involved in is investigated in this paper. First, in the case 
of  the rotor subjected to a transverse harmonic motion, the dynamic pressure of  the 
liquid acting on the rotor is extracted through a planar flow analysis. Then the 
equation of  perturbed motion for  the liquid-filled rotor is derived. The analytical 
stability criteria as well as the stability boundaries are given. The results are exten- 
sions of  those given by previous literature. 

Introduction 
In engineering, for various reasons liquid is often enclosed 

in rotors such as fluid-filled centrifuges, fluid-cooled turbines, 
and spin-stabilized satellites, When a liquid-filled rotor spins 
nonperturbedly, the free surface of the liquid forms a cylinder 
concentric with the rotor cavity and the liquid and the rotor 
rotate as one solid body. When the rotor is perturbed, a perturba- 
tion of the liquid will also be excited and in turn affect the 
perturbed motion of the rotor. Many experiments have shown 
that the liquid contained in a rotor not only changes the natural 
frequencies and critical speeds of the empty rotor, but also 
may lead to the instability of the system. Such a fluid-structure 
coupling problem is more complicated than others because the 
perturbed motion here is relative to a steady spinning. 

The instability of a liquid-filled rotor was first noted experi- 
mentally by Schmidt (1958) and Kollman (1962). As the rotor 
they investigated was partially filled with liquid, they thought 
that it was the fluctuation of the free surface of the enclosed 
liquid that introduced the instability. Then, Wolf (1968) and 
Hendricks (1979, 1981, 1982) performed analytical investiga- 
tions. Wolf regarded the condition for ruling out the translatory 
circular whirl as the instability condition, which is not strict 
in the mathematical sense. Hendricks and Lichtenberg (1982) 
improved Wol f ' s  analysis by considering the liquid viscosity 
and the tilting of the rotor and dealt with three-dimensional 
problems. 

The present work gives a complete analytical approach to a 
two-dimensional liquid-filled rotor: 

1 The analytical expression of the dynamic pressure of the 
liquid acting on a rotor subjected to a transverse harmonic mo- 
tion is given, then the general equation of perturbed motion for 
the liquid-filled rotor is derived. 

2 Directly from the equation of motion, the exact criteria 
for stability and the stability boundaries are given analytically. 
The instability threshold speed, as well as the threshold internal 
and external damping, are obtained. 

Equation of Perturbed Motion of the Enclosed Liquid 
A rigid cylinder mounted symmetrically in the middle of a 

massless shaft is shown as Fig. 1. When the cylinder spins at 

a The project was supported by the Foundation for Developing Chinese Educa- 
tion and Science and the Chinese National Science Foundation. 
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Lewis T. Wheeler, Department of Mechanical Engineering, University of Houston, 
Houston, TX 77204-4792, and will be accepted until four months after final 
publication of the paper itself in the ASME JOURNAL OF APPLIED MECHANICS. 

a constant rate f~ without perturbation, under the action of the 
centrifugal force the contained liquid is uniformly attached to 
the inner wall of the cylinder and spins synchronously as a 
rigid body. The dynamic stability of such a liquid-filled rotor 
is discussed in this paper. 

In Fig. 2, a fixed Cartesian coordinate system O-xyz, a body- 
fixed Cartesian reference system C-~77~, and a body-fixed cylin- 
drical coordinate system C-rO are established, where the z-axis 
coincides with the spinning direction and C is the center of the 
cylinder. The perturbed velocity of the flow at an arbitrary point 
( r ,  0) is denoted as ur0 + rot. The flow pressure is P.  Referred 
to the fixed system, the parallel perturbed motion of the cylinder 
is 

rc = x ( t ) i  + y ( t ) j .  (1) 

The equation of motion for the inviscid incompressible liquid 
relative to the rotational system is such that 

0V.__~ + (Vr'XT)Vr + 2(f~ × Vr) = - 1_ ~Tp _ ae (2) 
Ot p 

and the continuity equation is 

div Vr = 0 (3) 

where Vr is the relative perturbed velocity and ae is the con- 
vected acceleration given by 

ae = ac + f~ x (f~ × r)  = ac - f~2r (4) 

where ac is the translatory acceleration of the center 

ac = Y(t)i + ] ( t ) j .  (5) 

We set 

P = - P ~ 2 ( r 2 -  b z) + /~ ( 6 )  
2 

here (p / 2) f~ 2 (r  2 _ b 2) is the pressure of the liquid under steady 
spinning, whereas P represents the perturbation pressure. In 
keeping with the hypothesis of small perturbation, both Vr and 
P are first-order small quantities. With higher order quantities 
neglected, Eq. (2) is linearized to 

0V----z + 2(f~ × Vr) = - 1 V/~ _ ae. (7) 
Ot p 

Taking the vorticity of (7) leads to (O/Ot)(rot V,) = 0. As the 
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Fig. 1 Rotor system (side view) 

system is initially nonperturbed, we then obtain rot V r = 0. 
Therefore, though the steady spinning flow of the liquid is rota- 
tional, the perturbed motion is irrotational. Taking the diver- 
gence of (7), we obtain 

A P  = 0 (8) 

where A is the Laplace operator. 
The boundary conditions are next to be specified. On the 

solid surface, we have 

U lr=,,  = O. (9) 

For the cylinder partially filled with liquid, during perturbed 
motion the free surface is defined by r = b + 77(0, t), here b 
is the radius of the nominal free surface for a nonperturbed 
rigid rotation and q is also a first-order small quantity. From 
the condition that the total pressure at the free surface must be 
zero, we obtain Plr=b = - p ~ 2 b r l .  Then, from UIF=~ = (O'7/ 
Ot), the boundary condition on the free surface should be 

OF r=b -~- - -  -p~2Zbul~=b. (10) 

The perturbation flow is governed by (7)-(10).  

Dynamic Pressure of the Liquid Under the Transverse 
Harmonic Motion of Rotor 

Suppose that the rotor is subjected to a transverse perturbed 
motion given by 

x ( t )  = Ae i~', y ( t )  = Be ~' (11) 

where A, B, and co are all complex numbers. Physically, only 
the real parts of ( 11 ) are of sense. For convenience, we are first 
concerned with the transverse motion in the direction of x-axis 
(A * 0, B = 0). From (7) and (8) we have 

0(o,) 
r ~ r  r - ~  + - ~ 7 = 0  

0___~ - 2f~v - 1 0t~+ 1A~o2[d(.,+a,+o ~ + e . . ,_a ,_oq  . 
Ot p Or 2 

Ov + 2flu - 1 0 P  + i Aoj2 ei(,,,t+~t+o) eiOOt_at_o) ] 
07 p rO0 2 [ - 

(12) 

Setting 

U = ul(r)ei(~tm'+°) + u2(r)e "'°'-a'-°) 

v = v l ( r ) e  i("'+at+°~ + va(r)e i(~'-a'-°) (13) 

P = Pl(r)ei(~''+a'+°) + P2(r)e  i(~'-a'-°) 

and inserting them into (12), after a rather lengthy deduction 
(see Appendix), we have the perturbation pressure distribution 
on the inner wall of the cylinder as 

A P ( a ,  O) = ~- paw2[Mle i(''t+at+O) + M2e i(~°t-O'-O)] (14) 

where 

2(Q + co) 2 - c o  2 
Mt = 

( 1  q- "}/)(~'~ + CO) 2 --  0.) 2 ,  

2 ( R - c o )  z - c o  2 
M2 = (15) 

(1 + "y)(~ - co) 2 - co 2 

a 2 + b 2 
3 ' - a  2 _  b 2. (16) 

Similarly, when the cylinder is subjected to a transverse har- 
monic motion in the y direction (A = 0, B * 0), the pressure 
distribution on the inner wall of the cylinder can be obtained 
as 

P( a, O) = -FiB patoZ[_Mlei(,,,t+at+o) + M2ei(~ot_f~t_o)]. (17) 

Therefore, the total perturbation pressure distribution under the 
general motion (11 ) is such that 

P(a ,  O) = lpaw2[ (a  - iB )Mle  i(~'t+~t+°) 

+ (a  + iB)Mzei~'°'-at-°)]. (18) 

The components of the total force of the liquid acting on the 
cylinder in the directions of the x and y-axes are, respectively, 

f? Fx = La P ( a ,  O) cos ( f i t  + O)dO 

f? Fy = La P ( a ,  O) sin ( f i t  + O)dO (19) 

where L denotes the length of the cylinder. Inserting (18) into 
the above expressions, we have 

[ F , ]  l m w 2 F  M , + M 2  - i ( M l - M 2 ) ] I A e i ~ t  ] 
Fy = 2  c L i ( M , _ M 2  ) M , + M 2  B e , . t j  (20) 

where 

mc = pTra2L (21) 

which denotes the mass of the liquid to fully fill the cavity. 

lj 

Fig. 2 Definition of coordinate systems (top view) 
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Formula (20) is the general representation of the liquid acting 
force. The formula shows that besides a force collinear with the 
displacement, a circulatory force is also excited. If the cylinder 
executes a circular whirl, i.e., B = - i A ,  we have 

F .  = m~w2M2A cos wt  

Fy = m c w 2 M z A  sin wt  (22) 

then the liquid acting force is collinear with the displacement 
and no circulatory force appears. This special case has been 
solved by Wolf (1968) and Hendricks (1986). 

Equat ion  of  M o t i o n  for R o t o r  and the D y n a m i c  
Stabi l i ty  

We consider the general case where both the internal and 
external damping effects are involved in. Referred to the fixed 
coordinate system, the equation of perturbed motion for the 
rotor is such that 

I mr m r ] [ y ] + [  c e + c i  C e - ~ - C i ] I ~ ]  

+ -C,f~ k = Fy 

where mr, k ,  Ce, and Ci are, respectively, the mass of the empty 
cylinder, the stiffness of the shaft and the internal and external 
damping coefficients. The internal damping force is assumed 
to be in direct proportion to the relative perturbed velocity 

D~ = -C~(Ve - f~ X r~) 

= -C,[(X - ~y ) i  + (.~ + f~x)j] (24) 

which is a simple equivalent model for accounting for the fluid 
viscosity. When the center of the cylinder also rotates with 
angular velocity f~, the cylinder and the contained liquid rotate 
synchronously around the z-axis and the viscosity of the liquid 
does not work. The right-hand side of (23) represents the force 
of the liquid acting on the cylinder. We are now concerned with 
the dynamic stability of (23). Set 

X = A e  i~t, y = Be  i~' (25) 

where A, B, and w are all complex numbers. From (23), recall- 
ing (20) we obtain the following eigenvalue problem 

I ~ - a f l l  [ ~ ] = 0  (26) 

where 

[ mc ] 
a = m~ + T (M1 + Mz)  032 -- i ( C e  + Ci)oJ  -- k 

(27) 

i 
[3 = ~ m c ( M l  - M 2 ) w  = + Cf lL  

The corresponding characteristic equation of (26) is a 2 + /32 
= 0, i.e., 

a = _+i/3. (28) 

Inserting (27) and (15) into (28) and denoting 

w f~ k 
F = - - ,  S = - - ,  Wo2= - ,  

tAo COo mr 

mc Ce 
- -  C e - , C i - (29) 

# = m~ 2m~wo 2mr~o 

we have the nondimensional characteristic equation as 

(3/ + #) F4 + [+,2S(1 + 3' + 2/-0 - 2i(Ce + C~)3/]F 3 

+ [$2( 1 + 3' + 2>) - 3' -7- 4 iS (Ce  + C,)(1 + 3/) 

¥ 2iC~3/S]F z + [72(1  + y ) S  - 2iS=(Ce + C~)(1 + 3/) 

- 4iCi(1 + 3/)$2]F + [ -SZ(1  + 3/) 

7 2iCi(1 + 3')S 3] = 0. (30) 

For an undamped system, (30) degenerates into the following 
characteristic equation with real coefficients as 

(3/ + #) (+ 'F )  4 + 2S(1 + 3/ + 2#) (+ 'F)  3 

+ [$2(1 + 3/ + 2/~) - 3/](+-F) z 

- 2(1 + y)S(+F)-  $2(1 + 3/) = 0. (31) 

Taking the positive sign of F in the above equation leads to the 
characteristic equation given by Wolf (1968). Equation (31) 
shows that if one eigenroot F is a complex number, its conjugate 
number must also be an eigenroot, then one iF  has positive real 
part and the system is unstable. So an undamped liquid-filled 
rotor cannot have the asymptotic stability. If all the eigenroots 
F extracted from (31) are real numbers, the system is stable 
and the whirl modes of the rotor can be obtained from (26) as 

which represent the forward and backward circular whirl, re- 
spectively (Zhang, 1990). Therefore, we have proved theoreti- 
cally that it is reasonable for Wolf to regard the condition 
whether the circular whirl can exist or not as the criterion for 
stability. This criterion, however, is effective only for undamped 
systems. If damping occurs, we should directly discuss Eq. (30) 
by means of the generalized Routh-Hurwitz criterion (Porter, 
1990). Denoting the coefficients of F "-j as bj + icj, we have 

b0=  3' + /~ ,  bj + +.2(1 + 3' + 2 # ) S ,  

bz = $ 2 ( 1  + "y + 2#) - 3/ 

b3 = 77-2(1 + 3/)S, b4 = - $ 2 ( 1  + 3/) 

Co = 0, cl = - 2 ( C i  + Ce)3/ ,  

c2 = 7 2 S [ 2 ( C e  + C~)(1 + 3/) + C~3/] 

c3 = -2SZ(1 + 3/)(Ce + 3Ci), c4 = ~2C~(1 + 3")S 3. 

According to the generalized R - H  criterion, the condition for 
stability is that all the even-order principle minors of the follow- 
ing Hurwitz matrix, A2k(k = 1, 2, 3, 4), should be msitive 

"C0 C1 
b0 bi 
0 Co 
0 b0 

H s =  0 0 

0 0 
0 0 
0 0 

c 2 c 3 c 4 0 0 0 
b2 b3 b4 0 0 0 
C 1 C 2 C 3 C a 0 0 
bl b2 b3 b4 0 0 
CO C 1 C2 C3 C4 0 
bo bl b2 b3 b4 0 
0 C 0 C 1 C 2 C 3 C 4 
0 bo bl b2 b3 b4 

After some manipulations, we obtain 

~X2 = 2 ( C e  + C i ) ( 3 /  + ~)77 

L2~ 4 = 4(3/ + #){Ce213/3 + $2#(3/ - 1)(33/ + 4)] 

+ C~[3/3 - $2(3" 3 + 4t.* + 3/# - 472/z)] 

+ 2CeC/[TT 3 + 4#$2(3/2  - 1)] 

t~ 6 = - - 8 5 4 ( 3 / 2  -- 1 ) ( 3 '  -~- ~LL)/L~{ Ce3[S2#(3" - 1)  

- (57 2 + 203/ + 16)] + Ce2Ci[5S21z(3/ -- 1) -- 113/2 

(32) 
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Fig. 3 Stability diagram (Case 3: C = 0, C = 0 )  

+ 523, + 48)] + CeC~[Sa(5T 2 + 203' 

+ 16 + 21# + 20T#) - (7y  2 + 443' + 48)] 

+ C3[$z(3" 2 + 123' + 16 + 17# + 123"#) 

_ ( 7 2  + 123' + 1 6 ) ] }  

A8 = 16(3" 2 - 1)2#2(3' + # ) S m { - C 4 (  1 + T) 

- 2C3C,(1 + 7)  + C~C2[SZ(1 + 7 + 2#) - 7] 

+ 2C~C 3 + C4[1 - $2(1 + #)1}. 

The stability of the system is determined by A~ > 0 (i = 2, 4, 
6,8). 

We then consider the following cases: 

Case 1. Only external damping occurs, C~ =~ 0 and Ci = 
0. Equation (32) is reduced to 

2x2 = 2C~(3" + #)3" 

A ,  = 4C2(y  + #)[3'3 + $2#(3" _ 1)(33' + 4)] 

Z~X 6 = 8 C e 3 8 4 ( 3 '  2 - 1)( 3, + #) 

× # [ 5 y  2 + 20y + 16 - $2#(3' - 1)] 

A 8 = -16CegSt°#z(y + # ) ( y  + 1)(3' 2 - 1) 2. 

AS A8 < 0, a liquid-filled rotor with external damping must be 
unstable. Such a conclusion has been obtained by Hendricks 
(1981).  

Case 2. Only internal damping occurs, Ce = 0 and Ct * 0. 
Then (32) is reduced to 

ZX2 = 2(7.(3' + #)3" 

A4 = 4C~(3, + # ) [y3  _ 82(3'3 ~_ 4# + 3'# -- 43'Z#)] 

A6 = - 8 C 3 S 4 ( y  2 - 1)(T + #)#[$2(3 '  2 + 123' + 16 

+ 17# + 12y#) - (3"2 + 123, + 16)] 

,~X8 = 16C~S1°(T2 - 1)2#2(3' + #)[1 - Sz(1 + # ) ] .  

From ZXi > 0, the condition for stability is given by 

~4  > 01 S2(T 3 - 43'2# + 3'# + 4#) < y 3 

1 
~6  > 0: 52 < 

17 + 123' 
1 + # 3 , 2  + 1 2 y  + 16 

1 
A 8 > 0: S 2 < - -  

1 + # "  

In Fig. 3 the illustrative curves 2x~ = 0 are plotted and the 

r e g i o n  ~ i  > 0 are indicated. The condition for stability, which 
satisfies all of  the above three inequalities, is ZX8 > 0, i.e., S = 
< 1/(1 + #),  or alternatively 

k 
~~ < f~*, f~* - - -  (33) 

m r  -I- m c  

where f~* denotes the fundamental frequency of the rotor fully 
filled with liquid, f~* is the instability threshold speed for a 
liquid-filled rotor under the action of internal damping. Once 
f~ > f~*, the system loses stability. This conclusion is first 
obtained. 

Case 3. Internal and external damping occurs simultane- 
ously, Ce e 0, Ci =~ 0. We set 

q = C , /Ce .  (34) 

From 2xi > 0 we obtain the condition for stability as 

~4 > 0: 821772(3' 3 - 472# + y #  + 4#) - 8q#(3" 2 - 1) 

- #(3" - 1 ) ( 3 3 '  + 4 )1  < y 3 ( 1  + r/) 2 

ZX6 > 0: S z < {@(3'2 + 12y + 16) 

+ r/2(7y 3 + 44y + 48) + 77(113/z + 52y + 48) 

+ (53" 2 + 203' + 16)}/{r /a(3 '  a + 123' + 16 

+ 17# + 123'#) + ~2(53"2 + 203' + 16 + 21# 

+ 203'#) + (577 + 1)(3, - 1)} 

~ 8 > 0 : S 2 ( 1  + # ) r / 2 (  1 + y + 2 #  1 + #  q2)  

> (1 + r7)2(1 + 3' - r~2) • 

Figure 4 plots the curves ~ i  = 0 and the regions 2xi > 0, where 
the parameters are taken from Wolf  (1968),  3 /=  2.6, # = 0.206. 
The stability condition satisfying all above three inequalities is 

r/2 > 1 + y  

82 < f 0 7 )  = (1 "1- 7 ) 2 ( 7 1  2 - -  1 - 3') 
# ) 7 / 2 ( , 2  1 + Y + 2#~. ' (35) 

(1 + 
\ 1 + #  / 

Therefore, only when the damping ratio r / >  ~/1 - r, there exists 
a stable region. For eafi_h_~_greater than #1 - r, there is a thresh- 
old speed ~*  = ~o0Vf(r/). If  ~ > ~*,  the system must be 
unstable. From (df(rl) ldrl)  = 0, we can extract the maximum 
threshold speed as 

I 
T] .4 -1- (Ot - -  1 - 3')r/.3 - 2(1 + 3")~,2 

+ oe(l + y)r?* = 0 07 *2 > 1 + 3') 

where c~ = (1 + 3' + 2#) / (1  + #) .  For the aforementioned 
parameters, we have 

~*  = 1.2154wo r/* = 2.40595. 

The stable region (35) can be approximately represented by the 
following rectangular region: 

{ I S 2 >  1 +TT 
1 ( 3 6 )  

2 < 1 +  # 

which is a sufficient condition for stability. 
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Conc lus ions  
In this paper the dynamic stability of a two-dimensional liq- 

uid-filled rotor under the action of internal and external damping 
is analyzed. The cases that only external damping occurs, only 
internal damping occurs, and internal and external damping 
occurs simultaneously are discussed separately. For each case 
the analytical criterion for stability is derived. The analysis 
shows that the external damping is always a destabilizing factor 
and the internal damping, however, has certain stabilizing effect. 
For a general case there exists an instability threshold speed. 
Once the rotating speed exceeds the threshold speed, the system 
loses stability and can never be stabilized again by adjusting 
the parameters. Such an instability threshold can be approxi- 
mately set as 1/( 1 + #). All the above results can be regarded 
as the extensions of previous related conclusions. 
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A P P E N D I X  

The  So lv ing  of  ( 1 2 )  
According to the superposition principle for linear equations, 

I(WI+~t+O) OWl f2t O) we can solve the terms of e and e - - separately. 

First, we seek the solutions Ul, Vl, and P1. Substituting (13) 
into (12),  we have 

r 2 d2Pl dPl P~ = 0 (37) 
dr---- i- + r d - 7 -  

i¢u, - 2~Vl = -- 1 dP_._2 + _1 Aw 2 (38) 
p dr 2 

2 ~ U l  + iaVl = - / P-21 + t_' Aw e (39) 
p 2  2 

where ~r = w + fL From (37) we have 

P~(r) = Cir + C-2. (40) 
r 

Substitutions of the above expression into (38) and (39) lead 
tO 

= P( 4f~7~-i crz) ~[ C2 Ul (a  + 2f~)C, + (2~  - ~ ) ~ 7  

_ 1 pAw2(~ r + 2f~)]  
2 l 

= 1 [ C2 
vl P( 4~22 - c~2) L (or + 2f~)Cl - ( 2~  - o') ~-2 

+ 21 pAw2(~ r + 2f~) 1 

The boundary conditions (9) and (10) now become 

icrPl(b) = - p f ~ 2 b u l ( b ) ,  u l (a)  = O, 

i.e., 

I ~r 2 ~ 7 a  2~  + a Ci + ~r b2 

pAw 2 ~2 

2 2f~ - a 

c~ 
~r + 2f~)C~ + (2~2 - ~r) a 2 

which yields 

PAw2 [ (712 
Ci = 2(2~kr -- ~ - +  crZy) ~ a(2f~ 

pAw 2 
- -  (~r + 2~2) 

2 

C2 = - 
pAw 2 aZb 2 

2(2f~r  - f~z + cr2y) a 2 _ b 2 
- - ~ r ( 2 f ~  + or). 

Inserting the above expressions into (40) leads to 

1 P , ( a )  = ~ pAw2a 

Similarly, we have 

1 
P2(a) = ~ pAw2a 

2(~2 + w) 2 - w 2 

(1  + ' y ) ( f l  + w )  2 - ~0 2" 

2 ( ~  - w) 2 - to 2 

(1 + ~/)(f~ - w) 2 - w a" 

Then (14) is obtained. 
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The Hydrodynamic Stability 
of Pendent Drop Under 
a Liquid Column 
The hydrodynamic stability of  a liquid column resting on a gas in a vertical tube 
with its upper end closed is analyzed. The maximum height above which the interface 
is unstable is given as a function o f  the Bond number and the density ratio. The 
instability is shown to be monotonic, i.e., nonoscillatory. 

I n t r o d u c t i o n  

The stability of a column of liquid resting on a column of 
air in a vertical tube was investigated by Dussan (1975), Joseph 
(1976), and Huh (1969). The upper end of the tube is closed 
and the interface at the bottom of the liquid column is flat. The 
weight of the liquid column is supported by the air pressure 
which is greater than the pressure at the upper end of the tube 
by an amount equalling the hydrostatic pressure corresponding 
to the column height. It was deduced from energy analysis that 
the flat interface is conditionally stable i f0 < G < (3.83171) 2, 
where G = 4(p - pa)a2g/S.  In the definition of G, a is the 
tube radius, g is the gravitational acceleration, S is the surface 
tension, and p and Pa are, respectively, the densities of liquid 
and air. The static stability of a drop hanging from a tube was 
analyzed by Pitts (1973, 1974) by use of the energy method. 
Two cases were considered. The first case is that of constant 
drop volume and the second was that of constant pressure at 
the mouth of the tube. Numerical examples were used to demon- 
strate that stable drops on a tube can only be formed under 
constant pressure in the liquid if the radius is less than a certain 
critical value. However, no general criteria of stability are given. 
In this work we report the results of linear stability analysis of 
a pendent drop supporting the weight of a liquid column of 
finite height in a circular tube with its lower end open to air. 
The critical height of the liquid column below which the pendent 
drop is stable is given as a function of the Bond number in the 
form of a neutral stability curve. Measurements of liquid pen- 
dent shape have been used as a means of determining interfacial 
tension by Pitts (1973, 1974). Thus the stability of a liquid 
pendant in another fluid is of considerable practical importance. 
The stability of hanging drops is also of fundamental importance 
in understanding the regimes of jet breakup (Lin and Ibrahim, 
1990). 

S t a b i l i t y  A n a l y s i s  

Consider the stability of a drop hanging from a circular cylin- 
drical tube as shown in Fig. 1. The shape of the pendent depends 
on the density of the liquid p and the ambient gas density p,,, 
the interfacial tension, and the liquid volume and the tube radius 
a. As the volume of the liquid is increased, it may reach a 
critical value beyond which the interfacial force is insufficient 
to maintain the pendent in equilibrium. Before this critical vol- 
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ume is reached, the shape of the interface is determined by the 
exact balance of the pressure difference across the interface and 
the interfacial force per unit area. We nondimensionalize the 
length with a, the pressure with pga, where g is the gravitational 
acceleration. Then the dimensionless pressure exerted by the 
liquid is Pi = Pb + h, where h is the distance between the upper 
solid lid, maintained at the pressure pb, and the lower interface. 
The pressure exerted by the ambient gas is p2 = pa + qh, where 
q = pa/p, and p, is the gas pressure at the level of the upper 
lid. The force balance at the interface gives (see, for example, 
Joseph, 1976) 

Pl - P 2 - B  -1 x7 • n = 0 

where n is the unit normal Vector pointing from the liquid to 
the ambient gas and B is the Bond number defined by 

B = pga z/S. 

In terms of the liquid column height and q, the equation of 
interfacial force balance can be written as 

[Pb -- P .  + hi (1 - q ) ]  

+ ( h - h i ) ( 1  - q ) - B  -ix7 . n  = 0, (1) 

where hi is so chosen that hi = (p, - Pb)/(1 - q), and thus 
the sum in the bracket vanishes. When h = hi, V • n = 0 and 
the interface is flat. Then the net weight of the liquid column 
of height h = hi and of unit crossectional area is exactly bal- 
anced by the pressure difference pa -- Pb. For an axisymmetric 
pendant x7 • n at the interface z = h can be written in the 
cylindrical coordinates (r, 0, z) as 

V " n  = - - E r r ( 1  + hr2) -3/2 -hr  [ r (1  + hr2)1/2]  -1 , (2) 

where h = h - h i ,  h~ being a constant. Strictly speaking, Eq. 
(1) with Eq. (2) applies only at the liquid-gas interface, but 
not at the solid-liquid-gas interline at the tube wall. Unfortu- 
nately, very little is known about the interline force. Usually, 
it is parameterized with contact angle 0. Nevertheless, Eq. ( 1 ) 
can be integrated with or without specifying 0. In this problem, 
the contact angle is not constant. The shapes of the pendants z 
- hi = h corresponding to three different volumes for given B 
and q are given in Fig. 2 for illustration. These shapes were 
determined from integration of Eq. (1) with given h ( 0 ) a n d  
hr(0) = 0 by use of the fourth-order Runge-Kutta method. 
The shapes so determined have different contact angles which 
depend on the liquid volume. Different solutions of ( 1 ) and (2) 
can be found for different contact angles specified at the wall. 
The specific contact angle depends on the interline force which 
in turn depends on the properties of pipe wall, liquid, and gas. 
The solutions we found are for the particular ones corresponding 
to zero interline force. Thus, the menisci we found can be held 
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stationary without help from the interline force the physics of 
which is not yet understood. 

To investigate the stability we introduce disturbances into the 
fluids, and determine the condition under which the disturbance 
will not grow in time. At the onset of instability the flow remains 
largely irrotational within the viscous diffusion time. Thus the 
velocity perturbation v~ is given by the gradient of the velocity 
potential ~b, i.e., 

vl = V~i ,  ( i =  1 ,2)  (3) 

where i = 1 stands for liquid and i = 2 stands for gas. ~b~ 
satisfies the Laplace equation 

7 2 ~bl = O. (4) 

The solution of Eq. (4) for i = 1 which satisfies the no penetra- 
tion conditions at the tube wall r = 1 and at the upper lid z = 
0 is given by 

~, = ~ B,, (t) Jo (k ,r)  cosh ( k , z )  (5) 

where k,, are the roots of 

[dJo (k,r)ldr],=, = [ - k ,  dl (k,r)],=~ = 0. 

The solution of Eq. (4) for i = 2 which satisfies the condition 
of vanishing disturbances as z~m, and the no penetration condi- 
tion at r = 1 is given by 

qb2 = ~ D, ( t ) Jo(k , r )  exp(-k, ,z) .  (6) 
n = l  

The perturbed interfacial position is given by 

z = h ( r )  + d (r ,  t) 

where h( r )  designates the unperturbed interfacial position, and 
the interfacial perturbation d is a function of r as well as time, 
t. It is assumed that [d[ < Ihl. The unknown function B , ( t ) ,  
D , ( t )  and d(r ,  t) are to be determined by the three interfacial 
boundary conditions. 

By definition the total time rate of change of the interfacial 
displacement is equal to the axial velocity of the fluid particle 
in each fluid, i.e., 

d,, + ~bi,~h,, = qb,.~ (i = 1, 2). (7) 

Note that the nonlinear term ~b~.~d,r is neglected in Eq. (7).  
This condition is assumed to be valid at the contact line. Thus 
the contact line is not fixed but moves with the fluids along the 
tube wall. This is possible either if the fluid is inviscid or if the 

interline force vanishes. The perturbed pressure in the liquid 
and the gas at the interface can be obtained from the linearized 
Bernoulli equation, and are given, respectively, by 

p,  = pb + (h  + d )  - (~ , , , )  + ( ~ , , ) ~ o ,  

P2 = P,, + q (h  + d) - q[(~b2,,) - (~2,,)z=0]. 

Note that ffi.t ~ 0 at z = 0. Hence p, is changed from the initial 
value of Pb to Pb + (qbi.,),=o when the basic state is perturbed. 
Substituting the expressions for the pressure and the interfacial 
position H = h + d into the dynamic boundary condition Eq. 
( 1 ) with Eq. (2),  subtracting the basic state part, and linearizing 
the resulting equation, we have 

(1 - q)d  + ~ 11,,Jo(k,,r) [1 - cosh (k,h)] 
n = 1 

+ q ~ ~,,Jo(k,,r) [exp( -k ,h )  - 1] 
n -  1 

+ We Q-S,2 [Qdrr - 3hr,h,d~ + QZdflr - Q hr 2 dflr] = 0, 

Q = 1 + h~ (8) 

where the upper dot denotes time differentiation. The three 
interfacial boundary conditions admit solutions for the interfa- 
cial displacement of the form 

d =  ~ h, Jo(k,,r) e x p ( - i w t ) ,  B, = b, e x p ( - i w t ) ,  
n =  l 

D,, = d,, e x p ( - i  w t),  

where w is the complex eigenfrequency of disturbances. This 
particular form of d preserves the volume of the perturbed liquid 
column, since 

f0 (2 7rrd) dr = 2 7r ~ (h,/k, ,)  J, (k,,) = 0 
n 

By virtue of the equation following (5).  Substituting these ex- 
pressions into the boundary conditions, and forming the Galer- 
kin projection with rJo(k,,r),  m = 1 to N. we obtain a system 
of 3N equations in 3N unknowns 

{[C] - i  ~o [A] } V = 0, (9) 
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where V is the eigenvector 

V = [hi, ---hN, bl, ---bu, dl, ---du] r, 

and the elements of the matrices [A] and [C] are given by 

Sol amn = Jo (k~r) Jo ( k j )  rdr = au+m. 

So' a~N+m,N+n = Jo (kmr) [1 - cosh (knh)] Jo(k~r) rdr, 

So aaN+maU+~ = q Jo (kmr) Jo (k.r) [exp(-knh) -1 ]  rdr, 

fo' C~,N+. = -k~ Jo (kmr) {Jo(k.r) sinh (k.h) 

+ h~Jl (k~r) cosh (k.h) } rdr, 

So x CN+m.2N+n = kn Jo (kmr) { Jo (knr) 

- hrJl (k,r) } exp( -  knh) rdr, 

C2u+,~,, = Jo (kmr) {( 1 - q) Jo(k,r) 

+ We[Q -3/2 k 2 J" (k,r)  

_ (Q-i/2 r - 1 - r  -iQ-3/2 h~ 

- 3 Q 5/2 hrhrr) k,,J1 (k,r)] rdr, 

( m =  1 t o N ,  n =  1 t o N ) ;  

where J~ denotes second derivatives with respect to the argu- 
ment of Jo. Note h = h~ + h in the integrands. Thus the stability 
criteria will not only depend on B and q but also the pressure 
difference (p, - Pb)/( 1 - q).  Although hi is a constant for 
given p,, Pb, and q. For numerical demonstration, we consider 
only the case ofp,  = pb, i.e., the case of a static liquid column 
supported solely by surface tension without help from the pres- 
sure difference p, - Pb. For the case of P0 < P, the stable 
column is expected to be higher. For the case of Pb > Pa, the 
stable column is expected to be shorter. Hence the numerical 
results to be given are for the borderline case, but with some 
generic feature among all three cases. The eigenvalues of the 
system Eq. (9) have been solved with the values of N required 
for the accuracy up to the third decimal point. N was found to 
be ten over the parameter range considered here. The integrals 
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Table 1 Unstable pendent with q = 0.00153 

B -1 0.30 0.39 0.48 
wi 0.29 0.99 1.30 
h(o) 0.90 1.19 1.44 
0(rad) 1.22 1.55 1.75 

involving h are evaluated numerically by use of SLATEK sub- 
routine dga458. 

Results  

There are two independent parameters in this problem, i.e., 
B and q, since we consider only the case of Pb = P,. For each 
set of given (B, q), static menisci are determined from Eq. (1) 
with Eq. (2) for different values of h(o) .  Three such profiles 
are given in Fig. 2. The eigenvalue with the largest imaginary 
part corresponding to these three profiles are given in the figure. 
The real parts of the frequencies are given as the first numbers 
in the parentheses. The second numbers in the parentheses are 
the imaginary part of the frequencies. For the two basic states 
with smaller h(o),  the imaginary parts of w are o. Thus, they 
are neutrally stable according to linear theory. The real parts of 

decrease as h(o )  is increased. Thus the frequency of oscilla- 
tion decreases with increasing volume. However, the pendent 
drop with the largest h (o) has a c onj ugate pair of frequency with 
zero real part. Hence this shape is hydrodynamically unstable. 
Moreover, the instability is nonoscillatory, i.e., monotonic. It 
appears that there exists a critical h(o ) ,  beyond which the pen- 
dent drop is monotonically unstable for each pair of given (B, 
q). The monotonic behavior of disturbance is probably due to 
the assumption that the interline is moveable. If the interline is 
held fixed and B is sufficiently small, the instability may be, on 
physical ground, conjectured to be oscillatory. The critical 
height hc(o) = R is obtained for different pairs of (B, q), and 
the results are given in Fig. 3. The interracial tension and the 
ambient gas density are both stabilizing in a sense that the 
critical height can be increased by increasing their values. It is 
seen from Fig. 3 that there exists, for each given value of q, a 
critical Bond number, above which a fiat interface, R = 0, 
cannot be maintained. For q = 0.00153, Bc is approximately 
6.897, and for q = 0.153 it is approximately 8.00. Our B is 
related to Dussan's surface tension parameter G by 

G = 4 (1  - q) B. (10) 

It was found from energy stability analysis that the flat inter- 
face of a liquid column over air is conditionally stable if 

G < (3.83171) 2 . (11) 

Substituting the critical Bond number for q = 0.00153 into Eq. 
(10), we find 

G = 27.545, 

which is larger than the critical value given in Eq. (11 ). Simi- 
larly for q = 0.153, we find the critical value of G to be 27.2 
which is again larger than the critical value of G given by the 
energy theory. Thus the energy theory gives a rather conserva- 
tive estimate. It should be pointed out that while the contact 
line is assumed to be immovable in the energy theory, it is 
assumed here to move with the fluids along the tube wall. 
However, the comparison is quite appropriate since the contact 
line motion is infinitesimal in the present theory, and the dy- 
namic of contact line is not considered in both theories. It should 
be pointed out that for the case considered Pb = P,,, q ~ 1, we 
have hi = 0. Hence h ~ hi = 0 for a fiat interface. The liquid 
column is then reduced to a membrane. The comparison with 
the results of energy theory in this limiting case remains mean- 
ingful, because the energy stability results are valid for any h. 

Table 1 gives the growth rates, the liquid pendent heights, 
and the contact angles for three different values of B, for the 
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Table 2 Unstable pendent with q = 0.0153 

B -I 0.30 0.39 0.48 
•i 0.37 1.28 1.95 
h(o) 0.97 1.27 1.54 
0(rad) 1.24 1.56 1.75 

unstable pendent drop at q = 0.00153. This value of q corre- 
sponds to the case of an ethyl alcohol pendant in air under 1 
atm at room temperature. Similar informations on the three 
characteristic quantities are given in Table 2 for the case of  q 
= 0.0153. It is seen that all three characteristic quantities in- 
crease with B -~ and q, However, the change in contact angle 
is relatively insignificant, in view of the fact that the density of 
the gas is increased by tenfold from Table 1 to Table 2. It may 
be worth pointing out that the theory is still applicable when 
the ambient gas is replaced by liquid. Then the effect of the 
ambient liquid density will be more pronounced than that shown 
in this work. 

The basic state is in static equilibrium. At the onset of  insta- 
bility the flow is largely irrotational within the viscous diffusion 
time. Hence the onset condition of  instability predicted by the 
present theory is probably adequate. The subsequent nonlinear 
evolution of the unstable flow, however, will certainly be af- 
fected by viscosity. Physics of  interline remains to be under- 
stood before a more complete theory can be advanced. 

Conc lus ions  

A liquid column resting above a gas in a vertical cylindrical 
pipe without suction at the closed upper end of the pipe, and 

without help from interline force may be stably held against the 
action of gravity by virtue of the interracial tension only if the 
height of the liquid column is sufficiently small. The critical 
height above which the column is unstable is shown to increase 
with the gas to liquid density ratio for a given Bond number. 
For a given density ratio, the critical height decreases with the 
Bond number. For the special case of a flat interface it is shown 
that the critical Bond number for the linear instability is larger 
than the known critical value predicted by the energy method, 
as expected. At the onset, the instability is monotonic without 
oscillation. 
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Hydroelastic Vibration of 
Rectangular Plates 
This paper is concerned with the virtual mass effect on the natural frequencies and 
mode shapes of  rectangular plates due to the presence of  the water on one side of  
the plate. The approximate formula, which mainly depends on the so-called nondimen- 
sionalized added virtual mass incremental factor, can be used to estimate natural 
frequencies in water from natural frequencies in vacuo. However, the approximate 
formula is valid only when the wet mode shapes are almost the same as the one in 
vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in 
general a function of  geometry, material properties of  the plate and mostly boundary 
conditions of  the plate and water domain. In this paper, the added virtual mass 
incremental factors for  rectangular plates are obtained using the Rayleigh-Ritz 
method combined with the Green function method. Two cases of  interfacing boundary 
conditions, which are free-surface and rigid-wall conditions, and two cases of  plate 
boundary conditions, simply supported and clamped cases, are considered in this 
paper. It is found that the theoretical results match the experimental results. To 
investigate the validity of  the approximate formula, the exact natural frequencies and 
mode shapes in water are calculated by means of  the virtual added mass matrix. It 
is found that the approximate formula predicts lower natural frequencies in water 
with a very good accuracy. 

1 Introduction 
When the structure is in contact with water or immersed in 

water, the vibration of the structure is transferred to the water 
and give rise to water motion. As a result, there is a discernible 
increase in the kinetic energy due to the additional kinetic en- 
ergy of the water. Because of increase in the kinetic energy, 
the natural frequencies of structures which are in contact with 
water, or immersed in water, decrease significantly compared 
to the natural frequencies in vacuo. This problem is referred to 
as the fluid-structure interaction problem or the hydroelastic 
vibration of structures. This kind of coupling problem does not 
permit the exact solution with ease. However, there have been 
theoretical approaches to the problem of circular and rectangular 
plates in contact with water based on the assumption that the 
mode shapes do not change under the influence of the water. 
This assumption leads to the following approximate formula 

fo 
f~ - ~/1 + /3F (1) 

where f~ is the natural frequency in water, fo is the natural 
frequency in vacuo,/3 = pwa/pph is a nondimensional parameter 
called a thickness correction factor in which pw and pp are the 
mass densities of the water and the plate, a is the width for 
rectangular plates and the radius for circular plates, h is the 
thickness of plates, and F is a nondimensional parameter known 
as a nondimensionalized added virtual mass incremental 
(NAVMI) factor which mainly depends on the mode shape, 
respectively. The NAVMI factor, F, reflects the ratio of the 
kinetic energy of the water and the kinetic energy of the plate. 
This formula is very handy for the calculation of the natural 
frequency change since the natural frequency in water can be 
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calculated based on the natural frequency in vacuo and the 
NAVMI factor. Hence, the determination of the NAVMI factor 
is of prime interest in this case. However, currently the available 
NAVMI factors are limited to the special cases of circular and 
rectangular plates. If the structure and the water domain be- 
comes complex, then we should seek the solution with the aid 
of the fluid finite element method (FFEM) (Zienkiewicz and 
Newman, 1969; Chowdhury, 1972; Marcus, 1978; Muthuver- 
rappan et al., 1978, 1979, 1980; Rat, 1985) or the Green func- 
tion method (Fu and Price, 1987) for the water domain in 
conjunction with the structural finite element method. Due to the 
difficulty in the theoretical approach to the addressed problem, 
experiments have been also conducted (Carrnichael, 1960, Lind- 
holm et al., 1965; Morel, 1979). 

Based on the assumption that the wet mode shapes are almost 
the same as the one in vacuo, Lamb (1920) calculated the 
change in natural frequencies of a thin clamped circular plate 
in an aperture of an infinite rigid plane wall in contact with 
water. By employing Lamb's approach, McLachlan (1932) ex- 
tended Lamb's work to the free circular plate and Peak and 
Thurston (1954) generalized the work of Lamb and McLachlan. 
Powell and Roberts ( 1923 ) experimentally verified the theoreti- 
cal results of Lamb's. Espinosa and Juarez (1984) calculated 
the pressure distribution of water numerically and compared 
theoretical results with Experimental results for the free-edge 
circular plate. Since these works are mostly related to the funda- 
mental mode of the circular plate, Kwak (1994) generalized 
the approach by employing the Fourier-Bessel series and ob- 
tained the NAVMI factors for higher modes. He also studied 
the effect of water on the mode shape and found that the funda- 
mental mode shape remains the same under the influence of 
water but higher mode shapes change. Since the Lamb's case 
is limited to the plate placed in the aperture of the rigid wall, 
his approach can not be applied to the case of the plate indepen- 
dently resting on the free surface or fully immersed in water. 
Thus, Kwak and Kim (1991) and Kwak (1991) solved the 
mixed boundary value problem and obtained NAVMI factors 
for circular plates independently resting on the free surface. All 
of these works are concerned with circular plates. 

Compared to the theoretical achievement on the circular 
plates in contact with water, there are only few available theoret- 
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ical results on the vibration of rectangular plates in contact 
with water. Kito (1944) calculated the added virtual mass of 
rectangular plates by Fourier series method. He replaced the 
plate in an aperture of an infinite rigid wall by the equivalent 
problem consisting of many plates which are in opposite phase 
with the plate of interest. This approach enables the Fourier 
series expansion so that the plate can be regarded as being 
chordwisely semi-finite and lengthwisely semi-finite. Green- 
spon (1960) calculated the effect of water on the natural fre- 
quency by using the piston theory, which leads to the erroneous 
result that the added virtual mass effect is nullified in some 
modes. Kim (1978) for the first time derived the expression in 
terms of series for the added virtual mass of the simply sup- 
ported rectangular plate which is chordwisely finite and length- 
wisely semi-finite by using the Mathieu function. His work is 
the extended version of Kito's work. However, Kim's work is 
unique compared to the previous results since the rectangular 
plate is placed inside the water domain independently without 
any additional supporting structure. Considering the boundary 
condition that Kim considered in his paper, it becomes evident 
that the plate is pseudo independent. In later papers (Kim and 
Kim, 1978, Kim, Kim, and Lee, 1979), he studied the effect 
of supporting boundary conditions of plates and presented ex- 
perimental results which verified his theoretical results. It should 
be noted here again that Kito (1944) and Kim (1978) fail to 
realize the exact boundary condition for either the plate in an 
infinite baffle or the plate independently resting on a free surface 
or fully immersed in water. This motivated the current research 
on the hydroelastic vibration of rectangular plates. 

In this paper, an attempt is made to clarify the discrepancies 
found in theoretical and experimental works. To this end, the 
NAVMI factors are obtained for uniform rectangular plates hav- 
ing simply supported and clamped boundary conditions, and 
vibrating in contact with water. Two cases are considered for 
the outside boundary condition, i.e., the case of the plate placed 
in an aperture of an infinite rigid plane wall and the case of the 
plate independently resting on a free surface. The case of the 
plate fully immersed in water amounts to the case in which 
both sides of the plate are in contact with water, so that the 
NAVMI factor in this case is the twice the value of the one for 
the plate independently resting on a free surface. 

Compared to the case of circular plates, the boundary value 
problem does not possess the closed-form expression. Thus, we 
should resort to the numerical approach. In this paper, the Green 
function is employed to solve the boundary value problem of 
the water domain. Since the resulting integral equation does not 
yield the exact form, we discretize the interfacing domain into 
a multitude of a small panel, which can be regarded as the 
Boundary Element Method (BEM). This method is then com- 
bined with the Rayleigh-Ritz method, leading to the equation 
of motion for rectangular plates in contact with water. As a 
result, the added virtual mass matrix is obtained instead of 
NAVMI factors which are in fact the diagonal terms of the 
added virtual mass matrix. The accuracy of the approximate 
formula is tested by calculating natural frequencies by solving 
the eigenvalue problem consisting of the plate mass and stiff- 
ness matrices and the virtual added mass matrix. Numerical 
results show that the approximate formula provide good accu- 
racy for the first four modes. The theoretical results obtained in 
this paper are in good agreement with the experimental results. 

2 Kinetic and Potential Energies of Rectangular 
Plates in Air 

Let us consider a rectangular plate vibrating in vacuo and 
assume that the thickness, h, of the plate is very thin compared 
to the width, a, and the length, b. Introducing nondimension- 
alized variables, ~ = x / a  and ~7 = y / b  and using the Rayleigh- 
Ritz method, we can expand the displacement vector in terms 

of the admissible functions multiplied by the time-dependent 
generalized displacement vector. 

w(~, 77, t) = W(~, ~7)q(t) (2) 

where W = [Xi(()Yi07) X2(~) Y2(r/) . . .  X,,(()Yn07)] repre- 
sent the vector of the admissible functions in which X~ (~) and 
Y~ 07) represent the admissible functions in x and y-directions 
and n is the number of the admissible functions, respectively, 
and q( t )  = [ql q2 . , -  qn]r represents the generalized velocity. 
Then, the kinetic and potential energies can be expresses as 

J . T  , .  1 D b  
T l, = ~pphabq Mp q ,  Vp = ~ - ~ -  q rKp*q  (3a, b) 

where pp is the mass density of the plate, D = E h 3 / 1 2 ( 1  - 
u2), E is the Young's modulus, u is the poisson's ratio, and 
the element of Mp* and Kp* are expressed as 

x y (M~)~j = Eo.E,y, i , j  = 1, 2 . . . . .  n (4a)  

and 

x y 1 x y 
(Kp*) o = G u E  o + ~ Ei jGq + - -  

2 ( 1  - v )  
62 

x y  
F o F o  

/ )  
x y x y + ~ (m}iHij  + Hi jH}i) ,  i,  j = 1, 2 . . . . .  n (4b) 

in which 6 = b / a  represents the aspect ratio of the rectangular 
plate and 

~ o  1 E~ = X, X f l ~ ,  

fo ~ ~ X j  d~ ,  F ~ =  X '  ' 

:o' G ~ =  X . . . .  iX:dE, 

:o' x = X X "- '~ H i j  i j u q ,  

•0 
1 

E~ = r ,~d~7,  

Yo' F~ = Y : Y : d r  1 (5a-d) 

G~ = g;'r;d~, 

Yo H~ = Y~Yj 'dr  1 (5 e-h) 

where ' indicates the derivative. Eigenfunctions of the beam 
corresponding to the boundary condition of the plate are used 
as admissible functions for the evaluation of the integrals shown 
in Eqs, (5).  

3 Added Virtual Mass 
The boundary value problem of the plate in contact with 

water can be solved by using the Green function method. This 
implies that sources of unknown strength a (Q,  t) are distributed 
on each panel over the water-vacuo or water-solid interface 
which includes the plate area. This approach is equivalent to the 
boundary element method. The velocity potential at a nominal 
position P in the water is then given by 

l::s ~(P ,  t) = ~ ~(Q, t ) G ( P ,  Q ) d S  (6) 

where G is the Green function which satisfies the boundary 
conditions. In general, G has the form of 

1 
G ( P ,  Q )  - - -  + G * ( P ,  Q)  (7) 

I P - Q I  

where G * ( P ,  Q)  is introduced to compensate the boundary 
conditions such as bottom boundary condition, free-surface con- 
dition, etc. In this paper, the water is assumed to be unbounded 
so that G* = 0. In addition, 
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I P - QI = ~/(x, - X q )  2 -1.- (yp - yq)2 -t-" (Zp - Zq) 2. (8) 

The unknown source strength cr can be determined from the 
integral equation 

l f f  s O G ( P , Q )  1 c7(P, t)  + cr(P, t)  - -  dS = v ( P ,  t)  (9) 
- ~ ~ On 

where v is the normal velocity at the point of interest. In the 
case of flat surface, ( O G ( P ,  Q ) / O n )  becomes zero. Hence, the 
source strength can be expressed in terms of the normal velocity 
given on the interfacing surface. 

~r(x,, y~, t) = - 2 v ( x p ,  y~, t)  (10) 

Inserting Eq. (10) into Eq. (6) ,  we can obtain the velocity 
potential at the interface 

l f f  s V(Xp, yp, t)  dS. (11) c/)(Xp, y/,, t)  = - -~w x/(xp -- Xq) 2 ~- (yp - -  y q ) 2  

Considering that beam eigenfunctions are used as admissible 
functions, it becomes evident that the exact integration is not 
available for such functions. Thus, we should resort to the nu- 
merical approach. Let us divide the interfacing surface into a 
multitude of a small panel and assume that the source strength 
the velocity potential are uniform in each panel. This approach 
amounts to the collocated method used in the numerical evalua- 
tion of integral equations. Hence, the velocity potential in the 
ith panel can be written as 

1 
qbi (x , ,  Yi, t) = - - -  

27r 

~ ~ l ) j  fffJ+('~Xx/2' fff  j+(z2xy/2) dxdy 
j=l Xj--(Ax/2) y~-(Ayl2) ~/(X -- Xi) 2 + (y - y i )  2 (12) 

where m is the number of square elements used to cover the 
interfacing area of interest. In matrix form, we may write 

~b = - A--~- Av (13) 
47r 

where qb = [qb~ qb2 . . . qSm] r and v = [v~ v2 . . . vm] T and 

a.=z dxdy . (14) 
Ay x~-(~:2) yj-(&y/2) ~/(x - x l )  2 + (y - yi)2 

For simplicity, let us consider a square panel, i.e., A x  = Ay.  
By introducing local variables, 

A x  Ay 
X = X j + - ' ~ - ' ~ ,  y = y j + - ' ~ - ~ ,  (15a, b)  

and nondimensionalized variables, 

~ij = 2(xi  - xj) 2(yl - y~) (16a, b)  
A x  , rh: Ay ' 

we can derive 

A o. = . (17) 
, ¢ ( ~  - ¢ ~ ) ~  + (77 - r~o) ~ 

The evaluation of the above integral was carried out using Math- 
ematica (Wolfram, 1988) and the following were obtained: 

J7 .050989 i = j 
A0 

I(~0, ~u) i ~ j 
(18) 

in which 

l(~j,~70) = (1 - q0) l°g 1 - ~0 + 51 
- 1  - ( 0  + 6~ 

+ log (1 - ~7o + 5~)(1 - ~7~J + 52) 

+ ~ : l o g - 1  +~7,) + 5, + (1 +~?~j) log 1 - ~ : +  53 
- 1  + F~: + 82 - 1  - ~ j  + 54 

- l o g  ( - 1  - q~ + 83) - l o g  ( - 1  - q~: + 8 4 )  

+ ~0 log 
1 + ~u + ~4 

1 + rio + 63 

where 

6 , = ~ ( ¢ o - 1 ) 2 + ( q u  - 1 )  2 , 8 z = ~ ( ~ u + l ) 2 + 0 7 a  - 1 )  2 

63 = ~/(~,j- 1)2 + (~70 + 1) 2, 64 = ¢ ( ~ /  "~- 1)2 "~ (~7/3 "'t- 1) 2. 

We can decompose the matrix Eq. (13) into sub equations 
belonging to the plate area and the outside area of the plate. 
Hence, we .may write 

{::}  YIA'  A,o]f, } 
47r Aop Aoo vo 

where subscripts p and o denote the plate and the outside, App 
is an l × l matrix, in which l is the number of elements belonging 
to the plate area, Apo is an l × (m - l) matrix, Aop is an (m - 
l) x l matrix, and Aoo is an (m - l) x (m - l) matrix, respec- 
tively. In the case that the plate is placed in an aperture of a 
rigid wall, then the outer boundary condition becomes Vo = 0 
and if the plate is resting independently on the free surface, 
then qSo = 0. Thus, we may write the following equation for 
both cases 

where 

A y  A*vp (20) 
' ~  = - 4 - 7  

A* = {A¢,p 
App - Al, oAo~ Ao p 

for rigid wall 
(21) 

for free surface. 

Using the same assumption used for the evaluation of the 
velocity potential, the kinetic energy of the water can be ob- 
tained by the summation of individual kinetic energy of each 
panel. 

m :L 
Tw = -~2Pw ~ qbividSi 

i=1 i 
(22) 

The summation is carried out only for the plate domain since 
the product, ~biv~, becomes zero outside the plate in either case. 
Hence, we obtain 

1 T Tw = - ~ p w A x A y  v~,&p. (23) 

At the water-plate interface, we have the relation 

vp = tIsq (24) 

where 

= [ ~ l ( x l , y l )  ~ ( x l , y l )  ' "  ~ , , (x l ,y l )  1 
~1(x2, Y2) ~(x2,  Y2) "" ~n(x2, Y2)| 

: ~ "'" ~ / " 

L (I)l ( ; / '  Yt) dP(XI, Yt) "" ~n(Xl, Yl) _] 

(25) 
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Inserting Eq. (20) into Eq. (23) and using Eq. (24), we obtain 

Tw .~ 1 . T  ~q Mwq (26) 

where 

Mw - P'vAxAy2 ~tlyr A * ~  ./ 

47r 

represents the added virtual mass matrix due to the presence of 
the water. As indicated by Eq. (27), the evaluation of the added 
virtual mass matrix depends on the evaluation of the matrix A *, 
i.e., A given by Eq. (14). Since the square element is considered 
in the discretization process, Ax  = Ay = a/N where N is the 
number of divisions in x direction, we can rewrite Eq. (27) in 
the form 

where 

2 , 
Mw = pwa bM,,, 

1 
ME - ~ rA *~P. 

47rN3 6 

4 Equation of Motion 

Using Hamilton's principle and Eq. (26), and considering 
Eqs. (3) and (28), we can obtain the equation of motion for 
the rectangular plate vibrating in contact with water. 

O K~q = 0. 
[g,* + ~ME]q + p:,ha---- ~ 

Hence, the eigenvalue problem can be written as 

IKy - k[Mp* + / 3 M ? l l  = 0 (31) 

where k = p, ha4cvZ/D. It has been assumed in the previous 
research that the normal modes do not change when the water 
is present. In order to investigate the validity of this assumption, 
let us use the eigenvalue and eigenvector of the plate vibrating 
in vacuo. Using eigenvectors, eigenvalues, and the orthonor- 

r , r ,U~, = A,, we obtain mality relations, U~,Mp Up = I and U~,Kp 

IA: - X[ /+  P,~E]I =o 

number of nodal lines in x and y-directions. In Fig. 1, the dashed 
lines are the theoretical results obtained by Kim (1978) and 
symbols represent the experimental results obtained by Kim, 
Kim, and Lee (1979). The matrix A * needs to be computed in 
order to evaluate the added virtual mass matrix. To this end, 
we need a fairly large water domain. Numerical experiments 
show that the area which is 4 times larger than the plate area is 

(27) enough for practical applications. The calculation ofA * requires 
enormous CPU time and the inversion of the partial matrix 
shown in Eq. (21) also requires more CPU time. For instance, 
if we divide the square plate area into 100 elements, then we 
need at least 400 elements for the interfacing area and should 
invert a 300 by 300 matrix. This is not desirable from the 
viewpoint of computer floating point operations and the memory 
management. It should be mentioned that the numerical calcula- 
tion performed for this research is very time-consuming and 
inefficient. As an alternative, one may consider the approach 
which shifts the pressure as the dependent variable within the 

(28) Green's integral (Terai, 1980) for the case of plates indepen- 
dently resting on a free surface. However, as shown in the 
figure, the theoretical results obtained in this paper are very 
good agreement with experimental results and lower than those 

(29) obtained by Kim ( 1978). This becomes evident since the rectan- 
gular plate considered by Kim is semi-finite in lengthwise. 

Figure 2 shows the NAVMI factors for the first four modes 
of the simply supported rectangular plates placed in the aperture 
of the infinite rigid plane wall. It can be readily seen that the 
NAVMI factors of this case is larger than those for the plates 
resting on the free surface. This is due to the fact that the rigid 
wall constrains the motion of the water thus resulting in increase 
in the kinetic energy. The dashed line is the theoretical result 
for the fundamental mode obtained by Kito (1944). There is 

(30) no experimental data for this case. 
Figure 3 shows the NAVMI factors for the first 4 modes of 

the clamped rectangular plates resting independently on a free 
surface when u = 0.3. The same area of the water domain as 
the one used for the simply supported plates is considered. 
Symbols represent the experimental results obtained by Kirn, 
Kim, and Lee (1979). As shown in the figure, the theoretical 
results obtained in this paper are good agreement with experi- 
mental results. 

Figure 4 shows the NAVMI factors for the first 4 modes of 
the clamped rectangular plates placed in the aperture of the 
infinite rigid plane wall. It can be also seen as in the case of 
the simply supported plate that the NAVMI factors of this case 

(32) is larger than those for the plates resting on the free surface. 
This can be explained by the same physical phenomena as in 

where /fie = U~,M~ Up. The assumption that mode shapes do 
not change under the presence of water amounts to saying that 
/fie is a diagonal matrix. If this is true, then we may write 

k,,~ = ka,/x/1 + /3F~ (33) 

where F~ = (/~E),,  represents the nondimensionalized added 
virtual mass incremental factor for the ith mode. However, it 
is observed that /fie is a diagonally dominant matrix but off- 
diagonal terms affect the mode shapes, so that the assumption 
is violated to some extent as shown in the numerical example. 

5 Numerical Results 

A question arising in the evaluation of the integral is how 
many elements are necessary for the convergence of the added 
virtual mass matrix. It was found from numerical experiments 
that 100 elements, which imply ten divisions in x and y-direc- 
tions, are enough for the practical application. 

Figure 1 shows the NAVMI factors for the first four modes 
of the simply supported rectangular plates resting on a free 
surface, where the numbers inside parenthesis represent the 
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Fig. 1 NAVMI factor for the simply supported rectangular plates resting 
on a free surface (dashed lines: theoretical results by Kim (1978), sym- 
bols: experiments by Kim, Kim, and Lee (1979)) 
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Fig. 2 NAVMI factor for the simply supported rectangular plates placed 
in an aperture of the rigid wall (dashed line: (1, 1) by Kito (1944)) 
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Fig. 4 NAVMI factor for the clamped rectangular plates placed in an 
aperture of the rigid wall 

the case of the simply-supported plates. There is no experimen- 
tal data for this case. 

It is found that the NAVMI factors of the simply supported 
plate is larger than those of the clamped plate. This can be 
explained by the fact that the vibration amplitude of the simply- 
supported plate is larger than that of the clamped plate due to the 
rotational freedom along its edge. This has also been observed in 
the case of circular plates (Kwak, 1991). 

To answer the question regarding the accuracy of the approxi- 
mate formula, the added virtual mass matrix was calculated by 
using 25 admissible functions for the case of simply-supported 
square plate vibrating in the aperture of an infinite plane rigid 
wall. As shown in Fig. 5, errors of natural frequencies for the 
first four modes remain very small even for large value of fl 
which implies high water effect on the plate. Thus, it can be 
concluded that the approximate formula is valid for the first 
four modes of the plate. Although wet mode shapes for the 
lowest four modes do not change significantly from dry mode 
shapes, it was observed that the higher wet mode shapes change 
thus resulting in new breed of mode shapes among natural mode 
shapes. 

6 Discussion and Conclusions 
When the structure is in contact with water or immersed in 

water, there is a discernible increase in the kinetic energy due 
to the additional kinetic energy of the water. The problem asso- 
ciated with this phenomena is called the hydroelastic vibration. 

This paper is concerned with the hydroelastic vibration of rect- 
angular plates. 

Traditionally, the approximate formula has been used for the 
prediction of changes in natural frequencies of plates in contact 
with water, which mainly depends on the nondimensionalized 
added virtual mass incremental (NAVMI) factor. The NAVMI 
factor, F, reflects the ratio of the kinetic energy of the water and 
the kinetic energy of the plate. The validity of the approximate 
formula is governed by the assumption that mode shapes do 
not change under the influence of the water. However, this 
assumption has never been questioned for rectangular plates in 
contact with water even though it is found recently that mode 
shapes change in the case of circular plates (Kwak, 1994). 

Compared to the theoretical achievement on the circular 
plates in contact with water, there are only few available theoret- 
ical results on the vibration of rectangular plates in contact with 
water. In this paper, an attempt is made to obtain the NAVMI 
factors for uniform rectangular plates having simply supported 
and clamped boundary conditions, and vibrating in contact with 
water. Two cases are considered for the outside boundary condi- 
tion, i.e., the case of the plate placed in an aperture of the 
infinite rigid plane wall and the case of the plate independently 
resting on a free surface. Coupled boundary value problem was 
solved by employing the Green function. Since the boundary 
value problem addressed in this paper does not permit the 
closed-form expression, we should resort to the numerical ap- 
proach. Hence, the interfacing area is discretized into a multi- 

0.4 

/ 
0.3 / ~  © 

0 
Z 0.2 

( 2 j )  

• [~  (2,2) 

0.I I ' [ I ' 

1.0 1.5 2.0 2.5 3.0 

b/a 

Fig. 3 NAVMI factor for the clamped rectangular plates resting on a 
free surface (v = 0.3, symbols: experiment by Kim, Kim, and Lee (fg7gl) 
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Fig. 5 Error in natural frequencies in water obtained by the approximate 
formula 

114  / Vol. 63, M A R C H  1996  T r a n s a c t i o n s  of  t h e  A S M E  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tude of small elements, which is equivalent to the boundary 
element method. We then obtained the equation of motion by 
combining the kinetic and potential energies of the plate and 
the kinetic energy of the water. We solved the eigenvalue prob- 
lem based on the mass and stiffness matrices and analyzed the 
effect of water on mode shapes as well as the accuracy of the 
approximate formula, where the mass matrix consists of the 
mass matrix of the plate and the virtual added mass matrix due 
to the presence of water. 

It turns out that mode shapes change slightly for lower modes 
but change discernibly for some higher modes. Thus, we can 
conclude that the approximate formula guarantees very good 
accuracy for lower modes. The theoretical developments made 
in this paper were confirmed by comparing them to experimen- 
tal results. 
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Local Stability of Gyroscopic 
Systems Near Vanishing 
Eigenvalues 
Vanishing eigenvalues of  a gyroscopic system are always repeated and, as a result 
of  this degeneracy, their eigenfunctions represent a combination of  constant displace- 
ments with zero velocity and the displacements derived from constant, nonzero veloc- 
ity. In a second-order formulation of  the equations of  motion, the assumption of  
harmonic vibration is not sufficiently general to represent this motion as the displace- 
ments derived from constant, nonzero velocity are not included. In a first order 
formulation, however, the assumption o f  harmonic vibration is sufficient. Solvability 
criteria are required to determine the complete form of  such eigenfunctions and in 
particular whether or not their velocities are identically zero. A conjecture for  gyro- 
scopic systems is proposed that predicts whether the eigenvalue locus is imaginary 
or complex in the neighborhood of  a vanishing eigenvalue. I f  the velocities of  all 
eigenfunctions with vanishing eigenvalues are identically zero, the eigenvalues are 
imaginary; if  any eigenfunction exists whose eigenvalue is zero but whose velocity 
is nonzero, the corresponding eigenvalue locus is complex. The conjecture is shown 
to be true for  many commonly studied gyroscopic systems; no counter examples have 
yet been found. The conjecture can be used to predict divergence instability in many 
cases without extensive computation. 

1 Introduction 
Gyroscopic systems include as examples translating and ro- 

tating strings, beams, membranes, and plates. These systems 
possess combinations of system parameters that produce van- 
ishing eigenvalues. Such combinations of system parameters 
are designated herein as critical system parameters and their 
vanishing eigenvalues and the corresponding eigenfunctions as 
critical eigenvalues and critical eigenfunctions. For the exam- 
ples listed above, critical eigenvalues occur at critical translation 
or rotation speeds. 

The eigenvalue locus of a critica~ eigenfunction plotted as a 
function of a system parameter in the neighborhood of its critical 
value can be either imaginary, and therefore result in oscillatory 
solutions, or complex and indicate exponentially growing am- 
plitudes. These two cases are normally distinguished by exten- 
sive computations. The goal of this paper is to provide an expla- 
nation for the different stabilities which can he applied without 
extensive computations. This explanation may also suggest 
techniques for controlling or improving the system's stability. 

Stability criteria for gyroscopic systems have been formulated 
for both discrete and continuous systems. For discrete systems, 
the criteria usually relate the definiteness of a combination of 
the coefficient matrices in the equation of motion to the stability 
of the system (Huseyin et al., 1983; Inman, 1988; Huseyin, 
1991). The extension of these criteria to continuous systems 
can only ensure stability when the system stiffness operator is 
positive definite (Shieh, 1971; Wickert and Mote, 1990). In the 
neighborhood of vanishing eigenvalues, the stiffness operator 
is not definite and these stability criteria do not apply. Other 
stability criteria have been developed to examine continuous 
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systems whose stiffness operator is not definite, but these crite- 
ria usually require knowledge of the system eigenfunctions 
(Shieh and Masur, 1968; Shieh, 1971), which is normally as 
difficult to obtain as the eigenvalues themselves. 

The principal observation of this work is that, for both contin- 
uous and discrete gyroscopic systems at critical values of the 
system parameters, there may exist eigenfunctions describing 
the superposition of a constant displacement and the displace- 
ment derived from a constant, nonzero velocity. This form of 
eigenfunction is excluded from the solution space when har- 
monic vibration is assumed for the second order eigenvalue 
problem, but it is natural to the first-order eigenvalue problem 
(Wickert and Mote, 1990). 

A stability conjecture is presented based on this observation 
that predicts whether the eigenvalue locus of a critical eigen- 
function plotted as a function of a system parameter in the 
neighborhood of its critical value is imaginary or complex. Al- 
though no proof is furnished, the conjecture is shown to be true 
for many commonly studied gyroscopic systems, and no counter 
examples have yet been found. The conjecture can often be 
applied to predict divergence instability without computation 
if the shapes of the critical eigenfunctions are approximately 
known. 

2 Equation of Motion 
The equation of motion of a continuous (discrete) gyroscopic 

system is represented by 

Mu,,  + Gu,, + Ku = f (1) 

where M, G, and K are linear differential (matrix) operators in 
the spatial domain, u is displacement, f is a forcing term, t is 
time, and a comma denotes partial differentiation. Symmetries 
of M, G, and K in the spatial domain give for all u and w 
satisfying appropriate boundary and continuity conditions 

(Mu, w) = (u, Mw) (Gu, w) = - ( u ,  Gw) 

(Ku, w) = (u, Kw) (2) 
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where (,) is the inner product associated with ( 1 ). M is positive 
definite. 

Equation ( 1 ) can be recast in first order form by defining the 
vectors 

w = [u,, u] r q = [ f  01T (3) 

and the matrix differential operators 

A =  [ ~  I OKI B =  [ G  K ~ ] .  (4) 

Equation ( 1 ) becomes 

Aw,, + Bw = q. (5) 

A system parameter, such as translation or rotation speed, is 
termed critical if nontrivial solutions exist to the homogeneous 
equation Ku = 0. The set of null solutions is S where 

S = { u : Ku = 0, u * 0, plus spatial boundary conditions }. 

(6) 

It is assumed that an orthogonal basis exists for S with respect 
to (,) which is denoted by {e r}. The orthogonal complement 
of S is denoted by S °rth. S is divided into two classes depending 
on how G acts on S. If there exists a u ~ S such that Gu E 
S °rth, then S is class I. Otherwise, S is class II. 

3 Free Vibration Analysis 
Initially consider the second-order system (1) with f = 0. 

Assume an admissible response of the form 

u = Re{O(x)e  ~} (7) 

where x is the spatial variable. The eigenvalue problem about 
the equilibrium u = 0 becomes 

k2M~b + kG~ + K~b = 0 (8) 

plus boundary conditions. At k = 0, the solution of (8) is given 
by 

N 

= ~ djej (9) 
j - 1  

for arbitrary d r and N -> 1. 
The inner product of (8) with ~ gives a quadratic equation 

whose roots are (Shieh, .1971 ) 

k = ½i(g _+ ~/g2 + 4k) (10) 

~b is normalized by (M~b, ~b) = 1, g = (iG~b, ~b), and k = (K~b, 
q/) The symmetries (2) ensure that g and k are real. Critical 
eigenfunctions exist when k = 0 and therefore k = 0. (The 
other solution in (10),  given by taking the + sign, gives k = 
ig which is not critical nor pertinent to the following discussion.) 
The existence of complex eigenvalues depends on the value of 
g and the sign of k. If g = 0 and k < 0, the eigenvalues are 
complex. If g ~ 0 and k is sufficiently small, the eigenvalues 
are imaginary. If the eigenfunctions are known, the values of k 
and g can be determined. However, if the eigenfunctions are 
known, so are the eigenvalues, and (10) does not provide new 
information. 

Now consider the first order system (5) with q = 0. For 
admissible response about w = 0 assume 

w = Re{[~bl(x) ~2(x)]TeXt}. (11) 

This leads to the eigenvalue problem 

~A~ + B ~  = 0 (12) 

plus boundary conditions where dp= [~bl qb2] r. At k = 0, (12) 
requires B ~  = 0, which is equivalent to the two scalar equations 

g~b l  = 0 K~b2 = - G ~ b l .  ( 1 3 )  

The assumption that k = 0 ensures that S is nonempty. The 
solution for the first of equations (13) is therefore 

N 

qb~ = ~ cjej (14) 
j= l  

where the constants cj are, for the moment, arbitrary and N >- 
1. ~b2 must satisfy 

N 

KO2 = - ~ cjGej.  (15) 
j= l  

Because K is symmetric, the solvability condition requires that 
the right-hand side of (15) be orthogonal to S (Stakgold, 
1979) l . Hence, the cj are not all arbitrary in general. If Ge r E 
S °'h, then c r is arbitrary. If, however, Ge r is not a member of 
S °'h, then solvability requires c r = 0. With this understanding, 
the solution q52 is 

N 

qb2 = Cko + ~ djer (16) 
j= l  

where ~bo is a particular solution of ( 15 ) when the cj are selected 
to render (15) solvable and the d r are arbitrary. 

The eigenfunction • represents a time independent displace- 
ment, $2, and a time-independent velocity, ~b~. The magnitude 
of the velocity q51 is either identically zero if S belongs to class 
II, or arbitrary if S belongs to class I. The homogeneous form 
of problem ( 1 ) admits the solution 

u = ~b2 + tklt. (17) 

Although (17) is a solution of (1) with f = 0, it is not an 
eigenfunction of (8) ,  derived from the assumed motion (7) .  
Under (7) the eigenfunction with k = 0 is given by (9) which 
is not identical to (16).  Hence there is not a one to one corre- 
spondence between the critical eigenfunctions of the second 
order system using (7) and the critical eigenfunctions of the 
first-order system using ( 11 ). The consequences of this insuffi- 
ciency to system stability are examined in the following section. 

4 Eigenvalue Behavior and Stability 
The possible forms of critical eigenfunctions lead to a conjec- 

ture on the behavior of the eigenvalue locus of a critical eigenso- 
lution as a system parameter is varied from its critical value. 

Conjecture: (1) If all critical eigenfunctions • have ve- 
locities th~ which are identically zero (class II) ,  then the eigen- 
value locus is imaginary for both increases and decreases in 
any critical system parameter. 

(2) If any critical eigenfunction • has a nonzero velocity 
q51 (class I) ,  then the eigenvalue locus is complex with nonzero 
real part for some change in any critical system parameter (ei- 
ther an increase, a decrease, or both). 

For many commonly studied gyroscopic systems, the above 
conjecture is true and allows prediction of the behavior of the 
eigenvalue loci near a vanishing eigenvalue without extensive 
computation. Consider the following examples: 

1 A tensioned string translates along its length and is pinned 
at its ends such that the transverse displacements at x = 0 and 
x = 1 are zero (Wickert and Mote, 1990). The dimensionless 
velocity is v, and M, G, and K are 

We assume the range of K is closed so that the solvability condition is both 
necessary and sufficient. 
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Fig. 1 Eigenvalues of a clamped-pinned, axially moving beam as a func- 
tion of velocity./~2 = 100, The critical translation speeds are marked by 
the arrows. The numbers in parentheses on the imaginary curves indicate 
the number of interior nodes in the corresponding eigenfuncUon. 

02 
K = (v 2 - 1 ) - -  (18) M =  I G = 2Vox Ox 2 

where I is the identity operator. Critical speed is v = 1 where 
K = 0. Clearly when K = 0, the equation K&z = -G~b~ is 
insoluble for ~2. S is spanned by 

e j=  s in( j r rx)  j =  1 ,2 ,3 ,  ' ' '  (19) 

S °'h is empty so G acting on S never returns members of S °'h. 
S is class II and the eigenvalues are imaginary for v in the 
neighborhood of v = 1. 

2 A tensioned beam translates along its length at velocity v 
subject to either clamped or pinned boundary conditions at x = 
0 and x = 1. With the dimensionless tension denoted by #2, 
M, G, and K are (Wickert and Mote, 1990) 

0 4 0 2 
M =  I G = 2v--:-- K=-7-s~+  (v 2 -  #2) (20) 

Ox--5 . oX OX" 

S is nonempty only at specific velocities at which it contains 
one element satisfying Kel = 0. It is assumed in all Examples 
that S °r'h is spanned by all the noncritical eigenfunctions and 
that S U S °r'h is complete. The solvability condition reduces to 

(Ge,,  el) = 2v el,xeldX = v(e,)210 ~ = 0. (21) 

Hence as long as the displacements at x = 0 and x = 1 vanish, 
S is class I, critical eigenfunctions exist with arbitrary velocity, 
and the eigenvalues are complex near critical speed. Figure 1 
shows the frequency spectrum for a clamped-pinned beam with 
#2 = 100 which confirms the prediction. Although both diver- 
gence and flutter instabilities exist above the first critical speed, 
the conjecture addresses only those instability regions which 
begin or end with vanishing eigenvalues (i.e., the divergence 
instabilities). 

3 An axisymmetric disk rotating at speed f2 is described by 
the operators (Iwan and Moeller, 1976) 

0 
M = I  G = 2 f 2 - -  

00 

K = ~ , 4 _ 1 . _ ~ 2 0 2  1 0 (  0 )  1 0 2 

002 r Or rcrr ~r - 7 ~ cr° ~ (22) 

where V 4 is the biharmonic operator, Crr and ~r0 are the axisym- 
metric radial and hoop stresses, and the disk domain is described 
by polar coordinates (r, 0) fixed in the nonrotating frame of 
reference. Under appropriate boundary conditions this system 
possesses critical speeds with a fixed number of nodal diame- 
ters, n, where n is greater than one (lwan and Moeller, 1976; 
Renshaw and Mote, 1992). The elements of S can be written 
in alternative forms of which any two are linearly independent. 

h(r )  cos (nO), h(r)  sin (nO), h ( r ) e  i'°, h ( r ) e  -i"° (23) 

Note that the value of g at critical speed in (10) depends on 
which eigenfunction in (23) is used. However, regardless of 
the critical eigenfunction used, G operated on it never gives an 
element of S °"h. Hence S is class II and the eigenvalues are 
imaginary near critical speed. The eigenvalues of a disk clamped 
at inner radius r = 0.1 and free at r = 1 are shown in Fig. 2. 
As the eigenvalues exist in complex conjugate pairs, only the 
non-negative one of each pair is shown. 

4 Consider predicting the eigenvalues of the disk in Example 
3 using Galerkin's method and suppose the trial functions se- 
lected are proportional to cos (nO) only (i.e., the trial functions 
are not proportional to sin (nO)). For n -> 1, all members of 
G operating on S are elements of S °r'h which makes S class I. 
According to the conjecture, the critical eigenvalue will be com- 
plex near critical speed. This is proved by noting that application 
of Galerkin's method with cos (n 0) eliminates the contribution 
of G through the orthogonality (GWm, WR) = 0 for all m and n 
where w,, is a trial function with m nodal diameters. The pre- 
dicted eigenvalues are identical to those obtained when G = 0, 
which is a self-adjoint eigenvalue problem that exhibits diver- 
gence instability. 

5 An axisymmetric rotating disk is subjected to a fixed, sta- 
tionary, transverse spring of spring constant k'. The operators 
of this system are identical those of Example 3 if K is modified 
to 

K =  ~74..1_ ~_~2 02 1 0 ( ~r )  
002 r Or rat 

1 02 
r2 O" O " ~  + k ' 6 ( r  - ro)~(O)/r (24) 

_s 

2 4 e 

--°T I Critical Speeds - - I  . 

Fig, 2 Eigenvalues of an axisymmetric rotating disk clamped at r = 0,1 
and free at r = 1. The eigenvalues are imaginary, complex conjugate 
pairs. Three critical speeds are indicated by the arrows. The numbers in 
parentheses indicate the number of nodal diameters in the correspond- 
ing eigenfunctions. For the eigenvalues shown, all corresponding eigen- 
functions have zero nodal circles. 
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Fig. 5 Eigenvalues of an axisymmetric rotating disk that is loaded by a 
stationary spring and is allowed rigid-body translation and tilting 

where 6 ( ) is the delta function and the spring is located at r 
= ro, 0 = 0. At any critical speed of the system in Example 3, 
the presence of the spring eliminates one of the two linearly 
independent critical speed modes (23). S is therefore spanned 
by 

el = h ( r )  sin ( n O ) .  (25) 

Because Gel E S °r'h, S is class I and the eigenvalues are complex 
near critical speed. This is illustrated in Fig. 4 for a system 
identical to Fig. 3 except that k' = 500 and ro = 0.8. Galerkin's 
method was used to determine these eigenvalues with trial func- 
tions up to and including four nodal diameters. Both divergence 
and flutter instabilities are observed and the number of critical 
speeds is greater than in Fig. 2. However, each critical speed 
in Fig. 2 also appears in Fig. 3 as a complex eigenvalue locus 
near critical speed. This is consistent with the conjecture. 
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Fig. 4 Eigenvalues of Example 6, an axisymmetric rotating disk loaded 
by a stationary spring whose stiffness Increases quadratically with rota- 
tion speed away from the first critical speed of the axisymmetric disk 
(see Fig. 2) 

6 The following system is designed to partly test the ro- 
bustness of the conjecture. Modify the system in Example 5 by 
tuning the spring stiffness to one of the critical speeds, ~cr. 

k' = ko' (f~ - fief) z. (26) 

At f~ = f~cr, the system is identical to that in Example 3 for 
which the eigenvalue locus is imaginary. However, away from 
f~ = f~cr the system is that in Example 5 for which the eigenvalue 
locus is complex. Figure 4 shows a magnified view of the 
eigenvalue locus near the first critical speed of Example 3: f~cr 

= 4.37500 and k" = 500. The stiffness k' perturbs the original 
critical speed solution into two critical speeds. The first remains 
at 4.37500 and the eigenvalue locus in the neighborhood of this 
speed is imaginary as predicted. The second critical speed is 
slightly greater than 4.37500 and the eigenvalue locus in its 
neighborhood is complex. Hence, within the accuracy of the 
Galerkin solution, the conjecture is satisfied. 

7 Consider the system in Example 5 with the disk driven on 
a spindle by splines that allow itto freely slide along the spindle 
rather than being clamped rigidly at the inner radius. This sys- 
tem models a guided, free-center circular saw in common use 
(Mote, 1977). At any critical speed of the unclamped system, 
S is spanned by 

el = h ( r )  sin ( n O ) ,  ez = h ( ro )  - h ( r )  cos ( nO) .  (27) 

( h ( r )  is similar to the radial distribution of the critical speeds 
of Example 3, but not necessarily equal since it does not satisfy 
the same boundary conditions at r = •.) G applied to S is not 
a member of S °r'h and S is class II. Therefore the eigenvalues 
are imaginary as they pass through all critical speeds. Figure 5 
shows the eigenvalues for the system in Fig. 3 with the disk 
allowed to translate and rotate rigidly. As predicted by the con- 
jecture, the eigenvalues are imaginary across all critical speeds. 

5 Discussion 
The coalescence of an eigenvalue and its complex conjugate 

(which is not shown in the figures) occurs at critical speed. 
Hence, ~ = 0 is always a repeated eigenvalue. The generaliza- 
tion of the admissible motion for m repeated eigenvalues is 

u = [01(x) + t O z ( x )  + " ' "  + t m - l t p m ( x ) ] e  xt (28) 

(Shieh and Masur, 1968). With k = 0, this generalization is 
analogous to the generalized eigenvectors obtained from ama- 
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trix with repeated, vanishing eigenvalues. When the Jordan ca- 
nonical form is diagonal (i.e., the null matrix), the matrix de- 
scribes a class II problem since the exponential of the matrix 
is a constant. When the Jordan canonical form has unity on the 
off diagonal, the matrix describes a class I problem because the 
exponential of the matrix gives a solution similar to (17). 

The conjecture may extend to merging eigenvalue loci which 
do not occur at k = 0. However, the calculations involved in 
determining the eigenfunctions when k ,~ 0 appear to prohibit 
any useful insights. For example, at the onset of flutter instabil- 
ity the eigenfunctions have the generalized form described in 
(28) with m = 2. Substitution of (28) into the homogeneous 
form of ( 1 ) gives 

k2M02 + kG~O2 + K~02 = 0 (29) 

k2M~01 + kG~0, + K~0, = -2hM~2 - Gab2. (30) 

Because the value of k is not known, this problem is as compli- 
cated to solve as the original one. Further, the first-order repre- 
sentation of the equation of motion is not a simplified formula- 
tion. Numerical computation is required to find these solutions. 

The conjecture does not distinguish whether the system pa- 
rameter must be increased or decreased in order to produce 
complex eigenvalues when S is class I. However, when K is 
positive definite, the system eigenvalues are imaginary. For 
many systems such as rotating disks and translating strings and 
beams, K is positive definite until the first critical speed is 
reached. Consequently, complex eigenvalues and divergence 
instability can only occur above the first critical speed, not 
below. The conjecture, then, predicts whether or not this hap- 
pens. 

Perturbation methods do not offer a convenient method to 
establish conditions under which the conjecture is true. When 
the eigenvalue is considered as a function of the system parame- 
ters, the critical system parameters are branch points of that 
function (Bender and Orszag, 1978; Chen and Ginsberg, 1992). 
In fact, formal perturbation of a critical eigenvalue always pre- 
dicts imaginary eigenvalues. 

No counter examples to the conjecture have been found for 
which the system operators vary in a continuous manner. How- 
ever, if discontinuous system operators are allowed, counter 
examples are easily constructed by juxtaposing different system 
operators at the critical values of system parameters. Any proof 
of the conjecture must therefore restrict the continuity of the 
system operators. 

The results discussed are applicable to both continuous and 
discrete systems. For both systems, the conjecture is most useful 
when the approximate critical eigenfunctions are known. In 
these cases the influence of proposed modifications on the criti- 
cal eigenvalues can often be assessed without extensive compu- 
tation. For example, if the free-free disk of Example 7 is to 
be supported by multiple springs, the conjecture predicts that 
divergence instability is avoided whenever some combination 
of rigid translation and tilting of the disk produces two, linearly 
independent critical eigenfunctions involving no deflection of 
the springs. Accordingly, any disk supported by three or fewer 
springs, in any arrangement, avoids divergence instability be- 
cause the three degrees-of-freedom represented by rigid-body 
translation and tilting permit two linearly independent critical 
eigenfunctions to exist. If four springs support the disk, diver- 
gence instability occurs except for critical eigenfunctions with 
4, 8, 12 . . . .  nodal diameters. If the disk is only allowed rigid 
translation without tilting, then divergence instability is avoided 
at the first critical speed only if the springs are located at inter- 
vals of 27r/n, where n is the number of nodal diameters in the 
first critical eigenfunction. (The authors thank the anonymous 
reviewer for his comments on this example.) 

6 Summary and Conclusions 
1 Critical eigenfunctions have vanishing eigenvalues and 

describe both constant displacement and the displacement de- 
rived from a constant velocity. These eigenfunctions are ex- 
cluded by the assumption of harmonic vibration in a second 
order formulation of the equation of motion of a gyroscopic 
system. However, these eigenfunctions arise naturally from the 
assumption of harmonic vibration in a first order formulation. 
It has long been recognized that the representation of eigenfunc- 
tions of repeated eigenvalues, such as critical eigenvalues, re- 
quire more general formulations than simple harmonic vibra- 
tion. The contribution of this study is to note that such a general- 
ization is not required for a first-order formulation of gyroscopic 
systems and to relate the different kinds of eigenfunctions to 
the system stability. 

2 The following conjecture is proposed to predict whether 
the eigenvalue locus of a critical eigenfunction is imaginary or 
complex in the neighborhood of critical system parameters: 

If all critical eigenfunctions have velocities which are identi- 
cally zero, then the eigenvalue locus is imaginary in the 
neighborhood of the critical values. If any critical eigenfunc- 
tion has a nonzero velocity, then the eigenvalue locus is 
complex. 

3 The conjecture is shown to be true for many commonly 
studied gyroscopic systems and no counter example with contin- 
uous system operators has yet been found. No proof is furnished 
although it is clear that a proof requires conditions on the conti- 
nuity of the system operators. The positive test cases examined 
here suggest that the conjecture may be true for most gyroscopic 
systems derived from physical models. 

4 The value of the conjecture for engineering purposes is 
its application to stability prediction. These predictions can of- 
ten be based on an approximate knowledge of the shapes of the 
critical eigenfunctions. Not only does this reduce the numerical 
effort required to predict system stability, but it also can help 
guide system design to improve, control, or avoid degrading 
system stability. 
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Stability and Vibration of a 
Rotating Circular Plate 
Subjected to Stabonary 
In-Plane Edge Loads 
This paper predicts transverse vibration and stability of a rotating circular plate 
subjected to stationary, in-plane, concentrated edge loads. First of all, the equation 
of motion is discretized in a plate-based coordinate system resulting in a set of 
coupled Hill's equations. Through use of  the method of multiple scales, stability of 
the rotating plate is predicted in closed form in terms of the rotational speed and 
the in-plane edge loads. The asymmetric membrane stresses resulting from the station- 
ary in-plane edge loads will transversely excite the rotating plates to single-mode 
parametric resonances as well as combination resonances at supercritical speed. In 
addition, introduction of plate damping will suppress the parametric instability when 
normalized edge loads are small. Moreover, the radial in-plane edge load dominates 
the rotational speed at which the instability occurs, and the tangential in-plane edge 
load dominates the width of the instability zones. 

1 Introduction 

Vibration and stability of rotating, circular, Kirchhoff plates, 
subjected to various boundary conditions, loading and excita- 
tions, thermal environments, and asymmetry, have been ana- 
lyzed extensively in the literature to predict response of com- 
puter disk drives, circular sawing rigs, and other rotating ma- 
chine components. 

In computer disk drives, rotating disks are sandwiched by a 
pair of read/write heads, which are often modeled as a station- 
ary spring-mass-dashpot system. Vibration of disk drives, in 
general, are not desirable, because it will limit the area density 
of the disk drives and will increase the chance of the heads 
crash into the disks. On the other hand, the disk drive industry 
has been trying to increase the rotational speed of disk drives, 
because higher rotational speed implies higher data access rate. 
Existing literature, however, has shown that higher rotational 
speed results in larger vibration and possible instabilities of 
the disk drives, especially when the rotational speed exceeds a 
particular limit called critical speed. For example, Iwan and 
Stahl (1973) analyzed transverse vibration of a stationary 
Kirchhoff plate subjected to a rotating spring-mass-dashpot sys- 
tem. They found that the stiffness, inertia, and damping of the 
read/write head can excite the disk to instability of different 
natures at supercritical speed. Iwan and Moeller (1976) modi- 
fied this model and included centrifugal in-plane stresses to 
predict vibration and stability of a rotating disk subjected to a 
stationary spring-mass-dashpot system. Shen and Mote (1991, 
1992) used a coordinate system fixed to the rotating plate and 
concluded that the stiffness and the inertia of the read/write 
head parametrically excite the system to resonances, and the 
damping of the read/write head serves as negative damping at 
supercritical speed destabilizing the system. Ono et al. ( 1991 ) 
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and Chen and Bogy (1992a, 1992b) studied how the stiffness, 
inertia, and damping of the read/write head affect vibration and 
stability of a rotating circular plate from a coordinate system 
fixed in the space. To suppress these instabilities, Shen (1993) 
introduced damping treatments to circular plates and demon- 
strated that the plate damping can suppress parametric reso- 
nances caused by small stiffness of the read/write head. 

Similar problems arise in circular sawing rigs. In sawing rigs, 
rotating circular saws are sandwiched either by a stationary fluid 
film bearing to position the saw or by the workpiece during 
cutting process. Such a system is also commonly modeled as a 
rotating circular plate subjected to a stationary spring-mass- 
dashpot system. Similar to disk drives, vibration of saw blades 
is not desirable, because it results in inaccurate machining, 
waste of raw materials, and excessive wear and early fracture 
of the saws. Although vibration of sawing rigs becomes severe 
as rotational speed increases, sawmills have been trying to oper- 
ate their sawing rigs at increased rotational speed, because 
higher rotational speed implies higher productivity. 

Compared with disk drives, sawing rigs have their unique 
factors to consider. For example, boundary conditions are a big 
concern in circular saws. Sawmills use circular saws whose 
inner rim is free and floating on the arbur, called floating collar 
saws. The semiconductor industry often uses a circular saw that 
is fixed at outer rim to cut silicon ingots through a central hole 
of the saw (Chonen et al., 1993). In addition, thermal membrane 
stresses resulting from cutting process can change natural fre- 
quencies and vibration mode shapes of the saws (Mote, 1967). 
Severe thermal environments can produce large in-plane ther- 
mal stresses that buckle a saw (Yu and Mote, 1987). Moreover, 
in-plane membrane stresses are often introduced purposely by 
rolling the plate to create plastic deformation (Mote, 1965). 
The purpose of rolling is to increase natural frequencies and 
the critical speed of the saws, so that the saws can be operated 
at increased rotational speed. 

Though much research has been done in this area, vibration 
and stability of rotating saw blades under cutting conditions, 
however, remain open. In general, in-plane loading creates in- 
plane membrane stresses, which subsequently affect both in- 
plane and transverse vibration of the rotating plate. For example, 
Srinivasan and Ramamurti (1980) and Leung and Pinnington 
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(1987) calculated free and forced in-plane vibration response 
of rotating disks subjected to in-plane edge loads. For lateral 
vibration, researchers have found that stationary in-plane edge 
loads create an asymmetric stress field in a nonrotating circular 
plate. The asymmetric stress field will change natural frequen- 
cies of the circular plate, and therefore the critical speed and 
buckling load (Carlin et al., 1975; Radcliffe and Mote, 1977). 
For rotating plates subjected to stationary in-plane loading, 
Chen and Bogy (1993) showed by sensitivity analysis and nu- 
merical computation that the asymmetric membrane stress field 
in a spinning disk by a stationary circumferential friction force 
has no effect on the stability of the transverse vibration of the 
disk except at specific rotational speeds. At or near those spe- 
cific rotational speeds, the sensitivity analysis fails and no con- 
clusions on the stability can be made. Also Chonen et al. (1993) 
showed by numerical simulation that in-plane slicing load, in 
general, has no noticeable effect on frequencies and stability. 
Later on, Chen(1994) showed that a rotating disk, subjected 
to a radial, in-plane, concentrated edge load, can undergo insta- 
bility in transverse vibration at specific rotational speeds. If the 
radial in-plane load is a follower force, the instability results 
entirely from the asymmetric membrane stresses. If the radial 
in-plane load is conservative, the instability results partly from 
the asymmetric membrane stresses (<5  percent) and primarily 
from boundary effects. Chert (1994), however, did not predict 
analytically the rotational speed at which the instability occurs, 
nor did he explain the mechanism of the instability. 

In light of Chen's work (1994), this paper presents research 
results independently performed by the authors (Song, 1993) to 
demonstrate that the asymmetric membrane stress field resulting 
from the stationary edge loads can excite a rotating circular plate 
transversely to parametric resonances at particular rotational 
speeds. In addition, this paper predicts analytically the rotational 
speed at which the instability occurs and the width of the insta- 
bility zones through use of the method of multiple scales. More- 
over, this paper suggests that plate damping will suppress the 
instability when normalized edge loads are small. 

Existence of parametric resonances of a rotating plate sub- 
jected to stationary asymmetric membrane stresses can be dem- 
onstrated as follows. Consider a plate-based observer rotating 
with the circular plate. Because the plate is rotating and the in- 
plane edge loads are stationary, the plate-based observer will 
see a rotating asymmetric membrane stress field produced by 
the stationary in-plane edge loads. Therefore, the plate-based 
observer will experience a periodic change in plate stiffness. If 
the rotational speed is appropriate, small transverse disturbances 
will excite the plate to primary and combination resonances 
transversely. 

It should be noted that the results reported in the existing 
literature (Chert and Bogy, 1993; Chonen et al., 1993) do not 
contradict the results presented in this paper. A quick review 
of the existing literature shows clearly that Chen and Bogy 
(1993) assumed the rotational speed being far away from para- 
metric and combination resonances, and Chonen et al. (1993) 
used a too small normalized edge load in their simulations to 
find the instability zones numerically. Results from Chen and 
Bogy (1993) and Chonen et al. (1993) will be discussed in 
detail in this paper to reveal how the present paper complements 
their previously work in this area. 

In this paper, the equation of motion from Chen and Bogy 
(1993) is discretized in a coordinate system fixed in the space 
resulting in a set of coupled, second-order ordinary differential 
equations with constant coefficients and gyroscopic terms. 
Through a transformation to a coordinate system fixed to the 
rotating circular plate, the gyroscopic equations become a set 
of coupled Hill 's equations with periodic coefficients. Then the 
coupled Hill 's equations are solved analytically through the 
method of multiple scales. Existence of secular terms deter- 
mines the frequencies at which parametric resonances occur. 
Elimination of the secular terms then predicts how the width 

of instability zones depends on the rotational speed and the 
magnitude of the in-plane edge loads. The frequencies and 
widths of parametric instabilities are determined for both un- 
damped and damped circular plates. Finally, results obtained 
from the method of multiple scales are illustrated numerically. 
How normal and tangential edge loads and plate damping affect 
the parametric resonances are also discussed. 

2 Formulation 

Consider a linear, homogeneous, isotropic, elastic, axisym- 
metric, circular plate rotating at constant speed ~2 and subjected 
to stationary in-plane edge forces P and T as shown in Fig. 1. 
Let (r ,  0, z) be a stationary coordinate system fixed in the space 
and (r ,  ~b, z) be a coordinate system fixed to the rotating plate. 
Also, let w(r, O, t) be the plate deflection and let p and h be 
the density and the thickness of the plate, respectively. In addi- 
tion, the plate may be fixed, free, or simply supported at inner 
boundary ( r  = a) or outer rim (r  = b). 

The equation of motion of a rotating plate subjected to a 
symmetric centrifugal stress field try*, try* and an asymmetric 
membrane stress field trrr, tree, and fro is (Chen and Bogy, 
1993 ) 

/ 02w O2w ~2 02w ] 
P q , - a 7  - m + OtO0 002 ] 

-}- D~74W + phL~w + L2w = 0 (1) 

where D is the flexural rigidity of the plate, 

L , -  h O  o-,rOW  ho O w (2) 
r Or \ OrJ r 2 002 

and 

=-7  ~r rtrrr~r+~'rO 

0( 0 ,  
+ ~ r~o 5 7  + - ~°° . ( 3 )  r 

The explici t expressions of trrr, tr00, and fro are given by Carlin 
et al. (1975) for the radial load P, and are shown in the Appen- 
dix for the tangential load T (Song, 1993). In addition, (1) has 
to satisfy boundary conditions at r = a and r = b. The boundary 
conditions may take several different forms, depending on 
whether the in-plane edge loads are conservative or not (Chen, 
1994). 

The equation of motion can be discretized through an eigen- 
function expansio n 

Fig. 1 

Z 

w(r,t) 

x r ~  j a 
A rotating circular plate subjected to in-plane edge loads 
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w(r ,  O, t) = ~ Y. ~Om,,(r, O)A~.(t) .  (4) 
m=0 n = - - ~  

Here qJm,,(r. O) is the (m, n) complex mode shape of the corre- 
sponding, stationary, axisymmetric elastic plate subjected to 
centrifugal membrane stresses a*  and a * ,  i.e., ~b.,. satisfies 

D~74~t,nn "t- phLlO,.. = w],,,pht~ ..... (5) 

where w],,, is the natural frequency of mode (m, n). Notice that 

Rmn(r)e i"O 
O,,,,,(r, O) = ~,,,._,,(r, O) qphb 2 (6) 

where R,.. ( r )  is a linear combination of Bessel's functions satis- 
fying the boundary conditions at r = a and r = b. Moreover, 
Rm,, (r) is normalized such that 

fA Ph~. , . (r)@,q(r)dA 

= f phqlm_,,(r)tppq(r)dA = 6,,,p6,,q (7) 
Ja 

and 

fA ~bmn[DV4@,q + phL~@,q]dA = ~mp6nq&t2m ( 8 )  

where the integration is carried out over the disk domain A. 
Also notice that both Rm.(r) and 2 ~o,,,,, depend on the rotation 
speed f~. Moreover, A,. .( t)  in (4) is the complex generalized 
coordinate associated with O,,,,,(r, 0) satisfying A.,,,(t) = 
Am,-.( t) ,  where the overbar denotes the complex conjugation. 

In discretizing Eq. ( 1 ), great care must be taken in handling 
the boundary conditions. If the edge loads are follower forces, 

then £ £ ~O,,,.(r, O)A,,,.(t) in (4) will satisfy the boundary 
m=O n 

conditions of (1) (Chen, 1994). Therefore, it is legitimate to 
substitute (4) into (1),  premultiply (1) by ~ .... integrate (1) 
over the disk domain A, and apply the orthogonality conditions 
(7) and (8) to obtain 

A;.,, - 2in~L~,,,. + (w2.,. - n=~2)A,,,,, + Z Y. Cmnt, qApq = 0 
p = 0 q =  

m = 0 .  1 . . . . .  n = 0 , ± 1 ,  ±2 . . . .  (9) 

where 

Cmnpq = Cpqmn = fA t~""Ia~bvuda 

f A [  ~ O 0 ~ l t n n O ~ l P q  
0~,.. OqJp~ + 

= h O'r Or Or r 2 O0 O0 

+ (ONto,, + _ _  dA.  (10) 
r \ Or O0 O0 

Therefore, follower edge loads will affect the stability only 
through the asymmetric membrane stress filed characterized by 
coefficient Cm,,pq. 

If the edge loads are conservative and do not change their 

directions during the transverse vibration, then £ Z Om,(r, 
m = 0  n =  

O)Am,,(t) in (4) will not satisfy the boundary conditions of (1) 
(Chen, 1994). In this case, one way to discretize (1) is to 
transform ( 1 ) and its boundary conditions into an integral equa- 
tion. Then the integral equation is discretized through (4).  The 
resulting equation will be identical to (9) with an additional 
term from the boundary conditions. Therefore, conservative 
edge loads affect plate stability through both the asymmetric 
membrane stresses and the boundary. Since the purpose of this 

paper is to demonstrate the instability resulting from the asym- 
metric membrane stresses, only Eq. (9) will be addressed in 
the sequel. 

Equation (9) is the governing equation in a stationary coordi- 
nate system (i.e., from a ground-based observer) and has con- 
stant coefficients. This governing equation, however, loses its 
positive definiteness at supercritical speed and makes closed- 
form predictions of instability regions very difficult. To facili- 
tate analytical predictions, the governing equation (9) can be 
written in a coordinate system fixed to the rotating plate (i.e., 
from a plate-based observer) with the coordinate transformation 
0 = ~b - ~2t and q.,~(t) = e-~"a'A,.,,(t), where qm.(t) is the 
generalized coordinates associated with the mode shape ~0,..(r, 
~b) in the rotating coordinate system. Therefore, (9) becomes 

~,,,,,(t) + w~,,,qm,,(t) + Z Z Cm,,pqe'<q-")a'q,,q(t) = 0 
p-O q - - ~  

m = 0 . 1  . . . .  ; 

for the plate-based observer. 
requires that 

CX)mn ~ Wm,_n~ 

q,,,,,(t) 

n = 0, ±1, ±2 . . . .  (11) 

Moreover, the plate axisymmetry 

Rm,,(r) = Rm-,,(r),  

= c~,._,(t). (12) 

To normalize ( 11 ), let Wcr be the critical speed of a circular 
plate defined as 

= min ~f'/ satisfying ~ = ~o,,,,,(~2) ~ c r  
L n 

m = 0 ,  1,2 . . . .  ; n =  1,2 . . . .  "~. 13) 
J 

In addition, let 

~Omn ~ Cmnpq 
"I" ~-  OJcrt , f lnm ~ - -  , 03 ~ - -  ~ ~KCmnpq ~ 2 

~Z)cr O')cr ~ cr 

where 

14) 

£K -- m P T 
o r  

p ~ h b 3 w ~  p~hb3w~r 
15) 

is a small load parameter associated with the normal or tangen- 
tial edge loads] Through the normalization above, the plate- 
based governing Eq. (11 ) is normalized as 

d2q"-----2 + fl~nnqmn + ~., ~ ~KCmnpqei(q-n)~ qpq = 0 
dr 2 

p = 0  q = - ~  

m = 0 .  1 ,2  . . . .  ; n =  +1. +2 . . . . .  (16) 

When viscous plate damping is present, an additional term 

~ d,,,pq dql'q 
d r  (17) 

p=O q =  

will appear in (16), where dm,,pq is the modal damping coeffi- 
cient. A simplified model is lightly damped Kelvin viscoelastic 
plate (Shen 1993). In this case. 

t The assumption of  small eK is made to facilitate analytical predictions of  
stability through the method of  multiple scales. For large ere, the method of 
multiple scales will only give the first-order approximation. The assumption of 
small eK is, in fact, reasonable for many applications. For example, Chonen et al. 
(1993) measured the radial slicing load P = 36.18 N and the tangential slicing 
load T = 9.65 N for a saw with a = 12.0 cm, b = 31.25 cm, h = 0.15 mm,  u = 
0.28, p = 7.84 × 103 k g / m  3, E = 1.99 × 10 u Pa, and tJer = 1550 rpm. The 
resulting eK is 0.0122 for the radial slicing load P and 0.00325 for the tangential 
slicing load T. 
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dm,pq = el.z6,,.,p6,,qfl2m,, (18) 

where e #  is a small damping parameter. Therefore, the equation 
of motion of the damped plate will be 

d2qm-----'E + e~/3~,, dqmn 
d ' f f  ~ + /3 2"*" qm" 

+ Y. Y~ eKc,,,,~d(q-")"~qpq = 0 
p = 0 q =  

m = 0, 1,2 . . . .  ; n = _+1, +2 . . . . .  (19) 

Stability Analysis 
The method of multiple scales is used to predict the stability 

of (19). Assume that 

q.,,,(7-) = q}2,~(r, T~) + eq~2(r,  Tl) + . . .  (20) 

where T~ -= er. Substitute (20) into (19) to obtain 

/~2 ~ ( 0 )  ( D o  2 + . . . . .  Itlmn = 0 (21) 

and 

(D~ + /3~,,)q~,] = -D0(2D~ + #/3],.)q~,°2 

• -~mnpq ~ "lpq 
p=0 q=--~ 

where Do =-- O / O r  and D~ =-- O / O T j .  Solve (21) to obtain 

q~2  = Am,,(Tl)eiem2" + B . , , , (T i )e -%, , , " .  (23) 

Notice that qmn( 7- ) = Ulm,_n( 7" ) resulting in 

A m - . ( r )  = B, , , , , (r) ,  B . , _ , , ( ' r )  = A m , , ( r ) .  (24) 

Substitute (23) into (22) to obtain 

/"~2 ] ~ ( I )  = -- i /3m, , (2Dl + IZ/3z.,,,,) ( D o  2 + . . . .  ~-tmn 

X [Amn(T1)ei&,~ ~- - Bm,~(T1)e-iP,o,, ~] 

-- ~ ~ KCmnpqe i(q-n)a'r 

p=0 q=--~ 

× [Apq(T1)ei'e,q ~ + B, ,q(Tl)e- iep, ,r] .  (25) 

Consider a vibration mode q m , ( r ) ,  parametric resonances 
involving only a single-mode qm, , ( r )  may occur at 2 n w  = 2/3m~, 
n > 0. Combination resonances with mode (p, q) may occur 
at two different speeds: ( q  - n)co  = /3=, + /3pq, q > n -> 0 
and (q + n)cv = /3m, + /3pq, q > 0, n --> O, n * q .  The stability 
of an undamped plate (i.e., # = 0) is derived as follows. 

3.1  S i n g l e  M o d e  P a r a m e t r i c  R e s o n a n c e  at  2nw = 2/3m. 
+ Co', n > 0. When 2n~ ~ 2~3ran, secular terms in equation 
(25) is 

S T  = -2 i /3 , ,mDl (Amne  i~m,,r -- B,, , .e-i&,,  ' )  

--  KC . . . . . .  (Amn eiB''''r + Bmne -i~m"r) 

-- I¢C . . . . .  - . A m , - . e  i~''"''-iGT'. (26) 

To obtain bounded solutions q~m~2, elimination of secular terms 
in (26) results in 

-2 i / 3 . , , ,D lAm.  -- KC ...... A,,~ = 0 (27) 

2i/3mnDIBmn - KC . . . . .  Bran --  KCm . . . . .  J~mn e-iaTl = 0 (28) 

where (24) has been used. From Eq. (27), 

where Co is a constant of integration. Since c.,.pq is Hermitian, 
c ..... is real; therefore, A m n ( T i )  is always oscillatory and 
bounded. To solve Eq. (28), assumed that (Nayfeh and Mook, 
1987) 

Bmn(T1) = [x(Tl) + i y ( T l ) ] e  -O°/2)rl .  (30) 

Substitute (30) into Eq. (28) to obtain 

2/3,..2 + (o./3,.,, - Kc . . . . .  -~- K g t [ c  ....... _,,])y 

-K~[c  ... .  _ , ] x = 0  

2/3,,,..9 + ( - o / 3 , . , ,  + Kc . . . . .  -~ 14,~)~[C . . . .  - h i )  x 

-- K~[C . . . . .  - . ] y  = 0. ( 3 1 )  

Therefore, x and y have unbounded response when 

O- KCmnnm K 
-<--/3m, Ic . . . . . .  I (32) 

3.2 
+ GO'.  

(25) are 

S T  = -2ifl,,,,,Dl[Am.,ei~m,; '- - Bm,,e %'"'] 

- Kc ...... (Am,,e i&,,," + Bm,,e-%,#") 

-- KC,nnpqBpqe i03m'+'a)r. (33) 

Existence of bounded q~2 requires that 

-2 i /3 . , , ,DiA. , , ,  - Kc . . . . .  Am,, - -  KCmnpqOpqe i°Tt = 0 (34) 

and 

2i/3mnDIBmn - KC ..... .  Bmn = 0. (35) 

Similarly, existence of bounded q},~) requh'es 

- 2i/3z, qD1Apq --  KCpqpqApq = 0 (36) 

and 

2i/3pqDxBpq - KCpqpqBpq - KCpqmnAmn e - iaT '  = 0 .  (37) 

Equation (35) has the following solution: 

Bin, = cl exp i 2/3ran Tl (38) 

C o m b i n a t i o n  R e s o n a n c e  at  ( q  - n ) ~  = t im.  + flpq 
When ( q  - n ) w  ~ /3.,,, + fivq, the secular terms of 

which is oscillatory and bounded. In addition, (36) has the 
following solution: 

Apq = C2 e x p { - i  KCpqpq T 1 }  (39) 
2/3pq 

which is also oscillatory and bounded. 
To solve (34) and (37), assume that 

{ Amn = aeiXrl 

Bpq bei(X ~)r,. 
(40) 

Substitute (40) into Eqs. (34) and (37), and nontrivial a and 
b require that 

2tim. / L 2/3pq / J 

I KCmnmn } 
Am, , (TI )  = c o e x p  i ~ T l  (29) ~- K2 CmnpqC-mnpq -- O. (41) 

4Pm,,fl,,,q 
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Table 1 Normalized frequencies of the first five modes of 
a circular plate with a / b  = 0.5 

Modes (m, n) (0, 0) (0, +-1) (0, +_2) 

13 ..... 1.77155 1.80766 2.00000 

Notice that instability occurs when ~3[ k] < 0 implying that 

C .......... Cpqpq ,0,2,n + /52q "7-7--7 . (42) 
-- K 2,0,,,,, + 2 /5 ,,q 2 ~ ,0 ~,,, /5 3q 

3.3 Combination Resonance at ( q + n )w =/5, , ,  +/svq + 
ecr. Following the derivation in Section 3.2, one can show that 
instability occurs when 

o- - #< t 2'0,,,,, + / c  .......... ~~qvq)CpqPql-/5'2""+2 fljq ~/K2JCm"p'-ql2,0 m,l'0pq33 (43) 

3.4 Parametric Instability of Damped Plates. The sta- 
bility of a damped plate can be derived in a similar manner 
(Shen, 1993). It can be shown that the system response is 
unbounded, when 

I K c  .......... [ 4/5:2 < c . . . . . . . . . .  I -~'0 ..... O" /~  ..... -- "~-- I ' m n  2 2 4  (44) 

for single-mode parametric resonance at 2nw = 2/5 ..... + ecr, 
when 

CT K( Cmmml "J~ Cpqpq 

- t 2 ' 0  ..... 2flpq) 

< ,0L, +/SL [~= I Cmnpq 12 
_ --;----7-7 (45) 

2 "V ,0mn,0pq .2  

for combination resonance at (q - n )w =/3,.,, + '0pq + ca, and 
when 

f Cmnmn Cpqpq X 
0- 

- K t2 /5  ..... +2/51,~ t ) 

K 2 C 2 
~t~t,l -'~- /5~q ~[ .  . . . . .  p, q l ]_~2 ( 4 6 )  

. - - - 7 - 7  
2 V /smn/spq 

for combination resonance at (q  + n ) w  = ,0,,,,, + ,0,,q + ecr. 

Notice that (19) can be rewritten for a ground-based observer as 

[ I  0 0 i ] ~ ( ~ ) +  [ ;  ~ ] ( ~ )  = 0  (47) 

where I is the identity matrix, p, q are column vectors with 
elements as q = [ . . . .  A . . . . . . . .  ] 7' and p = ( d q / d m ) .  In addition, 

A = diag[ . . . .  - 2 i n w  + etzfl~ . . . . . .  ], 

B = diag[ . . . .  '0,2,,,(1 - i e#nw)  - n2~v 2 . . . .  ] + eMc,,,,pq] 

m = 0 , 1 , 2  . . . .  ; n =  ± 1 , ± 2  . . . . .  

The stability of the plate/load system is approximated by eigen- 
values of (47),  if finite equations of (47) are retained. 

The stability diagrams of the plate/load system are shown in 
Figs. 2 to 5 on the eK-w parameter plane. The discrete points 
within the shaded regions represent unstable systems predicted 
by the eigenvalue analysis and the solid lines are stability 
boundaries predicted b y  the method of multiple scales. 

Figure 2 shows the instability of an undamped plate subjected 
to a normalized radial load eK. Results from the eigenvalue 
analysis show four instability zones for 0.5 < co < 2, which 
agree with those obtained from the method of multiple scales. 
According to the method of multiple scales, the first instability 
corresponds to the single-mode parametric resonance of (0, 2) 
mode occurring at w = flo2/2 = 1.0. The second instability is 
the combination resonance of (0, 1 ) and (0, 2) modes occurring 
at w = ('ore + ,002)/(1 + 2) = 1.26922. The third instability 
is the single-mode instability of (0, 1 ) mode occurring at co 
= /50~/1 = 1.80766. The fourth instability is the combination 
resonance of (0, 0) and (0, 2) modes occurring at co = (/500 + 
,002)/(0 + 2) = 1.88578. Among the four instability zones, the 
(0, 0) + (0, 2) combination resonance has small instability 
width and is difficult to detect numerically. Moreover, the re- 
suits from the eigenvalue analysis show that the instability zones 
not only increase their width but also shift to a lower rotation 
speed, when the radial load ere is increased. The same result is 
predicted by the method of multiple scales, because c ...... and 
Cpqpq are both positive for a plate subjected to a radial edge load. 
According to (32) ,  (42) ,  and (43),  the instability zones shift 
to lower rotation speed. 

Figure 3 shows the instability of a damped plate subjected 
to a normalized radial edge load eK. Introduction of damping 
avoids parametric resonances at least for the low load ranges. 
The results from the eigenvalue analysis and the method of 
multiple scales agree very well to each other. 

Figure 4 shows the instability zones of an undamped plate 
subjected to a normalized tangential edge load eK. Identical 
parametric resonances are obtained, except that the width of 
(0, 0) + (0, 2) combination resonance is too small to detect 
numerically through the eigenvalue analysis. When the tangen- 
tial load ere is increased, however, the rotation speed at which 

4 N u m e r i c a l  S i mul a t i o ns  

Five vibration modes are used in the numerical simulation. 
They are (0, 0),  (0, ~ 1 ) ,  and (0, _+2) modes, where the first 
index is the number of nodal circles and the second index is 
the number of nodal diameters. As a first approximation, the 
centrifugal stress field is not included (Iwan and Stahl, 1973); 
therefore, both '0,,, and Rm, ( r )  are independent of the rotational 
speed w. The normalized eigenvalues/3,,,  are shown in Table 
1. The load parameter eK ranges from 0 to 0.t2. The normalized 
damping coefficient e/., is 0.005 for the damped plate. The ratio 
of the inner to the outer rim is a / b  = 0.5. 

The stability of the plate/load system is predicted numerically 
through two different ways. One is the method of multiple 
scales described above, the other is an eigenvalue analysis to 
be described as follows. 

0.12 

0.08 

0.04 

(¢2) 

(o,o) 
0,2) 

(0,1) (0,1) 1 
+(0,2) 

i 

1.1 
i , , , i , , , i , , , i 

.9 1.3 1.5 1.7 

Fig. 2 Parametric instability of a rotating elastic plate subjected to a 
radial edge load P 
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Fig. 3 Parametric instability of a rotating viscoelastic plate subjected 
to a radial edge load P 

the instability occurs remains unchanged, as opposed to the 
decreasing rotational speed found in the radial edge load case. 
This is because c .. . . . .  and Cpqpq are both zero for a plate subjected 
to a tangential load. According to (32), (42), and (43), the 
instability zones will not shift their frequencies• Compared with 
Fig. 2, the instability zones caused by the radial load P are 
narrower than those caused by the tangential load T. In other 
words, the membrane stresses resulting from the tangential load 
T will dominate the destabilization of the plate. 

Figure 5 shows the instability zones of a damped circular 
plate subjected to a normalized tangential load eK. The damping 
suppresses the (0, 2) parametric resonance for 0 < eK < 0.01 
and the (0, 1) + (0, 2) combination resonance for 0 < cK < 
0.3. The plate damping completely suppresses the (0, 1 ) mode 
parametric resonance. Compared with Fig. 3, the plate damping 
seems to be more effective in suppressing paramatric resonances 
caused by the radial load P. 

5 Discussions 
The above analysis demonstrates the existence of parametric 

instability associated with a rotating plate subjected to stationary 
in-plane edge loads• Existing literature, at first glance, seems 
to report opposite findings. For example, Chen and Bogy ( 1993 ) 
wrote: "We have shown both by analysis and numerical compu- 
tations that the in-plane membrane stress field induced in a 
spinning disk by a stationary circumferential force has no effect, 
at least to the first order, on the stability of transverse vibration 
of the disk." Also, Chonen et al. (1993) reported that " . . .  
the stresses from the in-plane slicing load and the centrifugal 
force have no noticeable effects on the frequencies." In fact, 
these existing results do not contradict what this paper con- 
cludes. An explanation is provided as follows. 

Chert and Bogy's conclusion that the in-plane load has no 
effects on the disk stability was based on the following sensitiv- 
ity analysis: 

(0,0) 
(0,2) + (0,2) 

0.12 
(0,1) (0,1) 

+ (0,2) 
0.08 

O.O4 

0.9 1.1 1.3 1.5 1.7 

~0 

Fig. 4 Parametric instability of a rotating elastic plate subjected to a 
tangential edge load T 
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~d 

Fig. 5 Parametric instability of  a rotating viscoelast ic plate subjected 
to a tangential edge load T 

Ok . . . . .  1 iC,. ..... 
(48) 

L OT phT~cr  47r(flm, +-- n w )  RZ , , , ( r ) rdr  

where k,,,, is the eigenvalue associated with mode (m, n) of a 
freely spinning circular plate. According to Chen and Bogy 
(1992a, b), Eq. (48) will break down when p,,, = n~ or/3 .... 
+ /3pq = ( n  +_ q ) ~ ,  because the former will result in zero 
denominator in (48) and the latter will result in 

X,,,, ~ kp,~ (49) 

which is called "degenerated systems." Notice that the rota- 
tional speed at which (48) breaks down is exactly the speed at 
which the parametric resonances occur. 

Chonen et al. ( 1993 ) used numerical simulations to show that 
the in-plane slicing load has no noticeable effect on stability. 
According to their simulations, a = 12.0 cm, b = 31.25 cm, h 
= 0.15 mm, u = 0.28, p = 7.84 × 10 ~ kg/m 3, E = 1.99 × 
10 ~ Pa, and w~r = 1550 rpm. In addition, the outer rim was 
fixed and inner rim was free. A combination of normal and 
tangential cutting loads was distributed at the inner rim spanning 
an angle of 24>o = 60 deg, which corresponds to a normal slicing 
load P = 36.18 N and a tangential slicing load T = 9.65 N 
according to Fig. 2 of Chonen et al. (1993). From the normal- 
ization (15), eK = 0.0122 for the radial slicing load P and eK 
= 0.00325 for the tangential slicing load T. Because eK is very 
small, the instability zones might have been too tiny to be 
detected numerically. 

As a closing remark, Srinivasan and Ramamurti (1980) and 
Leung and Pinnington (1987) do not result in parametric reso- 
nances in their papers, because they only consider in-plane vi- 
bration of circular plates. For in-plane vibration, the edge loads 
and in-plane stresses serve as periodic force excitations, as op- 
posed to periodic stiffness excitations in the transverse vibra- 
tion. 

6 Conclusions 

This paper concludes that the asymmetric membrane stresses 
resulting from stationary in-plane edge loads will transversely 
excite a rotating circular plate to parametric resonances at partic- 
ular rotational speeds predicted by (32), (42), and (43). In 
addition, the radial edge load dominates the rotational speed 
at which the instability occurs, and the tangential edge load 
dominates the width of the instability zones. In addition, intro- 
duction of plate damping will suppress the parametric reso- 
nances when the normalized in-plane edge loads are small. 
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A p p e n d i x  

The asymmetric stress field of a circular plate subjected to a 
concentrated tangential edge load T is found as (Song, 1993) 

2bl dl 2 d .  ] 
crr = - 7  + 2 c t r  + r -r sinO 

+ ~ [ a . ( n  - n 2 ) r  "-2 - b . ( n  + n2)r  . . . .  2 
n = 2  

+ c . ( 2  + n -- n Z ) r  n 

+ d . ( 2  - n - n 2 ) r  -"] s in  nO 

Tro = 7 7 + 2 c l r  + c o s  0 

(50) 

- ~. [a . (n  z - n ) r  "-2 - b . ( n  + nZ)r -"-2 
n=2 

+ cn(n + n2)r  n + d . ( n  - n2)r  -"] cos nO 

0"o = L r3 + 6 c l r  + sin 0 + ~ [a . (n  2 - n ) r  ~-2 
n=2 

(51) 

+ b . ( n  + nZ)r  - ' - 2  + c,,(2 + 3n + n2)r"  

+ d . (2  - 3n + n2)r  -n] sin nO 

where 

(52) 

Tb 
a ,  . ~ m  

27rh 

T 

2~-h 

bl  T (1 + u ) a  2 - ( 3  ~ u ) b 2 ( 1  + u ) b 4  + (3  + p ) b  2 
= 8~--h(1 + p ) b 4 T ( 3  v ) a  4 

T (1 + u ) a  z -  (3 + u ) b  2 
Cl = - -  (1 + u) 

8~h (1 + ~ ) b  4 + (3 - v ) a  4 

1 - -  /) 
dl - - -  T. 

47rh 

The coefficients an, b,,, c. ,  d. (n = 2, 3 . . . .  ) can be obtained 
by the following linear equation: 

Cx = f (53) 

where 

C = 

and 
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Z )T.  
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(n  - n 2 ) b  -n 
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Exact Boundary Condition 
Perturbation Solubons 
Eigenvalue Problems 
A perturbation method is developed for linear, self-adjoint eigenvalue problems with 
perturbation operators confined to the boundary conditions. Results are derived 
through third order perturbation for distinct eigensolutions of the unperturbed prob- 
lem and through second order perturbation for degenerate eigensolutions, where 
splitting of the degenerate eigensolutions from asymmetry is identified. A key feature, 
demonstrated for the plate vibration and Helmholtz equation problems on annular 
domains, is that the solutions of the perturbation problems are determined exactly 
in closed-form expressions. The approximation in the eigensolutions of  the original 
problem results only from truncation of the asymptotic perturbation series; no approx- 
imation is made in the calculation of the eigensolution perturbations. Confinement 
of the perturbation terms to the boundary conditions ensures that the exact solutions 
can be calculated for any combination of unperturbed and perturbed boundary condi- 
tions that render the problem self-adjoint. The exact solution avoids the common 
expansion of the solution to the perturbation problems in infinite series of the un- 
perturbed eigenfunctions. The compactness of solution in this formulation is conve- 
nient for modal analysis, system identification, design, and control applications. 
Examples of  boundary asymmetries where the method applies include stiflfi~ess nonuni- 
fortuities and geometric deviations from idealized boundary shapes such as annuli 
and rectangles. 

Introduction 
In many engineering problems, the boundary conditions are 

asymmetric and not known precisely. Examples include nonuni- 
form, uncertain boundary fixity and geometric deviations from 
idealized boundary shapes such as annuli and rectangles. We 
present a perturbation method for self-adjoint eigenvalue prob- 
lems having perturbation terms confined to the boundary condi- 
tions. The perturbed boundary conditions admit stiffness and 
geometric asymmetries, and the analytical expansions for the 
perturbed eigensolutions permit assessment of eigensolution 
sensitivity to ill-defined boundary conditions. General expres- 
sions for perturbations of unperturbed eigensolutions having 
distinct eigenvalues are derived through third order, and pertur- 
bations of unperturbed eigensolutions having degenerate eigen- 
values are derived through second order. Degenerate eigenvalue 
splitting caused by asymmetry is identified, and the perturbed 
eigensolutions associated with the split eigenvalues are deter- 
mined. Exact solutions for the perturbation problems are avail- 
able provided that particular solutions to certain inhomogeneous 
differential equations can be found. The common expansion of 
the solutions to the perturbation problems in infinite series of 
the unperturbed eigenfunctions is then avoided, and the resulting 
simplicity allows extension of the solution to higher orders. The 
functional forms of the inhomogeneous differential equations 
and the associated particular solutions depend only on the opera- 
tor and the shape of the domain, not on the boundary conditions. 
Once the particular solutions are known for a given operator 
and domain, exact solutions for the perturbations are available 
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for arbitrary self-adjoint boundary conditions. To illustrate the 
method, the eigensolution perturbations of the plate vibration 
and Helmholtz equation problems on annular domains with 
asymmetric boundary conditions are determined exactly. Exten- 
sion to other operators and rectangular domains is straightfor- 
ward. Applications of the method to plate vibration include, 
for example, elastic boundary restraints with varying stiffness, 
discontinuous boundary supports, variation of the domain 
boundary shape from annular or rectangular, and combinations 
of these. The eigensolutions for a solid, circular plate with 
asymmetric boundary stiffness are compared to a Ritz solution 
(Leissa et al., 1979). 

Despite the common uncertainty in boundary conditions, gen- 
eral treatments of boundary condition asymmetries using pertur- 
bation methods are scarce. Selected references concerning per- 
turbation of the boundary conditions are provided in (Pierre, 
1987), where Pierre obtains expressions for the eigensolutions 
of a self-adjoint eigenvalue problem when the natural boundary 
conditions are perturbed; degenerate eigensolutions of the un- 
perturbed problem are not addressed. In particular, exact solu- 
tions for the perturbation problems and the general boundary 
conditions for which they apply have not been previously dis- 
cussed. 

Eigenvalue Problem With Perturbed Boundary Con- 
ditions 

Consider a linear, self-adjoint eigenvalue problem of order 
2p defined on domain P bounded by OP. The boundary condi- 
tions are expanded in a power series in small e ~ 1 

Ls - ~ 4s = 0 P 

Bjs + eCjs + eZDjs + c3Ejs = 0 OP (1) 

where j = 1, 2 . . . . .  p. The linear boundary operators Bj, Cj, 
Dj, and Ej involve derivatives normal and tangent to OP of at 
most order 2p - 1. In general, the boundary operator coeffi- 
cients vary along OP. All operators are independent of k. 
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The eigenvalue problem for vibration of a circular plate with 
zero transverse displacement and a nonuniform, elastic, rota- 
tional stiffness along the outer boundary is described by (1).  
With the dimensionless variables 

s = S / h  r = R / a  X 4 = ( p h a 4 / D ) ~  2 K =  ( a 3 / D ) K  

where S is the transverse displacement, h the thickness, a the 
outer radius, D the fiexural rigidity, p the volume density, /~ 
the rotational stiffness per unit length, u the Poisson's ratio, 
and ~ the natural frequency, and assuming K ( O )  = Ko + e k ( O ) ,  
the eigenvalue problem is 

V 4 s - k 4 s  = 0  P : 0 - <  r <  1, 0-< 0 < 27r 

s , ,  + + Kos,~ + e k ( O ) s .  = 0 
.F 

OP: r =  1. (2) 

The circumferentially varying component of the boundary stiff- 
ness, e k ( O ) ,  is small relative to K0. An approximate eigenvalue 
problem of the form (1) in which Cj, Dj. Ej are nontrivial 
operators can also result from perturbations of the domain 
boundaries from circular (Parker and Mote, 1996). 

The eigensolutions are represented in asymptotic series in c 

~4,, = X,4,, + e/z,.,, + c2rlm,, + e3Km,, + O(e 4) (3) 

Stun = Umn -~ el)mn -~ e2Wmn + e 3Zmn -~- O ( e 4 ) ,  (4) 

Substitution of (3),  (4) into (1) and collection of like powers 
of e generates a sequence of boundary value problems on P and 
OP: 

e°: LUm,, - k,4,,,,U,,,,, = 0 B~u,,,,, = 0 (5) 

e l :  Lv.,,, - h4.,v,.,, = /z,,,,,u .... Bjv,.,, = - C j u  ..... (6) 

e2: Lw.,, ,  - k4,,,w,,,. = IZ,,,.Vm,, + ~7.mU ..... 

BjW.,,, = - C j v . , .  - D j u  .... (7) 

e3: LZ,,,. - k4m,,Z,.. = /zm.Wm. + ~7,,,,,V.,,, + K,..Um,, 

BjZ.,,, = - C j w , . , ,  - Djv.,,, - E ju  ..... (8) 

The self-adjoint eigenvalue problem (1) ensures orthogonality 
of the eigenfunctions Sin,, in the inner product (f ,  g) = f f f g d A .  
Furthermore, the unperturbed (e °) problem is specified as self- 
adjoint. With orthonormal urn,,, substitution of (4) into the nor- 
malization ( s  . . . .  s.,,,) = 1 gives 

(u. ,n,  v,,,,,) = 0 ( u  . . . .  w . , . )  = - ½ ( v  ...... v,,,.). (9) 

The boundary conjunct J ( f ,  g )  of L (Roach, 1982), required 
in the sequel, is defined by 

J ( f ,  g )  = ( L  f ,  g )  - ( f ,  L g ) .  (10) 

J ( f .  g )  has the form of a boundary integral. 

Solution of Perturbation Equations 
The eigenvalue problem (5) yields an infinite set of unper- 

turbed eigensolutions, which are assumed known. Subsequent 
solution of the perturbation problems (6 ) - (8 )  depends on the 
degeneracy of the unperturbed eigensolutions. Distinct and de- 
generate eigensolutions are addressed separately. 

Distinct Eigensolution Perturbation. Consider perturba- 
tion of a distinct unperturbed eigenvalue L4,,0 with eigenfunction 
U.,o satisfying (5).  (Though standard only for circular domains, 
we adopt the convention that subscripts m0 and m n  refer to 
distinct and degenerate eigensolutions, respectively.) The ho- 
mogeneous form of (6) has a nontrivial solution, u,,,o. The inner 

product of (6a) with U.,o and use of (9a) and (10) yields the 
solvability condition 

#,,,o = -J(um0, VmO). (11) 

This necessary condition for solvability is sufficient if L has 
closed range (Stakgold, 1979). The second and third-order ei- 
genvalue perturbations 7/,,,o and K.,o are derived formally from 
similar solvability conditions for (7) and (8) 

~,.o = - J ( u , . o ,  W.,o) 

K,,,o = -J(umo, Z,.o) - #mO(UmO, Win0). (12) 

Equation (11 ) can be evaluated without the solution for v,,,o 
because only boundary values of v.,o are necessary. They are 
defined by the boundary conditions (6b). The higher order 
perturbations (12) cannot be evaluated until the preceding order 
eigenfunction is determined. 

The common practice for solving (6) expands V,.o in an infi- 
nite series of the unperturbed eigenfunctions u,,,,, (Courant and 
Hilbert, 1989; Morse and Feshbach, 1953; Nayfeh et al., 1976; 
Pierre, 1987). Though sufficient for many purposes, this solu- 
tion form has several limitations. Convergence of the solution 
is a potentially serious limitation that can arise when extending 
the solution to second order. For instance, when analyzing plate 
vibration on almost circular domains, a series for vm0 in the u., .  
leads to a divergent series when (12a) is evaluated (Parker 
and Mote, 1996). Similar convergence difficulties occur when 
perturbing the boundary shape of the Helmholtz equation with 
either Dirichlet or Neumann boundary conditions (Morse and 
Feshbach, 1953). Series representations are also cumbersome 
when the eigenfunctions are required for response calculations 
or system identification. Additionally, as e increases, higher 
order perturbations are necessary, and the series solutions are 
laborious to manipulate and program. Finally, eigenfunction 
expansions require many unperturbed eigensolutions, particu- 
larly if the series converges slowly. 

Exact solutions of the perturbation problems (6) and (7) 
avoid the above difficulties. The eigenfunction perturbations v.,0 
and WmO are decomposed as 

Urn0 = C,.oU,.o + V~O + V;.O 

w,,,o = dmou,,,o + W~o + wP.,o. (13) 

The first terms are the nontrivial solutions to the homogeneous 
forms of (6) and (7);  c.,o and d,,,o are determined from the 
normalization conditions (9),  

C, .o  = -(u,,,o. v',:,o + ~;'.o) 

dmo - ( U,.o, h = W,.0 + W~o) -- (1/2)(Vm0, V.,o). (14) 

The terms v~.0 and h W,.0 of (13) are the general solutions to the 
homogeneous forms of the field equations (6a) and (7a).  They 
are known since (5) is solvable. The key to the decompositions 
( 13 ) is the determination of v,P.o and w,P.0, the particular solutions 
of ( 6a ) and (7a).  (These are presented below for plate vibration 
and the Helmholtz equation on annuli.) With v,P,,o and W~,o 
known, the undetermined coefficients in vh.,o and wh.,0 follow 
readily. Determination of V,.o and w.,o permits evaluation of 
(12). For specific problems, eigenfunction orthogonality re- 
duces r/.,o and Km0 to compact expressions in the Fourier coeffi- 
cients of the asymmetric perturbation. An example is presented 
later for nonuniformly restrained circular plates. 

Particular solutions Vm01' and w,P,,0 are derived for annular 
plates, where L = V 4 and the domain is y < r < 1, 0 < 0 -< 
27r. The orthonormal unperturbed eigenfunctions are 

u,.o = f , ,oJo(k , , ,or)  + g . , o lo (h , . o r )  

+ h,,~oYo(h,,~or) + imoKo(kmor)  
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U]~ = [fm.L(hmnr) + gmnL(hm.r) + hmnYn(kmnr) 

• f c o s  nO 
+ tm.K.(k~.r)]~sinnO n -> 1 (15) 

where m and n indicate the number of nodal circles and nodal 
diameters, respectively, of the eigenfunction. For n = 0, the 
eigenvalues kin0 are distinct; for n > 0, km. is degenerate with 
u,~ as corresponding independent eigenfunctions. The Bessel 
function coefficients are chosen to satisfy the boundary condi- 
tions in (5). (See McLachlan (1955) for a comprehensive list 
of Bessel function identities.) Equations (15) and (6a) lead to 
the particular and homogeneous solutions 

#mor 
V~o 4k,~o [fmoJl(kmor) -- gmOIl(kmor) 

+ hmoYl(kmor) + imoKt(kmor)] (16) 

h VmO = ~ [PjJj(Xmor) + aj l j (kmor)  + ]5jYj(hmor) 
j=o 

+ Ojgj(Xmor)] COS j 0  + ~ [Rj@(Xmor) + Sjlj(kmor) 
j=1 

+/?:Yj(hm0r) + 6Ki(kmor)] sin j0. (17) 

The coefficients in (17) are derived from the boundary condi- 
tions in (6), 

B:v~o = -C~umo- B:v~o r = T, 1; j = 1,2. (18) 

If the variable coefficients in Cj are represented by their Fourier 
series, the constants in (17) are obtained by equating coefficients 
of trigonometric terms on both sides of (18). Thus, perturbations 
of the boundary conditions having general circumferential depen- 
dence can be treated. The particular solution of (7a) is 

I.tmor f IZmor 
W~no 4h~o " (ShOo [fmoJo(kmor) 

-- gmolo(Xmor) 

.+. (CmO + ~mO 
\ ~mO 

+ hzoYo(kzor) - i.,oKo(kmor)] 

t "z~o 
~ - 0  ] [fmoJl (kmor) 

- -  gmoll(hmor) + hmoYt(kmor) + imoK~(Xmor)] 

+ 2~ [PjJj+l(hmor) -- ajl j+l(hmor) 
j=o 

+ PjYi+l(kmor) + Q:~+l(h.,0r)] cos j0  

+ X [gjJj+l(Xmor) - Sjlj+l(XmOr) + l~j~+l(h.,or) 
j=l 

sinjO t . (19) + 

The homogeneous solution W~o has the form (17). The con- 
stants in w~o are determined following the process for h UmO, 

Exact solutions of the perturbation equations are also ob- 
tained for the operator L = - V  2 on annular domains. The 
perturbed problem analogous to ( 1 ) is 

--V2S -- ~2S = 0 "y < r < 1 

B : + e C : + e Z D l S + e 3 E l s = O  r =  Y, 1. (20) 

With the eigenvalue expansion ~2... = ~ .  + e#m. + e2rlm. + 
e3K~. + O(e 4) and the expansion (4), the results (11)-(14) 
apply. The perturbation problems (5)-(8)  are obtained by let- 
ting L = - V  2 and k4. = w2., The results corresponding to 
(15)-(19) are 

UmO = j~,oJo(wmor) + hmoYo(tOmor) ( 2 1 )  

• cos nO 1,2 
Umn = [fm.J.(w.mr) + h~.Y.(wm.r)]( sin nO n >- 1 

V~O -- tZm°r [fmoJ,(w~or) + hmoYl(Odmor)] ( 2 2 )  
2WmO 

[Pflj(Wmor) + Pfi(wmor)] cos jO h 
Urn0 = 

j=0 

+ ~ [R:Jj(~,.or) + l~:Yj(w.,or)] sin j0  (23) 
j=l 

#mor [/Zm0r 
W~z0 20am0 [4C0m0 [fn°J°(  t°m°r) + hmoYo( w,.or) ] 

+ (era0 + ~Tm° ~m° / " ~-L-T [fmoJl(wmor) + hmoYl(~mor)] 
[£mO Z/~.tJ m 0 / 

00 

+ ~ [P:J:+,(wmor) + Pfj+,(Wmor)] cosjO 
j=0 

+ ~ [RJj+,(~, .0r)+ l~jYj+l(o3mor)] sin j0}  (24) 
j=l 

where the coefficients are different than those in (15)-(19) 
despite the identical notation. Thus, as for annular plates, eigen- 
solution expansions can be determined exactly through third 
order in E for the eigenvalues ~2m0 and second order in c for the 
eigenfunctions Smo. 

Degenerate Eigensolution Perturbation. Consider a de- 
generate unperturbed eigenvalue k~n of multiplicity two with 
associated orthonormal eigenfunctions u,l,., and u~., 

(uL, u~.) = 6o. (25) 

Asymmetries may split some repeated eigenvalues into two 
distinct ones, while others remain repeated (Tobias and Arnold, 
1957; Yu and Mote, 1987). When asymmetry splits a repeated 
eigenvalue, the associated eigenfunctions, which in the unper- 
turbed system lie arbitrarily in a two dimensional linear space 
spanned by ~ 2 Umn and urn., become fixed in that space. 

Eigensolution splitting can substantially alter dynamic re- 
sponse. Yu and Mote (1987) show that radial slots in rotating, 
circular plates split some degenerate eigensolutions. The split 
eigensolutions are subject to parametric instability below the 
critical speed. Tseng and Wickert (1994a) show that apparently 
slight boundary asymmetry in circular plate vibration can gener- 
ate a beating response not present in the axisymmetric plate. 
The beating results from the participation of two closely spaced, 
split eigensolutions in the response. Previous works emphasize 
discrete asymmetries (Tobias and Arnold, 1957; Yu and Mote, 
1987; Shen and Mote, 1993; Tseng and Wickert, 1994b). In this 
study, the boundary asymmetries are distributed and possibly 
discontinuous. Discrete asymmetries can be handled by the 
methods herein as a special case. 

To ensure that the eigenfunctions sm.(x, y; c) vary continu- 
ously with perturbation amplitude e, the eigenfunctions 
achieved in the limit of s.,. as c ~ 0 are sought as the appropriate 
Umn in the expansion (4), Two such unperturbed eigenfunctions 
must be determined, one for each of the degenerate unperturbed 
eigensolutions. These Urn. lie in the linear space spanned by 
u~. and u~. and are not known a priori. We take the linear 

combination 

Urn. = alto.U1. + a~.u2~ (26) 

and substitute this for Urn. in (4) and (6)-(8) ,  a~.,. and 2 a mn 
define the eigenfunctions Urn. from which the smooth s,.. loci 
originate; they are to be determined for each split eigensolution. 
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Solutions of the homogeneous form of (6) lie in the two- 
dimensional linear space spanned by u~,,,, and u,2,.,. Two solvabil- 
ity conditions are found from the inner products of (6a) with 
u ~  and u],. and use of (10), (5a) ,  and (25) 

- J ( u ~ m ,  Vmn) = am,,I,Z,nnl (27a) 

-J(u2. , , , .  "Omn ) : aZ.,.I.z ..... (27b) 

Expansion of (27a, b) generates an algebraic eigenvalue prob- 
lem for #m. and amn = (a~,,.a,2,.,) r 

Da,n. = #mnamn. (28) 

D is symmetric because (1) is self-adjoint (Appendix A).  The 
two real eigenvalues # ~  are the first-order eigenvalue perturba- 
tions of the split eigensolutions. The unit eigenvectors a ~  define 
the two unperturbed eigenfunctions (26). Symmetry of D im- 
plies orthogonality of a~,;~ which, along with (25) and (26), 
guarantees that the unperturbed eigenfunctions associated with 
the split eigensolutions are orthogonal. 

If the eigenvalues of D are repeated, the eigensolution does 
not split at this order of perturbation. The eigenvectors a~;, 2, of 
D are arbitrary unit vectors, and the indeterminacy of the unper- 
turbed eigenfunctions (26) is not removed at this order. If D 
has distinct eigenvalues, the eigensolution splits, and the two 
unperturbed eigenfunctions are given by (26) and a,~;~. 

The first-order eigenfunction perturbation v.,. is governed by 
(6) and (26). (Though there are two split eigensolutions, the 
notation tz . . . .  a~n,,, a,Z,,,,, v.,,, represents a generic case.) The de- 
composition of v,,,. is 

Vm,, = Clm. U~.. + C2,..U],. + Vh,,,. + VP,,,,,. (29) 

The first two terms span the linear space of solutions to the 
homogeneous form of (6).  The particular solution v p m. is again 
the critical term. For plate vibration and the Helmholtz equation 
on annular domains, v".,. is given at the close of this section. 
With v~,. known, the undetermined coefficients in v~. follow 
easily as for distinct unperturbed eigenvalues. The normaliza- 
tion (9a) gives 

1 1 2 2 1 1 2 2 h p 
amnCmn + amnCnm : --(amnUmn + amnU ...... 13,, m + v,,,,.,). (30) 

Necessary additional equations to determine c],,,, and c~,. are 
found at the next order of perturbation from the two solvability 
conditions for (7).  Analogous to (27), these are 

~,,,.c,~.. + m , , , ( u L . ,  t, 1Jm, , + 1)Pmn) q-  a m n T ] m n  

= - J ( u ] . . ,  w,,,.) (31a) 

#mnCZmn + #mn(uZ,n, Vhn,n + 1)Pmn) + aZmn'rlmn 

= -J(u2m,,, w , . . ) .  (31b) 

Equations (30) and (31) are solved simultaneously for elm., 
c,Z.,,, and ~7 .... Terms of J(ul.;]. Win.) that depend on cl,. and 

2 c.,. must first be separated (Appendix B) 

J(ulm.,  Win.) = - - D H c ~ .  -- D12c2.,. + .](Utmn, Wren) (32a) 
~ 2 J(uZm., Wm.) = - -Dt2c] . .  -- D22c2.,. + J ( u  . . . .  w . , . )  (32b) 

where Dij are components of D and ](ul.;], w . . . )  = J ( u ~ ,  
w,. .)ld;]=o. The matrix form of (30) and (31) is 

/ --Di2 ]Zmn - -  022 a,~n 
L a),,. 2 0 a,,,. t Titan J 

h p ~ 1 - u ~ . ( u ' ~ . ,  v .... + v ~ . )  - J ( u  . . . .  w , . . )  ] 
2 h p ~ 2 

= --t-Zmn(U . . . .  1)m, , + 1)mn ) -- J (umn  , Wren ) ~ . (33) 
I 1 p 2 2 h p - a . , . ( u  . . . .  vh,.. + v . , . )  - a , . . ( u m . ,  1)ran -~" ~)mn)J 

Eigenfunction orthogonality frequently simplifies the integrals 
in (33) to closed-form expressions. If the eigenvalues #~;z of D 

are distinct, the operator in (33) is invertible, and c ~ 2 mn ~ f i n n ,  

and %.  are the solution of (33). This completes the solution 
for ore,, and gives the second order eigenvalue perturbation ~7.,. 
simultaneously. 

When D has repeated eigenvalues, the operator in (33) is 
singular. Furthermore, a],,. and a~. are not yet determined. The 
first two equations in (33) reduce to 

a~.,,rlm,, = --I-Zm.(U),,,,. vh,, + vP,,m) - ](ul.,,,. w,,,,,) (34a) 

aZ,,,,,rl.,,, = - l z , . . ( u 2 . .  v).. + v~,,) - ] (u ] , . ,  w,,.,). (34b) 

If the eigensolutions split in a second-order perturbation, equa- 
(am,,) + (a2m.) 2 = 1 have two independent tions (34) and ~ 2 

solutions for ~7,,,., a}.., and a,2.,,. These solutions fix the unper- 
turbed eigenfunctions (26) and determine the split second-order 
eigenvalue perturbations. If the eigensolutions do not split at 
second order, (34a, b) are satisfied for any unit vector a.,.. In 
this case, the eigenvalues remain degenerate through second 
order in e, and the unperturbed eigenfunctions (26) are still 
indeterminate. The degenerate second-order eigenvalue pertur- 
bation is calculable, however. For the perturbation considered 
by Parker and Mote (1996), the condition that (34a, b) have 
no unique solution for the unit vector am. is exactly the condition 
that Tim n be independent of a .... ~Tm. can then be evaluated at 
this order perturbation, am. may be calculated with K,.. at third 
order perturbation by a procedure similar to that described in 
this section. 

For the annular plate, a particular solution satisfying (6a),  
(26). and (15b) is 

p IZm. r 
V,B,, -- ~ - -  [f.,,,J,,+l(X.,,,r) - gm.L,+t(km.r)  

4hm. 

+ hmnYn+t(Xmnr) + imngn+l(hmnr)] 

X (aim,, cos nO + a],, sin nO). (35) 

The homogeneous solution Ohm,, has the form (17). Fourier 
expansion of the inhomogeneous boundary conditions (6b) 
allows closed-formed solution for the constants in v~,,. The 
analogous result for the Laplacian operator in (20) is 

~ m n  t '  
V~,. -- 203m n [fmnJn+l(hmnr) + h,nnY.+l(Xm,.r)] 

X (a~.. cos nO + a2,.. sin nO) .  (36) 

Example: Nonuniformly Restrained Circular Plate 
Consider the solid, circular plate described by (2) with its 

rim constrained by a linear rotational spring of stiffness K ( O ) .  
The only nontrivial boundary operators of (1) are B j, B2, and 
C2 = k ( O ) ( , ) , ~ l ~ = , .  

The boundary conjunct of L = V 4 (Meirovich, 1967) is ma- 
nipulated into the form (A1),  where 

B ~ u  = B j u  = ulr=l 

[ 1 )] B T u  = - (V2u) ' "  + - - 7 -  U,roo r=l 

B ~ l g  -~  U , r [ r =  1 

B~u  = B2u 

= U,r + + Kou,r . (37) 
F _ l r = l  

The variable component of the rotational stiffness has the Fou- 
rier representation 
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k(O) = ~ ky cos j0  + ~ k] sin j0. (38) 
j - I  j=l  

The unperturbed eigensolutions are given by (15), where ~ ,  
is the ( m  + 1)th positive root of 

- x ( 1  - u - Ko) [Jn (x ) l .+ l ( x )  + J .+l(X)In(x)]  

+ 2 x 2 J . ( x ) l . ( x )  = 0. (39) 

The constants in (15) are 

[27rZmoJ~(kmo)]-l/2 n = 0 

finn = {( [TrZmnJ,nn(kmn)]2 -1/2 n > 0 

{ --[27rZmol~(hmO)] -'/2 n = 0 
gmn = 2 - l /2  

[7"('Zmnln(~kmn)] n > 0 

hmn = imn = 0 

2n + 2 2h,],, 
Z ' "  = 1 -  l _ u _ Ko ( l  _ u _  Ko)2 

D i s t i n c t  E i g e n s o l u t i o n s .  The distinct eigenvalue perturba- 
tions reduce from (11), (12), (A1), (37), and (5b)-(8b)  

E #toO = (Um0,~l~=t)  2 k(O)dO = 0 ( 4 0 )  

f~" _ ( 2  ],/2 ~7~0 = (U,,0,~lr=,) (Vmo,~l~<)k(O)dO = \~rZm---~/ 

X_Lo fo × 1 - u - Ko (VmO,~l~=l)k(O)dO (41) 

f f~  _ _ ( 2  ~1,2 
KmO = (Um0,,I,=l) (w,, ,o,,I ,=l)k(O)dO = \TrZm-----~/ 

X~o f ~  X 1 - u - go (W~o,~l~=,)k(O)dO. (42) 

The solution for VmO bounded at r = 0 and evaluation of (41) 
give 

( 2  ] ''2 k~o 
VmO \ 7l'Zmo J 1 - u - Ko 

Ij(~kmO)Jj(~.mor) - -  S](h,.o)/j(k,.or) × 
j=l~ ~J 

× (k~ cos j0  + k} sin j0)  

2k~o 
~m0 ~ -- 

ZmO(1--  u -  Ko) z 

JJ(Xmo)/J + I (xm0)  + Ij(Xmo)Jj+,(Xmo) × 
j=~ ~j 

X [(k;) 2 + (k]) 2] (43) 

where ~j has the functional form of the characteristic Eq. (39) 

~j = -hmo(1 - u - go)[Jj(XmO)lj+l(XmO) 

-4- Jj+l(~kmO)/j(XmO)] -}- 2h~0Jj(hm0)/j(km0). 

The particular solution w~0 in (19) reduces substantially be- 
cause #m0 = 0. TO simplify notation in the solution for w~o, 
(43) gives 

VmO.~ = ~ ~(ky cos j0  + k] sin j0)  
j=l  

l - u - K o  

X JJ(Xm0)/j+l(~km°) "{- / J (~m°)JJ+ l (Xm°)  

;J 
The boundary conditions (7b) and solution for Whm0 are 

h ~m0 w , . o r =  1 = - W f . o r =  1 = 
(87rZ.,o)1/2(1 - u - Ko)XZmo 

Bzwh.,o = -C2vmo - B2wP.,o r = 1 

who = ~ [~J j (h . ,or )  + ~ l j (h . , o r ) ]  cos j0  
j=o 

+ ~ [/~Jj(k,.or) + ~l;(hmor)] sin j0  
j=l  

/~o = r/m0 Qo = 0 
(87rZ~o)1/2(1 -- V -- Ko)h~oJo(hmo) 

= 2~7 L-~(hmo) ( T,(k;_,k~ - k]_,k]) 

+ ~ Ti(k~_jk ~ "4- k) ~ j k l )  + ~ T~(k~+,k~ + k]+,kl)) 
i=j+l i=1 

t~ 1 li(hm°) ~( Z T,(k}_,k~' + ky_,k~) 
SJ = ~ J  L--JJ(XmO) J i=l 

+ L T, ( -k~_jk~ + k,½k~) + Z T,(k;+,k~ - k;+,~)). 
i=j+l i=1 

Equation (14b) completes the solution for WmO. Expansion of 
(42) yields 

K,.o = - 1 - u - K o  

[ { p dJj(kmor) dlj(kmor) ] 
X E \ J dr + 2  dr /r=l k; 

j=l  

{ t~  .dJj(km°r)  ~d~(-~L"°r)] k]]  
+ \ J dr + dr }~=, J" 

Notice that dmo is not needed to extend the solution to third 
order in the eigenvalue. The results of this section apply for all 
m nodal circle, 0 nodal diameter unperturbed eigensolutions 
for a general Fourier stiffness representation. As Ko ~ 0% all 
perturbation terms approach 0 independent o f  k(0),  and the 
clamped plate eigensolutions are obtained. Similarly, if Ko = 
k(O) = 0, the perturbation terms vanish and we recover the 
simply supported plate eigensolutions. 

To compare with Leissa et al. (1979), consider the case K(O)  
= 1 + e cos 0 and choose u = ¼. Thus, Ko = k~ = 1 and all 
other Fourier coefficients in (38) vanish. The above equations 
reduce to 

= (  2 ] 1/2 
vmo ~ ~'Zm---'-~/ 

× __h2° ll(~.mo)Jl(hmor) - J l (k . ,o) l l (hmor)  cos 0 
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2k~,o J , (XmO)12(hmo)  + l , (X , , , o ) J z (h , , o )  
Km0 ~ 0,  77'n0 -- Zn0/92 ~1 

The findings #,,o = •m0 = 0 confirm the expectation, based on 
symmetry, that the eigenvalues are even in e. The loci for the 
first three distinct eigenvalues are 

2o40 = 36.23 - 1.393e 2 + O(e 4) 

k40 = 943.3 - 2.902e 2 + O(e 4) 

k4o = 5645. - 4.461e 2 + O(e4). 

They are monotonically decreasing functions of e. For e = 0, 
the first three exact, axisymmetric eigenvalues of a plate sup- 
ported by a uniform spring are recovered. Table 1 compares 
these results to the Ritz analysis of Leissa et al. (1979), where 
only values for the fundamental eigenvalue are presented. Over 
a large range in e, the differences are less than 1 percent. The 
Ritz predictions bound the true eigenvalues from above and 
always exceed the perturbation solutions. 

Degenerate Eigensolutions. Consider perturbation from a 
degenerate eigensolution with unperturbed eigenvalue kin,, The 
components of D in (28) reduce from (27), (A1),  and (37) 

fr f; g i J S i j D U = B2u,,,, ,C2u,,,, ,d = u ..... u ....... k ( O ) d O  
=1 

2X.,~,,, ] 
D = Z m . ( l  2 7 -  K0) 2 Lk~,, - k ~ . J  

/L~)t;2 t = _q_ 2X/~n [ ( k i n ) 2  + ( k i n ) 2 ]  1/2 
- Z,,,,,(1 - u - K0) 2 

D has repeated eigenvalues if and only if k~,, = k[, = 0. Other- 
wise, the eigenvalues of D are distinct and the eigensolutions 
split. Thus, to first order in e, splitting of the eigensolutions is 
determined by the following rule: If the Fourier series for k ( O )  
has nonzero coefficients for either or both of cos 2nO and sin 
2nO,  then the n nodal diameter eigensolutions split; otherwise 
they do not. This rule addresses distributed, possibly discontinu- 
ous, asymmetric boundary stiffness. Because splitting of the n 
nodal diameter eigensolutions depends solely on the 2n compo- 
nents of the Fourier series for k ( O ) ,  the odd components of the 
Fourier representation of stiffness do not influence splitting in 
first order perturbation. Additionally, the number of nodal cir- 
cles m does not influence splitting. Rules for other boundary 
asymmetries are similarly obtained. 

Discuss ion  

A key feature of the method is that if particular solutions to 
the inhomogeneous Eqs. (6a) and (7a) can be found, exact 
perturbation solutions follow readily for any boundary operators 
Bj, Cj, Dj, Ej rendering ( 1 ) self-adjoint. Because the perturba- 

Table 1 Comparison of third-order perturbation and Ritz 
(Leissa et al., 1979) solutions for the fundamental eigenvalue 
of a circular plate with zero transverse displacement and a 
rotational spring of stiffness K(O) = 1 + ¢ cos 0 along the 
outer boundary. A superscript * indicates the exact value. 

c Perturbation Ritz Percent difference 

0 6.019" 6.04 -0.3 
0.5 5.990 6.02 -0.5 
0.6 5.977 6.01 -0.5 
0.7 5.962 6.00 -0.6 
0.8 5.944 5.99 -0.8 
0.9 5.924 5.97 -0.8 

tion terms of (1) are only present in the boundary conditions, 
they do not introduce inhomogeneities into the field Eqs. (6a) 
and (7a).  The inhomogeneity of the field Eq. (6a) is propor- 
tional to the unperturbed eigenfunction u ..... The functional form 
of Urn,, depends on the operator L and domain P but is indepen- 
dent of the boundary conditions, which only fix constant coeffi- 
cients. Consequently, the functional form of a calculated partic- 
ular solution v~,',,, does not change for differing boundary condi- 
tions; only the constant coefficients of v~',,, change. Because 
v~',,,, is the essential component of the exact solution, exact solu- 
tions are available for any boundary conditions once the func- 
tional form of v~,,, is determined. Similarly, the functional forms 
of the inhomogeneities Urn,, and 1)mn in (7a) are also independent 
of the boundary conditions, so exact solutions of (7) are avail- 
able for any combination of unperturbed and perturbed bound- 
arry conditions once the functional form of the particular solu- 
tion w~',,, is calculated. Thus, the particular solutions (16), (19), 
(22), (24), (35), and (36) derived for the biharmonic and 
Laplacian operators on annular domains allow exact calculation 
of eigensolution perturbations for all such problems with bound- 
ary conditions of the form ( l b ) ,  including those mentioned in 
the Introduction. Derivation of particular solutions for rectangu- 
lar domains should not pose significant difficulty, and many 
other operators, such as that occurring in vibration of plates with 
in-plane stress (Parker and Mote, 1991 ), can also be handled in 
this way. The eigenvalue perturbation expressions (11), (12), 
(28), and (33) apply for any operator L and domain P. 

Boundary condition perturbation has features which make it 
an attractive alternative to finite element, Ritz, Galerkin, and 
other discretization methods. The perturbation does not rely on 
trial functions to estimate the eigenfunctions. This makes it 
particularly appropriate for analysis of higher eigensolutions for 
which the selection of trial functions is more difficult; the exact 
perturbation solutions apply for all eigensolutions. Boundary 
condition perturbation generates analytical expressions for the 
evolution of the eigensolutions from the normally well-under- 
stood unperturbed problem, thus explicitly identifying depen- 
dence on system parameters. Also, though discretized systems 
predict eigenvalue splitting, rules can not be stated in general 
terms; they must be inferred from numerical results. In contrast 
to perturbation analyses that expand higher order eigensolutions 
in series of the unperturbed eigenfunctions, the results presented 
here have the aesthetic and practical advantage of requiring the 
unperturbed eigensolutions for only those eigensolutions for 
which perturbations are sought. 

Pierre (1988) determined that, for distinct eigenvalues of 
self-adjoint problems, first-order perturbation analysis and Ray- 
leigh quotient analysis yield identical eigenvalue predictions 
provided the unperturbed eigenfunctions are chosen as the ad- 
missible functions for the Rayleigh quotient. Thus, second and 
third-order perturbations are expected to yield superior eigen- 
value predictions compared to those obtained from the Rayleigh 
quotient using the unperturbed eigenfunctions. 

Continuous system modal analysis for dynamic response is 
easily carried out for the perturbed system since orthogonality 
of the eigenfunctions Stun is ensured. Physical understanding of 
the behavior, frequently lost through discretization, is thereby 
retained. The method also provides a useful means to identify 
boundary condition asymmetries using measured frequency 
spectra. In the example, an unknown boundary stiffness can be 
estimated by selecting a rotational stiffness Fourier series to 
predict eigenvalues that fit the measured data. The explicit ex- 
pressions for the dependence of the perturbed eigenvalues on 
the stiffness simplify this iterative process. The physical system 
may suggest an initial selection, e.g., six equally spaced bolts 
in the plate inner boundary support suggests cos 60, sin 60 
stiffness dependence might be expected. For design purposes, 
the eigenvalue formulae can be used to favorably affect the 
frequency spectrum by appropriate distribution of asymmetry. 
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Application of the method to particular problems is not diffi- 
cult. For annular domain problems. Fourier series expansion of 
asymmetries and orthogonality of the trigonometric functions 
reduces the eigensolution perturbations to algebraic expressions. 
Symbolic mathematics software facilitates this reduction. Since 
the computations are exact, programming errors are avoided by 
verifying each calculation by direct substitution. The algebraic 
formulae are convenient to program when the eigensolutions 
are to be used for response analyses, system identification, or 
control. 

Conclusions 
( 1 ) A boundary condition perturbation method is developed 

for linear, self-adjoint eigenvalue problems where the perturba- 
tion terms are restricted to the boundary conditions. Formal 
expressions for the eigenvalue perturbations are derived through 
third order in ~ for distinct unperturbed eigensolutions and 
through second order for degenerate eigensolutions. This ex- 
tends the magnitude of perturbation that can be treated accu- 
rately. 

(2) For any boundary condition perturbation problem of 
plate vibration or the Helmholtz equation on annular domains, 
exact eigensolution perturbations are presented. The principal 
benefits are 

• no approximation is introduced beyond truncation of the 
asymptotic series (3, 4); 

• simpler forms of the exact solutions compared to tradi- 
tional eigenfunction expansions allow higher order pertur- 
bations to be treated with relative ease; 

• convenient form of the eigensolutions simplifies their use 
in modal analysis, system identification, design, and con- 
trol applications; 

• accuracy of the method is retained for all eigensolutions; 
and 

• results are easily derived and verified using symbolic 
mathematics software. 

Confinement of the perturbation terms to the boundary condi- 
tions ensures that, if particular solutions can be found for other 
operators and domains, exact solutions are readily obtained for 
arbitrary perturbed boundary conditions. 

(3) Splitting of degenerate unperturbed eigensolutions is 
determined by the eigenvalues of a symmetric, algebraic eigen- 
value problem. In contrast to previous works where splitting is 
studied, distributed, discontinuous asymmetries are treated by 
the method presented. Discrete asymmetries can be studied as 
a special case. Both of the split eigensolutions are calculated. 
For annular domains, Fourier series representation of the asym- 

metric boundary perturbations leads to simple rules that deter- 
mine splitting by inspection of the Fourier coefficients. 

(4) Natural applications of the method are to vibration and 
buckling problems, where many known unperturbed solutions 
exist. Buckling solutions are particularly sensitive to asymme- 
try. Geometric asymmetries such as noncircular boundaries 
(e.g., elliptical domains) or slightly skew rectangles can be cast 
as approximate eigenvalue problems of the form (1) and the 
presented results apply (Parker and Mote, 1996). Asymmetric 
boundary stiffness variations and partial boundary supports are 
readily handled for these regions. 
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A P P E N D I X  A 

Symmetry of  D in (28)  

The boundary conjunct defined in (10) takes the form of an 
integral over the boundary OP. Assuming a fourth-order opera- 
tor L, it can be expressed in the form (Stakgold, 1979) 

J (u ,  v) 

fo  [BgluBTv g n = + B g u B ~ v -  B l V B i u  B~vB~u]dd (A1) 
P 

Bg2 are boundary operators for the geometric boundary condi- 
tions and B7.2 are the corresponding natural boundary condi- 
tions. 

For concreteness, J(u~; 2, v.,.) in (27) are evaluated for the 
case where B1 and B2 in (5b) are natural boundary operators, 
Bi = B7 and B2 = B~. Thus, using (5b), (6b), and (26), 

n 1 ,2  n 1 ,2  
Bll.lmn = O2blmn = 0 

B ~ 1)ran - -  C l  IImn 1 1 2 2 = = - - a m n C l b l m n  - -  a m n C l R m n  

B~vm. = -C2um,, = - a t m .  CzuL. - aL.,C2u2,... 

Direct substitution into (A1) yields 

f o  g I 1 g 1 1 ^ - J ( u ~ . . ,  Vm.) = amnl [Biu. , .Ciu, . .  + B2umnC2u.,,,]ds 
P 

f o  g 1 2 g 1 2 2 [BlbtmnClUmn + B2umnCzu,,,n]ds q- amn 
P 

= Dlla~n,, + D12aZn,, ( A 2 a )  

-J(u2. , . ,  Vm.) , f ~ ~ , ~ 2 , = amn [BI Igmn Clu .... -t- B2umnC2umn]ds 
da P 

f o  g 2 2 g 2 2 + a~. [Blu,,,.,Clum., + B2um.,C2um.]dd 
P 

= D21aLn + D22aZ, n. ( A 2 b )  

Self-adj0intness of the eigenvalue problem ( 1 ) requires that, 
for any two eigenfunctions ~-and g, 
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f o  g n ~  J(Y', if) = 0 = [B'~g'B'~g + B2gB2s 
P 

- B{gB'~'~-- B~YB~s-lgg. (A3) 

With B~ = B~ and B2 = B~ as above and with (4), ( lb)  gives 

BTS-= - e C l f f +  O ( e  2)  B~S-= B{ff+ O(e) 

B~g= -eC2f f+  O(e 2) Bgg=  B~ff+ O(e) (A4) 

I with similar equations for Y. Letting ~-= s¢.. = Umn + O(e) and 
Y = s~,, = u~,, + O(e), substitution of (A4) into (A3) yields 

1 2 f g 1 2 g 1 2 
Stun ) = 0 = [ - O l U m , , C l u m n  - B 2 u m n C 2 u m , ,  J ( s  ..... e 

Ja P 

g 2 1 g 2 I ^ 
+ B l u , n n C l U m , j  + B z u , n n C E U m n ] d s  + O ( e 2 )  (A5) 

The condition (A5) for self-adjointness of the eigenvalue prob- 
lem (1) requires that D12 = D2~ in (A2), and D is symmetric. 

A P P E N D I X  B 

J ( u m . ,  Win. )  in (32)  Expansion of  ~,2 
For the boundary conjunct in the form (A1), expansion of 

J(M,, . ,  win.) for u2. 2 satisfying the natural boundary conditions 
BTu~,;, 2, = 0 and B~u~] = 0 yields 

P 
i | g i n g i n ^ B2u,,,nB2wm,,]ds = [B 1 U m n B  1 Wren + J ( u  ..... w,.,,) 

J0 P 

i =  1,2. 

Substitution of the boundary conditions (7b) and use of the 
decomposition (29) gives 

, fo = - -  [ B l U m n C l ( c m n b l m , ,  -.I-- CmnU .... J ( u  .... Win.) g i 1 1 2 2 
P 

+ v~. + Veto,i) + BglUi.,.Dlum,,]dg 

f o  g i 1 1 2 2 - -  [ O z b l m n f 2 ( C m n U m n  + CmnlIRmn 
P 

g i ^ + v~,, + v{'.,,) + B2um,,D2um,,]ds 

= - c~.. f [B~u,..Gug ~ .... ~ + B~ui,,.Czu~,,,ldg 
d o  P 

2 f g i 2 g i 2 ^ 
- - C m n  [ B l U m , , f l U m n  + B z u m n C z u , , , , , ] d s  

do P 

+ J(M,, . ,  Wm.)lc~;X=0 i = 1, 2 (B1) 

where the last term includes all terms independent of c],;~. Com- 
parison of (B 1 ) with the definitions of Do in (A2) yields (32). 
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Asymptotic Theory of Broadband 
Rotor Thrust, Part I: 
Manipulations of Flow 
Probabilities for a High 
Number of Blades 
Modern computer predictions of  the frequency spectrum of net thrust for a rotor in 
turbulent flow display a number of features that call for interpretation. The success 
of  the asymptotic development described here in providing the needed explanations 
lies in the relative generality of the model The rotor is fully three dimensional. It is 
not a cutaway blade row. The theory's only requirement is that the number of blades 
be large (six is enough). The most practical aspect of the new work is that it supplies 
a highly accurate analytical solution for the broadband "haystacking" in a propulsor 
of  high solidity. An important intermediate result is that the probabilistic amplitude 
of random gusts perceived by that propulsor climbs radially outwards along its 
blades, solely by virtue of the three-dimensional kinematics of the rotor's aerodynamic 
sampling of the turbulent flowfield: The behavior is r3 for the normal-to-rotor flow 
statistics and r 4 for the cross correlation of  normal and in-plane downwash compo- 
nents. The final effOct is a spanwise distribution of sectional loads that is highly 
concentrated at the blade tips. The turbulence in the present study is homogeneous 
and isotropic but its integral scale may take on essentially any value and the asymp- 
totic analysis still holds. 

1 Introduction 
This paper revisits the problem of predicting the frequency 

spectrum of broadband thrust experienced by a rotor ingesting 
homogeneous isotropic turbulence (Fig. 1). In Fig. 2, whose 
solid curve displays the output of a hypothetical example of the 
type treated exactly by Jiang et al. (1991 ), and independently 
by the present author (1990), one notes 

(1) a broad "haystack" hump roughly over the blade-rate 
frequency ~v = B~, with 
(2) a small but still discernible first harmonic hump at ~v/B~ 

2, and 
(3) a slight right shift for the maximum response, which oc- 
curs just above Lv/Bf~ = 1. 

The figure actually depicts a mild example for each of the 
three effects. It is nonetheless useful because it addresses a 
turbulence-scale case for which a simpler theory can also justi- 
fiably be brought to bear: Sevik's pioneering treatment (1971) 
of a rotor where by prescription a given turbulent "eddy"  is 
struck no more than once. His model yields the broken mono- 
tonic curve and therefore fails to account for any of the three 
features noted in the solid one. 

The first paper relevant to the work presented here seems to 
be Liepmann's 1952 analysis of a single airfoil cutting through 
a wave number spectrum of random isotropic downwash. Sev- 
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ik 's later handling of the rotor problem differs in spirit from 
this, as well as from almost everything else both before and 
after 1971, in its attempt to keep the turbulence description in 
its original spatial domain. To cite but a few studies (beside 
Liepmann's) that have taken the altemate spectral approach: 
Mani (1971), for a two-dimensional cascade; Homicz and 
George (1974), Breit and Dickinson (1990), and Brown 
(1993), for a rotor; Blake (1984), for both cascades and rotors; 
Ventres et al. (1982) and Glegg (1993), for blade/blade corre- 
lated and uncorrelated flows, respectively, for a modem ducted 
propulsor at high subsonic speeds. 

The present paper shows that not only can Sevik's spatial 
viewpoint be generalized readily to include the missing blade- 
to-blade temporal changes in flow statistics, i.e., the causes of 
the nonmonotonic haystack response, but that the resulting the- 
ory lends itself uniquely to an asymptotic analysis based on a 
single requirement: that the number of blades B in the rotor 
be large. The "closed-form" solution developed here for the 
frequency spectrum of net rotor thrust is uniformly valid for all 
frequencies 0 < wlBf2 < to for any one practical value of 
the turbulence scale A/R,, and, conversely, for an essentially 
unlimited range in A/Rt at any one ~/BfL The new theory 
explains simply which of, and how, the flow and aerodynamic 
parameters affect all three of the features listed above for rigor- 
ously computed frequency spectra of rotor thrust. This paper 
addresses points 1 and 2 and defers 3 to a companion article. 

The mathematical manipulations of the asymptotic theory 
will appear here to rely heavily on an assumed exponential form 
exp ( - q / A )  for the fundamental correlation of in-line velocities 
" f ( q ) , "  for the isotropic flow impinging the rotor. However, 
yet another future paper will analytically continue the final re- 
suits of this one to any form o f f ( q ) .  In doing so it will not 
only generalize f a w a y  from the exponential form, but will also 
dispense altogether with the somewhat artificial concept of an 
integral scale A in the context of rotor/turbulence interaction. 
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Fig. 1 NASA propfan normalized by its own radius Rt: The eddy size of 
the incident isotropic turbulence is A / R t .  The blades are twisted, swept, 
and of variable quarter chord b ( r ) / 2 R t .  The sketch defines the dimen- 
sionless coordinates r~, r2 (without tildes), and #~, 0z, of two general 
blade stations where turbulence velocities and random sectional loads 
are being correlated. Variable z runs along the fan's axis. The in-plane 
angle 02 has suppressed the convective effect of the turning speed f~ to 
make for a simpler picture. Variable q has similarly ignored the time- 
dependent axial distance UT/Rt.  

The new approximate analysis joins a growing class of math- 
ematical treatments that make the same high-B assumption; see, 
for example, the acoustic theories by Crighton and Parry 
( 1991 ), Peake and Crighton ( 1991 ), and Envia (1992). But in 
the tonal problem of those studies there is a single, definite 
relation connecting the high order uB of all the usual Bessel 
functions to their high-frequency argument uBf/*const. The 
work described here, on the other hand, will be a high-B theory 
without restrictions regarding frequency range, essentially be- 
cause in a nondeterministic problem a rotor's frequencies and 
circumferential modes exist independently of each other. 

2 Summary of the Exact Fully Correlated Theory as 
the Launching Point for the New Work 

Following Sevik (1971), T2(~o) will be the.frequency trans- 
form of the rotor's temporally correlated thrust T 2( r ) ,  whose 
square power will therefore be strictly symbolic: 

T2(m) = J o  d ~  cos ~rTZ(~) ;  

~2(~) = f~ d_ff_ ei~.~2(r). ( la ,  b) 
71" 

One defines the normalized thrust spectrum T2(w) related to 
~2(~)  by 

T2(w) _ 4 7 r B 2 ( A ) F  
T2(~) ~ p2U3R~(ulU)2 r Rt ' ( 2 )  

where our new function F turns out to depend on eight nondi- 
mensional parameters: 

B ~ OS(r) Rh Reff Bf2A A F w__A_. 
Rt R, R, U R, U 

The first five and part of the sixth fix the rotor geometrically. 
The ratio b/R, = b ( r ) / R, denotes the distribution of halfchords 
along the span " r "  of each blade normalized by R, (Fig. 1); 
Or(r) is the distribution of mean blade sweep from root to tip. 
The fourth parameter is the ratio of hub to tip radii. The fifth 
is an artifact of strip hydrodynamics: it introduces the radius 
R~, to be that spanwise station past which one could arbitrarily 
cut off the integration of running loads to model "tip re l ie f"  
crudely. A/R, is the integral scale of the homogeneous isotropic 
turbulence normalized by the rotor's tip radius. 

Embedded in the sixth parameter is the rotor's advance ratio 
J,, since one may write it as 

J, is thus not independent of the others in the above roster and 
consequently does not show up in it. ~2 and U are the rotor's 
turning and forward speeds, respectively. U normalizes the am- 
plitude of the RMS turbulent fluctuations " u "  in the denomina- 
tor of the right-hand side of (2 ) ' s  first equality. 

One finds after a fair amount of work that F may be put in 
a form that describes how the three-dimensional flow correlation 
tensors R ~, R ~°'°~, and R °° are operated upon, in cylindrical 
coordinates, by a corresponding set of double r~,2 integrals, a 
pair of m1.2 summations over the B circumferential blade posi- 
tions, and the r transform of ( l b ) .  These operators will appear 
here compactly designated by the letters 2=, g~0, 2oo: 

, I I t I ~ I , I , -10 NQ ' 

' \ . \ .  
3 -20  ~ z z  2 zO 2 

_ _  - 2 5  

0 - 3 0  

0 
r--I 

-2t5 

--40 I I I I ' I ' 

0 0.5 1 1.5 2 2.5 3 

~/illl 

Fig. 2 Sample numerical experiment for the exact theory (solid curve), and 
for Sevik's model of effectively stationary blades: The exact calculation ("e" 
subscript) displays a broad, 6 dB hump over the blade-rate frequency and a six 
percent right shift for that maximum response. 
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F = wvr {4~[R~] + J2zo[R~O + Re q + 2Ooo[ROO]} ' (4a) 
2 2 B Rt 

~ ro~O Ro~] wrr {2z~[RZZ ] + ~zOt,, + }. (4b) 
BZR] 

1 

+ r,rEK~'B(yr,)l~'B(yr2) + 2- [r,K'~B(3"r~)La(yr2) 
3" 

r2K~B(3"rl)l,;B(yr2)] ~ . (8b) + 
J 

The second equality of (2) and (4b) 's  first term together 
establish what we later shall refer to as the normal-to-rotor 
thrust correlation component [ T~(w)] 2, etc. Blade pitch, and 
more generally, blade twist, is the cause of the three-element 
form of (4a). The R ~'~°'°~ nomenclature in (4b) has adapted 
Hinze's equation (1-44) (1975); e.g., for R ~ his " i "  = " j "  
indices have both become equal to our z in Fig. 1, and his points 
" A "  and " B "  have become our general correlation points 1 
and 2. A rotor whose blade chords lie flat on their plane of 
rotation would contain only the R zz component because the w ° 
flow component would then only graze the blades' surfaces. 
Likewise, a rotor with similarly flat blades, but with chords 
now feathered into the freestream U, would be subject only to 
the flow's circumferential autocorrelation R °°. And while R °° 
might be expected to contribute significantly to the net torque 
then, it would clearly have no impact on rotor thrust. 

R ~z is given by 

= ~ q - -~q + f ;  f = f ( q )  = e -(",/mq. (5a, b) 

Variable q = qlR, is the normalized correlation distance be- 
tween points 1 and 2: 

q = {r 2 + r~ - 2rlr2 cos [0S(rl) - O*(r2) 

+ 27r(ml - m2)/B - ~r]  + (Ur/R, )=} 1/2. (6) 

Quantity {z in (5a) is the component of q normal to the rotor 
disk: {~ = Ur/R, ,  which embodies the frozenness hypothesis 
along with f~r, which appears in the angular argument of (6). 
Our modeled turbulence will therefore not undergo the type of 
distortion which Atassi and Grzedzinski (1989) analyze in their 
treatment of deterministic flow structures approaching a body. 

The first step needed here to cast the exact spatial-domain 
theory in a form amenable to asymptotic analysis is to make 
use of the identity 

dreW,, ~_ ~ ~ e_q/A= 2B z 0 
U 0A -~ m l = l  m 2 = l  

× ~, K~B(Trl)I,B(3"r2) COS [uB{O,(r l )  -- 0,(rE)}]. (7) 
t J =  - ~  

The above holds for r2 < r~; a similar expression applies for 
r2 > rl. One therefore finds that the two parts of (4b) 's  right- 
hand side are expressible as a series of circumferential modes 
u, e.g., 

wTr 4~[RZ~ ] = ~ hiS(3'), (8a) 
B2R~ . . . .  

where it turns out that 

h~(3') = - 4 F  drlgZ(rl) dr2g~(r2) 
h/Rt RhlR t 

× cos [a(r , )  - oz(r2) ] COS {uB[OS(rl) - 0*(rE)] } 

2(z.,B) 2 

K~B and I~B are modified Bessel functions. The argument 3' of 
h~ = is the dimensionless radial "wave number" 

3 ' =  _@2 

The function gZ(r) in (8b) is the z component of the deter- 
ministic aerodynamic transfer function for the blade section at 
radial station r: 

b(r ) lR ,  
g~(r) = 

~/1 + jE(r)lrr2 

X rr lJ(r)  
(10a) 

~1 + [27rFb(r)/A]/~/1 + rr2/j2(r)  

J ( r )  stands for J, /r ,  which determines the twist distribution 
from root to tip by placing every blade section at zero angle of 
attack relative to the total local freestream [ U 2 + (f~R,r) 2 ] 1/2, 
with r dimensionless. 

A related function g 0(r) emerges in connection with the "zO" 
problem in the second term of (4b) 's  fight-hand side. We state 
it now for purposes of comparison: 

b(r ) /R ,  
g°(r)  = gZ(r)" J(r)/Tr 

~/1 + J2(r)/Tr2 

1 

× ~/1 + [27rFb( r ) /A] / ( l  + 7rHJ2(r) " (10b) 

The second multiplicative factor of gO in (10b), i.e., 1A/... , 
is the amplitude of a popular approximation of the Sears func- 
tion (e.g., Goldstein, 1976) as the relevant transfer aerodynamic 
function for aero/hydroacoustically compact blade chords. 
Symbol a will denote the Sears phase for use in (8b) and others 
that will follow: 

a(r )  Fb(r )  [ 1 

A [~]1 + 7rZ/J2(r) 

_ rrZA ] 

2[A~/1 + rr2/ja(r)  + 2rrFb(r)] " (11) 

The second term on (4b) 's  right, which contains the effects 
of normal/in-plane cross correlation of turbulence velocities, is 
also expressible as a series of circumferential modes, 

- -  p d r l  (v) = 4 \ X / \ - - b - ]  .,,,R, 

r [ 
x f dr2" g~(r2)g°(r2) + gZ(rl)g°(r')] 

Rh/Rt r2 rl J 

× cos {uB[OS(rl) - 0S(r2)] }.cos [tx(rl) - -a ( r2) ]  

+ 2(uB) 2 {llr +r  
1 

+ rlr2K'~s(yr,)l'~s(Tr2) - :" [r ,K '~s(Tr l ) l~(yr2)  
Y 

+ r2K~s(3"rl)l ' ,B(yr2)]}.  (12) 

138 / Vol. 63, MARCH 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



3 The New Asymptot ic  Analysis  for "B > 1" 
One takes T in the arguments Try, yr2 of the Bessel functions 

K,B, l,,t~ in (8b), (12) and writes it as y = uB(T/vB)  at least 
for v =~ 0. I.e., from (9) one defines 

~ -  Y - ~ (  co uu'~(~2A'~ z ( - ~ )  

] kvJ ,  ~ + (uB) 2 , (13) 

and then expresses K.B(VB~r~), I~B(UB'~rz), etc., in terms of 
their turning-point expansions (cf., for example, Abramowitz 
and Stegun, 1968). After a great deal of mostly self-canceling 
algebra, the r~ integral in (8b) filters down to 

f r, dr2gZ(r2) cos [a(r l )  - ce(r2)] 
Rh/R t 

x cos {vB[O'(r,)  - 0~(r~)l} r~ + r~ + ~,a j 

× K,,B(Trl)I~n(Tr2) + rlr2K[m(Trl)l,',R(Tr2) 

l } 
+ -  [rlK[m(T&)I,.B(Tr2) + r2K,m(Trl)I~(Tr2)] 

-2r~gZ(rJ) = -2r3(vB)2gZ(rl)  (14a) 
(vB)4[1 + (-~rl)2] 3 [(vB) 2 + (Trl)2] 3'  

For reasons that are beyond the scope of the present paper, but 
which appear documented in detail in Martinez (1993), this 
result holds regardless of the value of A/R, so long as B >> 1. 
The size of the largest error in the overall expansion is 4/(vB) 
(i.e., it is independent of A/R,).  That maximum "global" error 
occurs when A/R~ is large rather than small. The magnitude of 
the error decreases to O(vB) -3~2 when A/Rt is small rather than 
large. One similarly finds that the r2 integral in (12) becomes 

r, gZ(r2)gO(r2) 
dr2 cos [a(r l )  - a(r2)] 

Rh/R t r2 

x cos {vB[O~(r,) - 0S(r2)]} ~ r~ + r~ + .y2 j 

X K.n(Tr, )I.8(Tr2) + rlr2g~(yrl  )l[.B(yr2) l 
J 

_ ~ [rlK~n(Tr,)l,m(yr2) + r2h~.B(Trl)l~B(Tr2)]} 
Y 

2r~y2g~(rl)g°(rl) 2r4y2g~(r~)g°(r') (14b) 
(vB)4[1 + ('~r,)Z] 3 = [(vB)2 + (yr,)2] 3" 

The final equalities in (14a, b) have reabsorbed vB into the 
original meaning of 3': 3' =-- vB~,. These two expressions contain 
the two main analytical results of the paper. They explain how 
a B-bladed rotor perceives kinematically the field of homoge- 
neous isotropic turbulence striking it. The result in (14a) states 
that the sampled subfield of normal-to-rotor statistics " z z "  rises 
from hub to tip as r~, for eddy integral scales in the "large" 
range A/R, >> 1/B and for frequencies in the neighborhood of 
the blade rate or its harmonics. Under both of these conditions 
the denominator in (14a) 's  final right side becomes insensitive 
to r~ as 3' becomes much smaller than B (e.g., for u = 1), 
which is to say that ~, becomes much smaller than 1. The 
effective rectilinear "gust" amplitudes of the " z z "  field thus 

climb radially as r ~/2, just by virtue of the acknowledgement 
by the rotor of the three-dimensionality of the turbulence field, 
i.e., by sampling it aerodynamically along a correct, divergent 
set of loaded quarter-chord curves. This novel finding is obvi- 
ously beyond the reach of any two-dimensional cascade analysis 
such as Mani's (1971), which focuses on a single slice around 
the rotor taken at some favorite radial position of that same 
three-dimensional field. Equation (14b) similarly deduces that 
the rotor-sampled "zO" velocities coalesce at the rotor's blade 
tips at the even higher rate of r 4, and that their effective rectilin- 
ear gust amplitudes therefore do so as r ~. 

It is important to understand that these conclusions have noth- 
ing to do with the additional radially dependent "kinematics" 
of the aerodynamic transfer functions g Z(rl) and g°(rl). The 
next step is to bring them in. One defines for convenience a 
new function G(r)  to be 

[b(r)/R,] 2 
G(r)  - 

1 + j2(r)/Tr2 

1 
x , ( 1 5 )  

1 + [27rFb(r)/A]ldl + 7r2]j2(r) 

which incidentally is [g°(rj )]2 from (10b). Then 

71-2 7F2F~ 
[gZ(rl)]2 = - -  G(rl) = - -  G(rl) .  (16a) 

j2(r l )  J~ 

The first equality of (16a) follows from (10a) and its second 
equality from (18). The result in (10b) similarly leads to 

7rrl 
g~( rl )g°( rl ) = -~- G( rl). (16b) 

Inserting these results into (8) and (12), and these in turn 
into (18), etc., and finally into (4b) and (2), one obtains that 

[Tt°tal(co)]a 2 ~. [ r~(w)] ]  + [rz°(w)]. 2 

_ 1477r3 ( A )  4 B 2 f R ~ f f l R r d r a ( r )  

32 J~ ~ [1 + F2] 5/2 gRh/R , 

327r 3 

f Reff/ R t 
× dr 

RhlR t 

with 

rSG(r) 
[( / . ,B) 2 q- ( .y r )2 ]  3 '  

(17a) 

X v - u dr 
v= -~  RhlRt 

rSG(r) 
[(vB) 2 + (Tr)2] 3'  

(17b) 

The " a "  subscript in the left-hand sides of (17a, b) denotes 
asymptotic. Three comments: 

(1) The order of all Bessel functions in (8b) and (12) 
became vB due to the double summation in ml, me, each from 
1 to B. That sum obviously removed all blade-to-blade differ- 
ences in the circumferential position of the points being corre- 
lated and left behind only the rl, r2 independent variables. It 
also left behind a single difference 0"(rl ) - 0*(r2) due to the 
relative sweep of the radial stations r~ and r2for the rotor as a 
whole. That difference in sweep positions has now dropped out 
due to the high concentration at r~ for all r2 integrands. The 
relative phase of the loading a(r~) - of(r2) among any two 
blade sections has similarly disappeared. And even though that 
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phase referred here only to the Sears function of strip aerody- 
namics, which outright ignores sweep effects as a transfer func- 
tion, one is led nevertheless to the conclusion that all spanwise 
phase effects are globally irrelevant, at least for flows that are 
isotropic or nearly so. Put another way: spanwise cancellation 
effects due to sweep must be paradoxically local in a turbulence- 
ingesting rotor. The almost perfect agreement observed among 
rigorous computer runs with and without sweep for the points 
being correlated, but using the Sears transfer function in both 
cases, supports this expectation (this comment refers to compar- 
ative runs by Jiang et al. ( 1991 ) using a very detailed represen- 
tation for a test geometry, i.e., including OS(r), and by the 
author, who applied the exact equations listed above with 0S(r) 
set to zero. The two groups of runs agreed anyway). 

(2) One of the analytical cancellation effects in (17a, b) 
is a fast decline of rotor thrust with an increasing value of the 
number of blades B, except for very low frequencies. The r 
integrand becomes propolrtional to B -6 for A/Rt >> 1/B, which 
upon multiplication by B4--the constant outside the integral in 
(17b)--yields B -2. The obvious conclusion is that the more 
blades the better, if one's goal is to reduce T2(60) with all else 
holding equal. 

(3) One may interchange the z~ sum and the r integral and 
evaluate the former analytically using standard complex-vari- 
ables techniques. This has been done but the results are neither 
insightful nor compact looking. They are not insightful because 
the tJ sum in (17a, b) already converges very quickly (as 1/ 
u4), and thus hides no interesting secrets to be uncovered only 
by the analytical process of closed-form summation. 

A By-Products of the Asymptotic Theory. The denomi- 
nator of the r integrand in (17b) supplies an analytical expres- 
sion for how much the blade-rate and higher-harmonic humps 
should protrude above their broadband "background." That 
amount is 

\ Rt / JwlB~=u 

+ -3 

\ e t  / JwIBf~=v+ll2 

+ 

\ B I t R , /  J 

= . + t - E - ]  

\2--D-Z,/t-k~-, / j (18) 

The first approximate equality holds for BI2AIU >> 1; the sec- 
ond, under the simultaneous conditions A/R, >> 1/B and Bf~A/ 
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U >> 1. One recalls that Bf2A/U is one of the original eight 
parameters identified after (2). A small value for it causes the 
numerator on the right side of (18) 's second equality to match 
its denominator: there are no humps then. Homicz and George 
(1974) originally isolated B~2A/U as the qualitative regulator 
of hump size for a rotor's acoustic signature. They deduced 
Bf~A/U's role from their version of (9) of this paper, and 
apparently from the behavior of their numerical experiments 
with respect to changes in this parameter. Thompson (1976) 
has made a similar observation regarding just B: that higher 
values for it should, and often do, bring sharper humps numeri- 
cally. Blake (1984) states the Bf~A/U >> 1 criterion obliquely 
but equivalently: since B~2A/U = (yrB/J,)(A/Rt), the inequal- 
ity Bf~A/U -> 1 becomes A/R, ~> Jt/yrB, or, since J, is a measure 
of the pitch at the tips (he implies), A/Rt >> "pitch"/B. 

Blake correctly reaches that important conclusion while re- 
garding the haystacks as separate corrections to Sevik's broad 
monotonic base, though he (Blake) seems to overestimate the 
magnitude of the overtone humps at w/Bf~ = 2, 3 . . . . .  Expres- 
sion (18) now predicts analytically and quantitatively how those 
haystacks should grow with increasing values of Bf~A/U as 
part of a unified result that approaches Sevik's monotonic re- 
sponse under special conditions. Moreover, the approximate 
equalities of (18) indicate for the first time that there is a limit 
to the degree of tonality thereby achieved: a trrue tonal limit is 
fundamentally unreachable for a fixed value of J ,  This is espe- 
cially true of the higher harmonics u > 1 and for decreasing 
values of the tip relief parameter R~fe/Rt: either brings about a 
flattening effect within the curly brackets of (18) 's  final right 
side. The expression produces an infinite ratio only for J, ~ 0, 
i.e., for U ~ 0, when the rotor is made to churn the same 
flow statistics over and over again. That limit is understandably 
nonuniform: The tones are infinite in level but their coeffi- 
cients are proportional to the vanishing freestream U raised to 
a positive power. 

Additional Remark: Sevik cites an experiment in his paper 
that displays a large second hump at w/B~2 = 2 that would 
appear to contradict (18). However, the consensus of the mod- 
ern computational community is that the highest levels in that 
data are probably too high, and that the response measured near 
w/Bf~ = 2 is especially suspect. 

B Corroboration of the Asymptotic Theory. The dem- 
onstration of the new asymptotic theory will proceed here as 
follows: (a) It will first explain the haystack features of these 
and other numerical experiments, i.e., it will show that the 
magnitude of the hump sizes, etc., are in fact accounted for 
parametrically by the spinoff asymptotic results of Section A, 
and then (b) it will compare the exact calculations in Fig. 2, 
and others, to new predictions by the asymptotic expressions 
for thrust spectra in (17a, b). 

( a ) Interpretation of Numerical Experiments. All of the 
calculations are for a rotor with blades of constant halfchord 
ratio b/R, = .1. The ratio of hub and tip radii R h / R  t is .2. The 
mean sweep OS(r) is zero. The advance ratio J, is unity. Roef/ 
R, will also be unity for simplicity's sake. 

Figure 2 addresses a small turbulence scale case where A/R, 
= ~o. B = 6. The rigorously computed blade-rate hump rises 
above its broadband base by roughly 6 dB and is hard to make 
out for twice the blade rate. The asymptotic hump size from 
(18) is 6.5 dB for u = 1 and 4 dB for u = 2. Figure 3 addresses 
a large scale case (A/R, = 2) for 6 and 12-bladed rotors. The 
level of the blade rate hump for B = 12 is 6 dB below that of 
the B = 6 result [6 = 10 log~0 (B,ew/Boia) 2 = 10 logic 4 J - -  
consistent with the earlier discussion. Equation (18) performs 
similarly in its estimate of the size of the blade-rate hump: Its 
prediction is now 16 dB for u = 1 and so in good agreement 
with the figure's 14 dB, both for B = 6 and for B = 12. Either 
case is indeed more "tonal" than that of Fig. 2 because A/ 
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R, has increased, but by (18) ' s  second equality each is also 
essentially at its tonal limit: For B = 6, Bf~A/U is already 
"infinite" since Bf~A/U = (TrB/J,)(A/R,)yields 127r ~ 38 
for this J, = 1 rotor. 

(b) Direct Checks of the Asymptotic Theory. Figure 4 
plots the exact u = 1 component solutions from Fig. 2, where 
A/R, was ~,  and the closed-form asymptotic results of (17a, 
b). The agreement is good. Returning now to Fig. 3, where the 
integral scale ratio A/R, had the opposite extreme value of 2 
(i.e., an eddy the size of the rotor diameter), one notes again 
good agreement. Exact and asymptotic results merge as they 
should when the rotor's number of blades B is doubled from 6 
to 12. The indicated maximum gaps between the asymptotic 
and the exact solutions follow the 4/(uB) maximum error of 
the approximate expressions, as earlier discussed. 

4 Conclusions 
The paper's main objective was to produce a new asymptotic 

theory for the frequency spectrum of broadband thrust felt by 
a rotor chopping isotropic turbulence. The new solution was 
called upon to supply physical explanations for a number of 
features apparent in formally computed spectra: 

(1) The height of these "humps" above their monotonic 
background; 

(2) their relative size along the frequency abscissa, i.e., u 
= 2 versus u = 1. 

A new asymptotic theory now exists based only on the re- 
quirement that the rotor's number of blades B be large. The 
analytical post-processing of its main solution (Eqs. ( 17a, b)) 
has generated a set of spinoff expressions that explain both of 
the above and others to be dealt with in future communications. 
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Asymptotic Theory of Broadband 
Rotor Thrust, Part I1: Analysis of 
the Right Frequency Shift of the 
Maximum Response 
One of the more intriguing features observed in rigorously computed frequency 
spectra of  the random thrust on a turbulence-ingesting rotor is a shift of  the broad 
peaks, or "haystacks," to frequencies slightly higher than blade passage and harmon- 
ics. This paper applies the final results of  an earlier Part I article to uncover the 
rotor and flow parameters responsible for  that shift. The new work is analytical and 
asymptotic rather than numerical. It relies on the sole requirement that the rotor 
have a reasonably high number of  blades. The theory shows that the statistical 
mechanism that causes the shift is fundamentally antitonal, and that it therefore has 
no corresponding counterpart in deterministic systems of  blade/flow interaction. 

1. Introduction 
This is the second in a series of three papers that attempt to 

explain analytically a number of features apparent in formal 
numerical "experiments" of rotor/turbulence interaction; cf., 
for example, Jiang et al. ( 1991 ) and Martinez ( 1991 ), for sam- 
ples of such rigorous calculations, and Fig. 1 here for a sketch 
of the physical problem. Our focus this time will be the lean, 
or outright shift, often displayed by the maximum broadband 
response in the computed frequency spectrum of propulsor 
thrust. Figure 2's solid curve shows a typical case where the 
center of that broad peak occurs six percent above the rotor's 
blade-rate frequency. 

The new development will demonstrate that the shift phenom- 
enon is the simultaneous effect of (a)  an interpretation of the 
impinging turbulent field that is strictly faithful to the flow's 
probabilistic character, for isotropic turbulence at least, and (b) 
of having a three-dimensional rotor as a" sample r"  of the flow's 
statistics. The omission of either (a)  or (b) from a theoretical 
analysis would make the capture of the observed right shift 
impossible. 

The absence of (a) ,  i.e., of a fully random flow model, enters 
Sevik's (1971) ground-breaking theory surreptitiously. The 
tacit assumption is that an "eddy"  is struck no more than once 
during its crossing of the rotor disk: the rotor's turning speed 
f~ is zero throughout the flow model. Embedded in that view- 
point is a quasi-deterministic picture whereby the velocities of 
any two fluid particles within each eddy have a null joint proba- 
bility for separations beyond a certain value (see Fig. 3 here). 
That implied distance becomes the interblade spacing for all 
three-dimensional combinations of flow and blade points from 
root to tip. Sevik's predicted frequency spectrum is accordingly 
monotonic, as indicated here by Fig. 2's broken curve, and so 
the issue of a right shift for broad peaks obviously does not 
come up. 

Regarding now point (b) ,  the sought-for explanation for a 
right shift also turns out to be beyond the reach of two-dimen- 
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sional analyses whether or not they account for a continuum of 
flow probabilities over the rotor. An example is Mani's ( 1971 ) 
otherwise powerful treatment of an airfoil cascade in globally 
correlated turbulence. His "s l ice"  model would have failed to 
reproduce the spectral shifts for thrust in a true geometry, be- 
cause it lacks from the beginning the three-dimensional kine- 
matic mechanism that turns out to cause them: The statistical 
in-plane projected distances ~i-2),  ~g2~l) marked here in Fig. 
l ' s  three-dimensional propulsor (the first paper in our series 
has uncovered yet another effect of flow statistics sampled three- 
dimensionally that a cascade theory could also never explain: 
the high concentration of computed sectional lifts at the tips of 
the rotor's radially divergent blades). 

2 Kinematics of the Velocity Correlation Tensors in 
the Rotor's Three-Dimensional Cylindrical Coordi- 
nate System 

Mani's (1971) two-dimensionai cascade analysis considers 
a row of blades pitched relative to a freestream aligned with 
the implied axis of rotation, z in the present nomenclature. What 
would have been our normal-to-blades correlation tensor R"~"2 
becomes simply "R  ..... for him, because all of his blade-normal 
directions belong to the same radial station. He breaks up the 
R"" function into its R z~, R ~°, R °° component correlations. 

Martinez (1991, 1996) did the same for the grazing "gust"  
correlated flow that defined Rn,"2 for a three-dimensional rotor 
with blades that, unlike Mani's, were radially divergent and 
with normal directions that changed from root to tip (the second 
of these studies will be referred to as M1 throughout the discus- 
sion). The R zz component of that blade-sampled flow had the 
following form by definition of isotropic turbulence: 

R~ z _ ~ Of(q) + ( f ( q )  + q Of (q )~  (1) 
2q 0~-  \ - - " ~ q  J ' 2  

R zz has been normalized by the square of the fluctuation ampli- 
tudes, following the overall normalization of the thrust solution 
in M l ' s  Eq. (2). The distance (~ becomes Ur/R,,  the R,-divided 
and differentially convected, or frozen, distance normal to the 
rotor disk, between an arbitrary blade-based point 1 and a fluid- 
borne point 2 elsewhere on the rotor. Variable q is the complete 
distance separating those two points, as given on M l ' s  Eq. 
(6).  The right side of (1) is structurally the same whether one 
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Fig. 1 In-plane projection distance ~0 for use in the rotor's interpretation 
of the three-dimensional components R z°, R ~z of the isotropic velocity 
correlation tensor. The value of r= has been put equal to r~, following the 
concentration of all r2-dependent functions at r~ found in M1. 
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Fig. 3 Quasi-deterministic-picture of the correlation of blade-normal 
incident flow velocities in globally uncorrelated models of turbulence 
ingestion. The sketch displays the tip sections of a three-dimensional 
propulsor. The infinite tail (dashed} of the probability function R"~% has 
been arbitrarily cut off past a distance "A", which becomes the eddy 
"size." If the value of the combined rotor/turbulence parameter BfIA/U 
were small enough, that nonprobabilistic discrete eddy could in fact 
affect only one blade as it passes through the rotor disk. 

considers a three-dimensional rotor, as in Ma_rtinez ( 1991 ), or 
a two-dimensional circumferential cutaway of a rotor, as in 
Mani ( 1971 ). 

The fundamental differences between two and three-dimen- 
sional theories emerge only through the process of writing down 
their specific forms of R ~° and R °e, e.g., for R z°, which for 
isotropic turbulence becomes 

RZe = GzGo Of(q)  (2) 
2q Oq 

The shortness of (2) relative to ( 1 ) is the result of putting the 
Kronecker delta 6 o that multiplies the missing terms in the 
general isotropic velocity tensor equal to zero, given that the in- 
plane coordinate 0 is orthogonal to the rotor's axial coordinate z 
(cf. Hinze's (1975) Eqs. (3 ) - (11) ) .  

The in-plane distance ~0 collapses to f~rr in a two-dimen- 
sional theory. Here, as in M1, r appears normalized by R,. In 
the full-fledged three-dimensional case in Fig. 1, however, G0 
becomes cyclical in the correlation time r :  

G(e 2+') = r2 sin [27r(ml - m2)/B + f~r], (3a) 

and 

G~ I-2)  = rl sin [27r(ml - m2)lB + f~r]. (3b) 

The symbol 2 ~ 1 denotes the statistical "gust"  influence of a 
fluid point 2 on a blade point i in the direction normal to the 
blade's local quarter-chord curve, following strip theory for low 
speed aerohydrodynamics. The symbol 1 ~ 2 describes a similar 
but converse relationship for a fluid point 1 and a blade point 
2. Variables ma and m2 are discrete circumferential blade count- 
ers, each ranging from 1 to B. 

The cyclical in-plane projection distances in (3a, b) are the 
agents behind the right shifts that Jiang et al. (1991) originally 
found in numerical experiments based on elaborate expressions 
for direct R","~ correlations in space/time, without the benefit 
of a zz + zO + O0 breakup. The shifting role of G0, which does 
not appear as such in their code, remained hidden. 

Expressions (3a, b) above now showcase that role. They 
"contain" our earlier comments regarding the shift phenome- 
non's simultaneous reliance on a globally correlated model 
where the mutual temporal separation among blades, f i r ,  is not 
ignored, and on a three-dimensional description of the statistics 
of the flow incident on the rotor: setting f / t o  zero in (3a, b) 
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Fig. 2 Sample numerical experiment for the exact theory (solid curve), and for 
Sevik's model of effectively nonrotating blades: The exact calculation ( "e "  sub- 
script) displays a broad hump over the blade-rate frequency and a six percent right 
shift for the maximum response. 
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Fig. 4(a) Decomposition of Fig. 2's solid curve into its zz and zO components: The 
[T'~] = part is locally odd about ( o J / B n  - 1); (+)  and ( - )  mark the negative and 
positive "horns" of [T=8] 2, both of which appear as positive only because the figure 
has taken their absolute values. Expressions (7) and (9) of the asymptotic analysis 
will explain [T~]='s 28 percent latent shift and [T=]='s 5.7 dB rise above [TZe] 2. 
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Fig. 4(b) Effect of [TZS] = (from Fig. 4(a) on [T=]=: [T'°]='s negative part pulls [ T ' ]  2 
down while its positive part pushes [T=z] = up. The net effect is a right shift for the 
complete solution relative to [T=]  2 alone. 

makes the double summation in m~ and m2 from 1 to B yield 
zero because the sine is odd in its remaining doubly variable 
argument. The requirement of three dimensionality is evident 
in Fig. l ' s  portrayed role for the sine function itself, which upon 
Fourier transformation in R ~° in (2) produces the multiplicative 
factor ( w / B g t  - u)  in Ml ' s  Eq. (12) for the quantity h~ °. It 
was already therefore obvious from that earlier exact expression, 
which dates back to Martinez (1991), that the frequency spec- 
trum of the cross-correlated thrust [ TZ~(w)] 2 is locally odd about 
its w/Bf~  = 1, 2,.. points, and that it is zero there: [T~°(w)] 2 
is fundamentally antitonal and with no corresponding counter- 
part in the more familiar harmonic world of interactions among 
rotors and spatially nonuniform but time-invariant flow fields. 

Figure 4(a)  shows the decomposition of Fig. 2's solid curve 
into its zz and zO exact thrust parts. Within the region marked 
( - ) ,  [TZO(w)] 2 is in fact negative as per the w / B O  - 1 factor 
for w < B~2 (Fig. 2 plots the log of the absolute value of 
[ TZ°( w ) ] 2 ). Figure 4 (b) displays the effect of [ T ~°] z on [ T z~ ] 2: 
[ T~O] z subtracts from the always positive [ T = ] 2 for frequencies 
below blade passage and adds to it otherwise. The result is the 
right shift whose analytical explanation motivated this paper. 
The exact treatment by the author (1991), confirmed indepen- 
dently later by Novak (1991), isolated TZ°'s role in causing 
that shift. The following section will now complete the work 

by supplying closed-form formulas for T~°'s latent shift and for 
[TZZ] 2 4- [TZ°]2's final shift asnoted in Fig. 2. Those physically 
revealing formulas are now made possible for the first time by 
Ml ' s  closed-form results, summarized next. 

3 Closed-Form Shift Analysis Based on Part I's 
Asymptotic Results for B >> 1 

The final product of Ml ' s  asymptotic analysis are a pair of 
expressions, the first for the frequency spectrum of the total 
thrust and the second for the contribution of the cross-correlated 
"zO"  flow components of the random flow striking the rotor. 
Respectively, they are 

[Tt°tal(w)]] ~ [TZZ(w)]] + [T~°(~)]] 

32 J~ [1 + F21 s/2 ,,R,,mt 

327r 3 
4- ~ ( - ~ ) B  4 v ~  ~ [ / / 2 +  2//(B__ ~ - u ) ]  

f Ro,/R, rSG( r ) 
X dr (4a) 

n,,m, [(uB) 2 + (Tr)2] 3 '  
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and 

[TZ°(co)]~ = 647r3 ( ~ ) B4 u - ~  -- co ) 

f f  ~fr/R rSG( r ) X dr . (4b) 
h/R, [(/:B) 2 + (yr)2] 3 

The " a "  subscript on the left-hand sides of (4a, b) stands 
again for asymptotic. B is the number of blades in the rotor; J, 
is its advance ratio 7rU/f~R,, whose spanwise running version 
is J(r )  = J,/r; F is short for coA/U; R~ff/R, is a tip-relief 
parameter which strip aerodynamics injects into the rotor the- 
ory; and A/R,  is ratio of the integral scale to R t. 

The remaining two quantities in (4a, b) to be defined are the 
radial "wave number" Y that arises in spite of the fact that the 
analysis has been kept in the spatial domain, and G (r) ,  which is 
proportional to the square of the amplitude of the Sears function. 
Respectively, they are 

T = - u - -  + 1 , ( 5 )  

[b(r)/Rt] 2 
G(r)  = 

1 + J2(r)/Tr2 

1 
× (6) 

1 + [2rcFb(r) /A]/ql  + 7rz/J2(r) 

Figure 4(a)  remarked on the formally computed right 
"horn" of the [T~e] z cross-correlated thrust. The frequency 
position where [ TZ°(co)]2 reaches that peak now follows readily 
from (4b). One simply passes the frequency-dependent constant 
co/Bf~ - u from outside to inside the r integral, which then 
looks like 

f Rofe/R drrSG( r) 
RhlR t 

Bfl 
[(uB) 2 + (Tr)2] 3 

The next step is to differentiate the contents of the curly brackets 
with respect to co/Bfk The roots of the resulting equation are 

- 1/ 
zO Tmax 

1 J(R~ff/R,) / (Rt/A)2(Reff/Rt) 2 
- -  V 1"2 + B2 =-4- /~ 71" 

= 2 G Uz + B2 (7) 

The ( - )  solution in (7), with u = 1, marks the frequency point 
of the negative trough of [ T ~e] 2 to the left of co/Bf~ = 1 observed 
in Fig. 4(a) .  The (+ )  frequency marks the positive peak of 
[TZ°] 2 to the right of w/Bf~ = 1. Together these account for the 
"latent" shift of the rotor/turbulence system. 

There is one hidden assumption in (7), to be checked a 
posteriori: that the latent shifts predicted by it will be small. If 
the equation's right-hand side is small, it follows from the left 
that colBf~ ~ u ( = l  for blade rate), and so, that Y ~ R J A  for 
co/Bf~ ~ u in Ml ' s  Eq. (9). M1 established that for A/R,  >> 
I /B  the remaining r 5 integrand in the u sum of (4a, b) here 
then becomes highly concentrated at its top value Roee/Rt, which 
may then be substituted into the denominator of the term to be 
differentiated--hence (7) ' s  dependence on the end-point r 
value Rdf/R,. 

A similar operation applied to (4a) yields the theoretical shift 
of the complete signature: 

.) 
~ - -  ([TZZ]2+[TZO]2)max 

{ ; E '""'"<} 3u -1 + 1 + 20J:(RadR,) u2 + 
= 17 9rr2u z - ~  J 

(8a) 

The constant 20J2(R~fe/R,)/(9rrZu 2) = 20(R,/Raf)2j ,2/  
(97r/u 2) is roughly only ½ for u = 1 when Raf/R, ~ 1, and for 
such cases one thus may approximate (8a) to read 

• 
- -  ~ ([TZZ|2+[TZO]2)max 

,,2 ( [ 1 
37r2. \Roee/ .2 + -}-7 j .  (8b) 

The expressions in (7) and (Sa, b) expose analytically the 
dependence of both the latent and actual shifts on the turbulence 
and rotor parameters A / R ,  B,  Reff]Rt, and J,. The question 
naturally comes up as to whether it would be practical to use 
impeller-like devices to measure A by means'of (8b). The 
actual shift is small mostly because the out-front constant in 
(8b), 1/3rr 2, is only about three percent. By comparison the 
constant in (7), I/re51/2, is 14 percent. Latent and actual shifts 
both increase with decreasing eddy size and with a lower num- 
ber of blades. Moreover, the latent shift of the u = 2 modal 
contribution of [TZ°] 2 is twice as great as that of u = 1 for 
turbulence scales satisfying A/R,  > 1/B, since the radical in 
(7) reduces then to u. The same is true of the total shift as 
given in (8b): for A/R,  > 1/B it is also "harmonic" in u. 

Returning to (7) with A/Rt  >> 1/B, one now notes that the 
latent shift becomes then proportional to Rt/Reff, the inverse of 
the tip-relief parameter, whereas the total shift of (8b) depends 
on the square of that parameter. 

The last of the shift questions put to the new asymptotic 
theory is: just how latent is latent?; i.e., by how much is [T~°] 2 
overwhelmed by [TZq 2 in a given rotor/turbulence interaction 
problem? The answer clearly lies with the following ratio, 
whose analytical right side now falls out from the new asymp- 
totic equations (cf. Ml ' s  Eq. (4b)): 

7rco i~ rozO RaZ] 
BZRt z ~zot*, + 

B2R~&[ Rzz] 
Tm. 2 ,(R0,f  
~, =7S \R,/ 

2,(R) 
= ~ ~77 ' (9) 

The "TZ,°,x" designation at the bottom of the vertical marker 
on the left-hand side indicates evaluation at (7) ' s  ( + ) frequency 
solution. 

It was intuitively clear from the beginning that the "differen- 
tial shifting" of inboard sections had to be greater than that 
of outboard sections--the former are more feathered into the 
freestream and their chords are therefore more vulnerable to 
the "0"  part of the "zO" cross statistics of the impinging turbu- 
lence. What is remarkable about the result in (9) is that that 
guess is essentially complete: A does not figure in it at all, and 
neither do the number of blades B nor the modal counter u. 
Equation (9) led to the development of Section 5 below, a 
generalization of the present theory that considers spatially in- 
homogeneous flows concentrated at the hub. 
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4 Demonstration of the Shift Formulas 

Figure 4(b) :  The computed latent right shift for [TZ°] 2 is 
28 percent. The ( + )  solution of (7) for u = 1 gives 28 percent 
again. At this value of frequency [TZZ]z~ is higher than [TZ°] 2 
by 5.71 dB; whereas (9) predicts 5.46 riB. The total shift ob- 
served in Fig. 2 is six percent. Expression (8b) yields six per- 
cent. 

The new set of exact calculations in Figs. 5(a ,  b) have a 
twofold mission upon comparison to Figs. 2 and 4 (a ) :  (1) to 
investigate the effects of the tip relief ratio Re,/R,, which will 
now be ½ rather than 1 (all other parameters will remain the 
same); and (2) to show the u breakup of the rigorously com- 
puted solution in order to bring out the so-far hidden workings 
of the hump at u = 2. 

Figure 5 (a )  displays a latent right shift of 38 percent for 
Zz 2 t-,=,Jer'rz° ~2 relative to [T~=,]e. And (7) gives 37 percent. This 

establishes the correctness of (7) regarding R~rf/R,. The total 
: [ Z v = l ] e  + [T,,=l]e is 12.3 percent (total computed u 1 shift = 2 z0 z 

curve not shown). The prediction of (8a) is 17.6 percent 
[ (8b) ' s  estimate is unfortunately worse; at any rate, the true 
total shift of the u-added solution for this case is only nine 
percent, unfortunately almost half that predicted by (8a).  Such 
is the effect of mode-to-mode "interference" for small values 
of R~ff/R,]. Equations (8a, b) seem to be breaking down only 
for this artificial case of extreme tip relief. The rigorously com- 
puted nine percent shift for R~ff/R, = .5 proves in any case that 

inboard sections do indeed contribute more efficiently to the 
shifting process than those closer to the tips. 

Fig. 5 (a)  still: [ TZZl ] ~ lies above [ Tf°:, ] 2 by 2.17 dB. Expres- 
sion (9) yields 2.44, i.e., 3.02 dB less than 5.46, which was the 
corresponding number in Fig. 4 (a )  when Reff/R, was 1. Fig. 
5 (b) considers u = 2. Equation (9) claims that the gap between 
[T~Zz]~ and [T,~°=2]~ should be the same as that of Fig. 5 (a )  
for u = 1: that the difference should be u-invariant. Figure 5 (b) 
confirms that conclusion: [ T~L2 ] ~ passes above [ TZ~°_- 2 ] e2'S maxi- 
mum by 2.31 dB. [T~°_-z]~'s rigorously calculated latent shift 
occurs just off the plotted abscissa, at about 65 percent. Equation 
(7) 's prediction is 62 percent and this proves (7 ) ' s  correctness 
with respect to u. The rigorously calculated total shift for 
[T~Z_-2]~ + [T~2]~ is 19 percent (total curve not shown). Equa- 
tion (8a ) ' s  result is 23 percent. 

5 Hub-Strong Quasi-Isotropic Flow With a Constant 
Integral Scale A 

The normalization constant of T2(~) in M l ' s  Eq. (2) in- 
cluded the square of turbulence fluctuations b/2. The purpose of 
this final section will be to construct an amplitude-modulated 
quasi-isotropic (or quasi anisotropic) flow by generalizing the 
meaning of that constant, which in what follows will undergo 
the following transformation: 
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Fig. 6 Asymptotic predictions of frequency thrust spectra for a quasi-isotropic 
f l ow  concentrated at the hub; ~ = 4 in (10) 

u 2 - - - ~ U ( r l ) u ( r 2 )  = u 2 ( e h / e t t a  ( e h / e t l ~ r  " 

\ rl / \ r2 / 
(10) 

There are two reasons for this change, as well as at least two 
experimental studies justifying it: 

(1) Regarding the rl,  r2 dependence of (10) ' s  right side: 
(9),  which resulted for constant u z, has ferreted out the in- 
creased influence of near-hub blade stations (Reff/R, ~ Rh/Rt)  
on the shifting process. It will be the purpose of these rl,  r2 
dependent factors to now model a radially inhomogeneous, 
"hub-strong" turbulent flow by choosing a power cr that will 
offset the combined effects of the kinematic sampling by the 
rotor and the r dependence of its aerodynamic transfer func- 
t i o n s - t h e  effects that produced the r 5 power in (4b) 's r integ- 
rand. It follows that a must be greater than ~ in order to achieve 
this, and to thereby provide for efficient shifting. The cr > 
hub-flow criterion is yet another spinoff result of the new as- 
ymptotic theory, which, incidentally, did not set out to find it. 
It will be interesting to note that even though (8a, b) and (9) 
inspired the generalization in ( i 0 ) ,  they no longer support it 
by accounting for (10) ' s  features: all three expressions grossly 
overestimate the shifting process when applied blindly with 
" R e f f / R t "  = R h / R  t. 

The physical basis for the rl,  r2 factors in (10) is twofold: 
(a) it is not hard to imagine real-life conditions that would 
promote high turbulence intensities near a rotor's hub, both for 
the incident and for the hub's own secondary " s e l f "  flows; 
and (b) turbulence that appears to be highly sheared could 
nonetheless behave isotropically from point to point; i.e., its 
"anisotropy" could be due only to its "global ly" inhomoge- 
neous character. Breit and Dickinson (1990) have demonstrated 
this for a relevant flow by properly scaling its local wave num- 
ber spectra, and by properly including observed variations in 
the postulated integral scale A that are ignored here in Eq. 10's 
simple model. These two investigators processed data taken 
point by point across the flow's shear direction and found that 
the results collapsed to a single curve: the "Liepmann spec- 
t rum"--essent ia l ly  the spatial Fourier transform of (1) here. 

Figure 6 shows calculations based on (4a, b) with their r 
integrands changed to include (10) ' s  factor of (Rh / rR t )  2° for 

r2 = rl = r. The power a is four in order to fulfill the >5 /2  
requirement. The purpose of the exercise is to demonstrate that 
this concocted example of an inhomogeneous turbulent flow 
may in fact turn [TZ°]2's large latent right shift into an actual 
one for the total thrust [ T zz] 2 + [ TzO] 2. [ TZO] ~,s right horn now 
crosses [TZZ]]. The total calculated shift for z,, z [T  ]a + [TZ°]] is 
now roughly 19 percent, a substantial increase from the homo- 
geneous isotropic case of Fig. 2. 

6. Conclusions 
The right shift of the maximum broadband thrust observed 

in rigorous numerical calculations is "real ."  The main objective 
of this paper was to uncover its causes analytically. Equations 
(7), (Sb), and (9) have achieved that goal by reproducing the 
formally generated data and by explaining it physically in terms 
of the problem's flow and aerohydrodynamic parameters. One 
such conclusion is that the right-shifting rises with the square 
of the rotor's advance ratio as the propulsor is increasingly 
made to "sample"  statistical flow components parallel to its 
plane of rotation. 
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Analytic Solution of Euler's 
Equations of Motion for an 
Asymmetric Rigid Body 
The problem of the time evolution of the angular velocity of a spinning rigid body, 
subject try torques about three axes, is considered. An analytic solution is derived 
that remains valid when no symmetry assumption can be made. The solution is 
expressed as a first-order correction to a previous solution, which required a symme- 
try or near-symmetry assumption. Another advantage of  the new solution (over the 
former) is that it remains valid for large initial conditions of the transverse angular 
velocities. 

1 Introduction 

In recent years a considerable amount of effort has been 
devoted to the development of a comprehensive theory that will 
allow a better understanding of the complex dynamic behavior 
associated with the motion of rotating bodies. A cornerstone in 
this effort is the development of analytic solutions that can 
describe--at least qualitatively--the problem dynamics. The 
system of the associated equations, the celebrated Euler's equa- 
tions of motion for a rigid body, consists of three nonlinear, 
coupled differential equations, the complete general solution of 
which is still unknown. Special cases for which solutions have 
been found include the torque-free rigid body and the forced 
symmetric case. Solutions for these two particular cases were 
known for some time and have been reported in the literature 
(Golubev, 1953; Leimanis, 1965; Greenwood, 1988). The dis- 
covery of complete solutions for those and other special cases, 
initially gave rise to optimism that a general solution was in 
sight; however, since then progress has been remarkably slow. 
The conjecture that studying several special cases would eventu- 
ally lead to a comprehensive theory of the problem proved to 
be false. In fact, a complete characterization of the motion of 
a rotating solid body quickly turned out to be a formidable task, 
eluding the wit of some of the most prominent mathematicians 
of our time; see, for example, Leimanis (1965) and Golubev 
(1953) and the references therein. Even today, it is still not 
clear that a complete solution even exists. (It is well known, 
however, that for the closely related problem of a heavy rigid 
body rotating about a fixed point, integrability is possible for 
only four special cases (Golubev, 1953).) 

Most attempts to generalize the previous results were con- 
fined to some kind of perturbation approach of the known and 
well understood integrable, torque-free, and/or symmetry cases 
(Kraige and Junkins, 1976; van der Ha, 1984; Kane and Levin- 
son, 1987; Or, 1992). Recently, significant results made it possi- 
ble to extend the existing theory to include the attitude motion 
of a near-symmetric spinning rigid body under the influence of 
constant (Longuski, 1991; Tsiotras and Longuski, 1991a) and 
time-varying torques (Tsiotras and Longuski, 1991b, 1993; 
Longuski and Tsiotras, 1993). The purpose of the present work 
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is to extend these results to a spinning body with large asymme- 
tries, subject to large initial angular velocities. 

2 Equations and Assumptions 
We are mainly interested in the problem of spin-up maneu- 

vers of a non-symmetric spinning body in space, subject to 
constant torques and nonzero initial conditions. To this end, let 
Mi, M2, and M3 denote the torques (in the body-fixed frame) 
acting on a rigid body, and let col, co2, and CO3 denote the angular 
velocity components in the same frame. Then Euler's equations 
of motion for a rotating rigid body with principal axes at the 
center of mass are written as 

601 -~ 
M1 12 - /3 
- -  + - -  w2w3 ( In)  
Ii lj 

M2 13 - Ii 
602 -~ - -  -I- - -  0..)30.) 1 ( lb )  

/2 /2 

M3 11 - 12 
603 = - -  + wlw2. ( l c )  

h I3 

These equations describe the evolution in time of the angular 
velocity components COl, CO2, 003 in the body-fixed frame. For 
consistency we will assume that the spin axis is the 3-axis, 
corresponding to the maximum moment of inertia, and also that 
the ordering of the other principal moments of inertia is given 
by the inequalities 13 2> Ii  ~ 12. 

We henceforth define the spin-up problem of a rigid body 
rotating about its 3-axis, when the following conditions are 
satisfied: 

M~ +M~<_M~ and l~co~(O) +I~co~(O) <-I~co~(O) (2) 

along with the condition that sgn (M3) = sgn (w3(0)). (Here 
sgn denotes the signum function defined as usual by sgn(x) = 
+ 1 for x > 0 and sgn(x) = - 1  for x < 0.) This last condition 
simply states the requirement for spin-up, whereas the inequali- 
ties in (2) restrict the angles of the torque vector and the angular 
momentum vector at time t = 0 to be less than or equal to 
45 deg from the body 3-axis. This, according to the previous 
discussion, implies that the transverse torques M1, M2, as well as 
the initial conditions wl (0), CO2(0), are considered as undesired 
deviations or perturbations from the pure spin case, namely 
when M~ = M2 = COj = co2 -~ 0. In practical problems these 
unwanted deviations tend to remain indeed small throughout 
the maneuver. 

One more parameter needs to be introduced in order to de- 
scribe the "relative effect" of the two inequalities (2) in the 
solution. This parameter, defined by 
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describes the angle of departure of the angular momentum vector 
from its initial state (the angular momentum vector bias). During a 
spin-up maneuver (Longuski et al., 1989), the angular momentum 
vector traces out a spiral path about a line in inertial space having 
an angle P0 from the inertial 3-axis (see Fig. 1 ). The angle pG is 
small for cases where the transverse torques are "small" compared 
with the quantity 13CO2(0). The formula for p0 applies even for 
asymmetric bodies as long as the angle of departure is small and 
the body is spinning about a stable principal axis. Throughout this 
work we assume that p0 is relatively small, an assumption that is 
usually true for most satellite applications. 

3 A n a l y t i c  S o l u t i o n  

3.1 Assumptions. If we assume a near-symmetric (or 
symmetric) spinning rigid body with the spin axis being its 
axis of near-symmetry (or symmetry), then the near-symmetry 
assumption (11 ~ 12) allows one to neglect the second tetna on 
the right-hand side of ( 1 c) and therefore safely assume that the 
solution of co3 is approximated very closely by 

co3°(t) = ( M 3 / / 3 ) t  + w3(O).  (3) 

This allows the decoupling and complete integration of Eqs. 
( l ). The use of complex notation facilitates the analysis (Tsio- 
tras and Longuski, 1991a, 1991b, 1993; Longuski and Tsiotras, 
1993). Also introducing, for convenience, the new independent 
variable r & w~(t), one then writes the differential equation 
for the transverse angular velocities w~ and COg as 

f~' + ip~f2 = F (4) 

where prime denotes differentiation with respect to r ,  i = 
~ - 1  and where (Tsiotras and Longuski, 1993) 

f~ & COJ~ + iw2~  (5a) 

F ~_ (Mi/Ia)(/3/M3)~[~ + i(M2/12)(/3/M3)~ (5b) 

p #_ k(/3/M3), k~ & (/3 - h)/I i ,  

k2 & (13 - 11)//3, k ~= Vk~2. (5c)  

Integrating (4) one obtains the solution for COl and CO2 from 

f ~ ( r ) = ~ 2 ° e x p (  i-pr2)2 

+ exp ( i 2 r Z ) F  f ,  l e x p  ( - i 2 u Z ) d u  

× ~ {sgn (r)E(cr) - sgn (ro)E(cro)} (6) 
1 

where ro = CO3°(0) and rio & f~(ro) exp (-i(p/2)r2o) and 
where f / ( ro)  is the initial condition at r = ro (t = 0). The 
function E( .  ) in (6) represents the complex Fresnel integral 
of the first kind (Abramowitz and Stegun, 1972; Tsiotras and 
Longuski, 1993), defined by 

yo E(x) & exp - t  u 2 du. 

The parameter ~r is defined by ~ ~_ r(p/Tr. (Here we obviously 
assume M3 > 0, so that p > 0; the case when p < 0 can be 
treated similarly (Tsiotras and Longuski, 1993). Equation (6) 
gives the complete solution for the transverse components of 

Fig. 1 
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Angular momentum behavior during spin-up (Longuski et al., 

the angular velocity col and o..12 in the body-fixed frame, and 
for the symmetric case it provides the exact solution. For the 
nonsymmetric case, the accuracy of solution (6) depends on 
the "smallness" of the product co,co2, which will be discussed 
next. 

3.2 The Effect of Asymmetry.  In order to have a mea- 
sure of the body asymmetry, we introduce the following asym- 
metry parameter." 

11 - Iz 
e ~ - -  

13 

Because of the well-known relationship 12 + /3 -> 11 between 
the moments of inertia (Greenwood, 1988) - - fo r  the assumed 
ordering of the principal axes - - the  parameter e takes values in 
the range 0 -< e -< 1. The case of e = 0 corresponds to complete 
symmetry (about the 3-axis), whereas the extreme case of e = 
1 (not considered here) corresponds to complete asymmetry 
(about the 3-axis). For the latter case one has 13 = It and Iz = 
0, i.e., the body resembles a thin rod along the 2-axis. (In the 
current work when we discuss a nonsymmetric problem we 
have in mind values of e greater than 0.1 and perhaps as high 
as about 0.7.) 

We note in passing, that the validity of solution (6) is not 
confined to near-symmetry cases. To understand this point, no- 
tice that the neglected term 

I1 - -  12 g(t) - - -  wl(t)w2(t) (7) 
13 

in Eq. (1 c) is small not only for the near-symmetry case, ke., 
when 11 ~ 12, but also when the transverse angular velocity 
components Wl and w2 are small. This is indeed the case, for 
example, for a spin-stabilized vehicle (spinning about its 3- 
axis), when wl and w2 tend to remain small for all times. For 
the pure spin case of a symmetric body we have of course that 
w~ = w2 ~ 0. This fact justifies the often used terminology in 
the spacecraft dynamics literature which refers to wl and w2 as 
the angular velocity error components. The previous assump- 
tion about the smallness of the term in Eq. (7) however does 
not incorporate the case where the initial conditions wl (0) and 
w2(0) are large (compared to the initial spin rate w3(0)). As 
can be easily verified in such cases, the initial error 

11 - -  12 
g(0)  = - -  wl(0)w2(0) 

/3 

propagates quickly and renders the analytic solution inaccurate 
after a short time interval. On the other hand, as can also be 
easily verified through numerical simulations, analytic solutions 
based on the near-symmetry assumption remain insensitive to 
large inertia differences, as long as the initial conditions for 6Ol 
and co2 are zero. Therefore, the intent of this paper is to extend 
the analytic solutions for a near-symmetric rigid body subject 
to constant torques (Tsiotras and Longuski, 1991a), when both 
large asymmetries and nonzero initial conditions for the trans- 
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verse angular velocities are considered at the same time. In such 
a case, the neglected term (7) may not be negligible and the 
exact solution for w3 may depart significantly from the linear 
solution (3) for w3. 

3.3 General Theory. A first correction to the linear zero- 
order solution w3°( • ) is obtained as follows. Using solution (6), 
the differential equation for w3 can be approximated by 

d~3 = M3/13 + e w~w2 ° (8) 

where the superscript zero denotes the zero-order solution of 
(1) (i.e., the solution with the term (7) in ( l c )  neglected). 
From (6) we can equivalently replace equation (8) with 

w~ = 1 + e Im[(~°)  2] (9) 

where e & (Ii - 12)/2M3k and flo = wo ~2 + i aJ ° x/~, prime 
again denotes differentiation with respect to the independent 
variable r = w] and Im( ' )  denotes the imaginary part of a 
complex number. Under these assumptions and integrating (9) 
with respect to r, one gets for the first-order correction for w3 : 

f w3('r) = 7. + e l m  [f~O(u)]adu (10) 
0 

The first-order solution for Wl and w2 is then given by the 
solution of the differential equation 

~ '  + ipw3(7-)~ = F. (11) 

Integrating, one obtains 

f~(T) = f~(7-0) exp ip w3(u)du 
0 

+ exp [ip f l  w3(u)du]F 

× p - i p  to3(v)dv du. (12) 

Notice that this expression provides the general exact solution 
for f~(. ) if knowledge of the time history of w3 is available a 
priori. Of course, this is not possible, in general, because of the 
coupled character of Eqs. (1). However, we will assume that 
Eq. (10) gives a very accurate approximation of the exact w3, 
which can be used in (12). 

The zero-order solution f~o(. ) required in (10) is given in 
(6). From the asymptotic expansion of the complex Fresnel 
integral one has that (Abramowitz and Stegun, 1972) 

1 - i exp(-iTrxZ/2) 
E(x)  = - -  - 

2 iTrx 

× {1 - - -~ - -  + 1"3 } ( 1 3 )  
iTrx 2 (irx2) 2 . . . .  

Thus, the Fresnel integral appearing in (6) can be approximated 
by 

; (  ) [ p i exp( t 12)T 2) 
0exp - - i ~ u  2 du ~ 

_ exp(-i(__.P/2)r02)] . 

7.0 _] 

Substituting this expression in (6) and carrying out the algebraic 
manipulations, one approximates [ f~ 0 ( . )  ] 2 by 

F,1 
[~2°(r)] 2 = r0 exp(ipT. 2) + ~ + r2 

exp( i (p /2)T 2) 
7" 

where rj (j  = 0, 1, 2) are complex constants given by 

ro& [f~o--i--pTo F exp(  -ip2 7.~)]2 

F 2 

r l  =zx _ _ _  p2 

The integral of [f~o(.)]2 is then given by 

f [~2°(u)]2du 
o 

= roho(ro, 7.; p) + rlhl(7.o, 7) + rzh2(7.o, ~'; p) 

where 

ho(ro, 7"; p) & exp(ipu2)du 
o 

= ~ p  [sgn(T)E(r~[2p/Tr) - sgn(To)E(To~/2p/Tr)] 

f d u  1 1 
hl('ro, ~-) =~ u2 

o T O T 

h2(7.o, 7-; p) & fT  exp(i(p-/2)u2) du 
o U 

where bar denotes the complex conjugate and where 

Ei(x) & g | ~  
e iu 

- -  du 
d, x u 

is called the exponential integral (Abramowitz and Stegun, 
1972). The integrals of hj (j  = 0, 1, 2) can be then computed 
as follows: 

Ho(7.o, ~'; p) 

f -~ ho(7.o, u; p)du 
o 

= - ~ p  sgn(ro)E(To~/2p/Tr)(r -- to) 
I 

+ sgn (to) E(u 17r)du 
o 

where the last integral is given by 

f i E(T~plTr)dT = 7.E(T~/2phr) + ~ exp(ipT2). 

Similarly, 

(14) 

(15) 

Hi(T-o, ~') & h1(7.o, u)du = r - To In 
o T O  
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and 

Hz(ro, 7-; p) = ~ h2(To, 
o 

~ - -  7" T 
2 

u; p)du 

(16) 

where the last integral can be evaluated using 

f E i ( ~ ' Z ) d T = 7 " E i ( ~  7"2) + 2 f  e x p ( i ; u ~ ) d u .  (17) 

We therefore have that the 
is given by 

f r  ~ 3 ( u ) d u  = 7-2 
o 2 

Equation (18) gives the 
w3(' ) required in (12). 

integral of w3(') required in (12) 

2 

7-20 + e I m ( Z  rsHs). 
2 j=o 

(18) 

final expression for the integral of 

In order to proceed with our analysis, we need to calculate 
the last integral in (12). Any attempt to evaluate this integral 
by direct substitution of (18) into 

] lw(7-o, 7-; p) = exp - ip  w3(v)dv du (19) 
o o 

is futile. Notice however, that because of the oscillatory behav- 
ior of the kernel of the integral (19) one needs to know only 
the secular behavior of (18) in order to capture the essential 
contribution of (19). Thus, we next compute the secular effect 
due to the integrals Ho(7.o, 7; p) and/-/2(T0, 7"; p).  The integral 
H~ (To, ~') already has the required form. 

From (14) and (15) and the asymptotic approximation of 
the Fresnel integral (13) one can immediately verify that, within 
a first-order approximation, the integral Ho(7.o, 7-; p) behaves 
a s  

Ho('ro, 7-; p) ~ A ° + A~7. (20) 

where 

i 
A~ ~ - ~p exp(ipT.20), 

A ° l & ~ p [  1 +i2 - sgn(7.o)E(7.o 2p2~---o/-(r) ] . 

Similarly, using (16) and (17) and the fact that limp= Ei(x) 
= 0, one can show that the integral H2(7-0, 7-; p) behaves, to a 
first-order approximation, as 

where 

Hz(7.o, 7-; p) ~ A~ + A~7. 

AO ~= _ ~ [1  + i 2  sgn (7.o) E(7.ofpf-lr) ] , 

A21 A ~ Ei 7. . 

Also writing the integral H, (To, T) in the form 

H|(7-0, 7-) = A~ + AfT. - In(7.) (21) 

where 

1 
A ~ l n ( 7 . o ) -  1, AI ~ - - -  

TO 

we have for the secular part of (1 8) 

where 

fv " 7"2 7"20 
w3(u)du . . . .  + bo + b~7. + b2 In(7.) (22) 

o 2 2 

bo & e Im(roAo ° + r,At ° + r2A2 °) 

b~ ~_ e Im(roAo ~ + r~Al + r2A~) 

b2 =~ - c Im(rl). 

Unfortunately, the logarithmic term in (22) leads to an intracta- 
ble form when substituted into (19) and we therefore approxi- 
mate the former expression by 

f + b3 + bjT. (23) 
7- 2 7-20 

where b3 = e Im(roAo ° - rt -4- r2A~). This approximation 
amounts to the assumption that ln(7./7.o) ~ 0 in Eq. (21). 
Since the logarithmic function is dominated everywhere by any 
polynomial, we expect the error committed in passing from 
(22) to (23) to be relatively small, at least as 7. ---~ oo. Using 
(23) in (19) we can finally write 

fl exp[-iP fl W3(v)dv] du 

( = exp i z [sgn('~)E(6-) - sgn(~-o)E(6-o)] 

where 3'o & 7-20 + b~ - 2b3, ~ = 7- + bl and 6- = -7-~/p/Tr. 

3.4 Simplified Analysis. The analysis of the previous 
subsection allows for a direct calculation of the solution f~(" ) 
from (12). In most cases encountered in practice, however, a 
simplified version of the previous procedure is often adequate. 
For example, for the case when Po ~ 1 (see Fig. 1 ) the initial 
conditions have a more profound effect than the acting torques 
in solution (6), and we can take just the asymptotic contribution 
of the nonhomogeneous part of (6) to approximate the zero- 
order solution rio(. ). Writing 

~°(T) ~ ~2o ° + F sgn (7.o)[(1 - i)/2 - E(cro)] 

substituting this expression into (10), and approximating E(.  ) 
by its asymptotic limit E@) = (1 - i)/2, as x ~ 0% we get 
for w3 (") that 

w~(7.) = T + Olo 

where ao is the constant 

ao & e ~ p  sgn (TO) Im{B20[½(1 + i) - E(ro42p/rc)] }. 

We can therefore write for the first-order solution ( 11 ) of the 
transverse angular velocities 
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where 

f~(r)  = (~o exp[ iph ( r ) ]  

f; + exp[iph(~-)]F e x p [ - i p h ( u ) l d u  
o 

(24) 

,7- 2 
h ( r )  ~ ~ + aor 

and f20 ° ~ f~(r0) e x p [ - i p h ( r o ) ] .  From Eqs. (6),  (12), and 
(24) it is seen that the first-order solution for the transverse 
angular velocities cot and col may be obtained in the same form 
as the zero-order solution; the initial condition of r ,  however, 
has to be modified to include a0. In other words, (24) can also 
be written in the more explicit form 

f~(r) = ~ o ° e x p ( i ~ ¢ ~ ) +  e x p ( i ~ C 2 1 F J  ~ { sgn(~)E(0") 
\ z / Vp 

- sgn('~o)E(8o)} (25) 

where now ~ & f~(T0) e x p ( - i ( p / 2 ) ~ ) ,  ¢ = r + ao and 
¢~/p/Tr, It is interesting to compare Eq. (25) with (6).  We 

see that the two equations have exactly the same form, but that 
Eq. (25) has a frequency shift which depends directly on e. 

4 A F o r m u l a  for  the  E r r o r  

In this section we derive an error formula for the zeroth- 
order solution derived in (6),  that is, we seek an expression for 
the difference between the exact solution and the approximate 
solution for the angular velocities, obtained by omitting the 
term (I~ - I2)co~w2/I3 in Eq. (1 c). Throughout this section, for 
notational convenience, we rewrite Eq. (1) in the form 

xl = atx2x3 + Ul (26a) 

~2 = a2x3x~ + u2 (26b) 

.,~3 = a3xlx2 + u3 (26c) 

where aj, xj and uj ( j  = 1, 2, 3) are defined by 

at =~ 

xl ~ I1~ol, x2 ~ I2w2, x3 & 13w3 (27a) 

u~ g Mr, u2 ~_ M2, u3 .~ M3 (27b) 

/2 - 13 13 - Ii 11 -- /2 
h h  ' a2 .~ .  I31t ' a3 ~ Ii12 (27c) 

We also rewrite the equations that describe the reduced (zeroth- 
order) system in the form 

.~o = alxOx o + ut (28a) 

~o = a~x~x o, + u~ (28b)  

2~ = u3. (28c) 

Given any positive number T ~ [0, co), our aim is to compute 
the error between the solutions of (26) and (28) over the time 
interval 0 -< t -< T. We can rewrite equations (26) and (28) 
in the compact form 

X = f ( x )  + g(x )  (29) 

.¢o = f ( x o) (30) 

where x = (xt, x2, x3), x ° = (xl °, x°2, x~) and f :  R 3 ~ N3 and 
g: R 3 ~ R 3 are the functions defined by 

1 [00 1 f ( x )  ~ | a2x3x!  + u2 , g ( x )  & 
L u3 a 3 x l x  2 

We also assume that (29) and (30) are subject to the same initial 
conditions, that is, x(0)  = x°(0) .  Throughout the following 
discussion I1" II will denote the usual Euclidean norm (or 2-norm) 
on N3, namely, Ilxll ~ (x~ + x~ + xN) t~2. 

Lemma 4.1. The solution of  the exact system (26), satisfies 
the inequality 

I[x(t)ll -< [lullT + IIx(0)ll =~ B 

for all 0 <- t -~ T, where u = (u~, u2, u3). 

Proof  Multiplying Eq. (26a) by xl, Eq. (26b) by x2 and 
Eq. (26c) by x3 and adding, and since at + a2 + a3 = 0, one 
gets that 

XIXI + X2X2 + X3X 3 = UlX 1 + U2X2 + U3X 3. 

In other words, 

l d  
- -IIx[I z = <u, x) (32)  
2 dt 

where ( . ,  . ) denotes the usual inner product on N3, namely 
(x,  y) g E~=~ xiy j. Using the Cauchy-Schwarz inequality (32) 
gives 

l d  
aS Ilxlla -< Ilull • Ilxll. (33)  

The 2-norm 11" [I is a differentiable function on R 3, so the differ- 
ential inequality (33) can be solved for IIx(" )11 (here u is con- 
stant) to obtain 

IIx(t)[I -< Ilullt + IIx(0)ll, 0 <- t --< T ( 3 4 )  

In particular, IIx(t)[I -~ sup0~,~r Ilullt + IIx(0)ll = B, as claimed. 
[] 

This result should not be surprising. If one looks carefully, 
ones sees that the vector x defined in Eq. (27a) is the angular 
momentum vector H, which obeys the equation d H / d t  = M .  
This differential equation for H requires that both I t  and M be 
expressed in the same coordinate system and that differentiation 
be carried out with respect to an inertial reference frame. In 
general, given the components M~, M2, M3 of M in the body- 
fixed system, does not provide any immediate information about 
the components of M with respect to another (inertial) coordi- 
nate system. However, the magnitude of M is independent of the 
coordinate system. Equation (34) simply states the relationship 
between the magnitude of the acting torques and the time history 
of the magnitude of the angular momentum vector H. With this 
observation in mind, one can easily re-derive (34) starting from 
Euler's equation d H / d t  = M .  

Lemma 4.2. Given a fixed positive number T, there exist 
positive constants M and L, such that the following conditions 
hold for  all 0 <- t ~- T. 

IIg(x( t) )ll -< M (35a) 

I I f ( x ( t ) )  - f ( x ° ( t ) ) [ I  -< Zllx(t) - x°(t)ll (35b)  

Proof  From Lemma 4.1 we have that for t E [0, T] all 
solutions of (26) satisfy IIx(t)ll -< B.  In particular, I x j ( t ) l  -< 
B, j = 1, 2, 3, for all t E [0, T], where [" I denotes absolute 
value. Clearly, 

IIg(x(t))ll = la~l [x,( t) l  Ix2(t)[ ~ la31B 2 .g M. 
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Now let B, ~ max0~t~r { I x~°(t) l, I x~(t) l, I x~(t) l }. This num- 
ber can be computed immediately, since the solution x°( • ) of 
the system (28) is known. If we define B0 & max { B, Bi }, then 
we have that all solutions of (29) and (30) are confined inside 
the region {x ~ ~:llxll ~ n0} for all 0 -< t -< T: The partial 
derivatives of f are then bounded by 

IOf/Oxji~-g, 1-<i,j~3, O ~ t ~ T ,  Ilxll-<B0 

where R & max { I al [, [a2 [ } Bo and by the Mean Value Theo- 
rem (Boothby, 1986), we have 

I l f ( x ( t ) )  - f ( x ° ( t ) ) l [  ~- 3R ]Ix(t) - x°(t)J[ 

for all 0 -< t -< T, and therefore (35b) is satisfied with L ~_ 
3R. This completes the proof. [] 

Lemma 4.2 implies that over the time interval 0 -< t ~ T the 
function g is bounded by M and the function f is Lipschitz 
continuous with Lipschitz constant L. These two results allow 
us, as the next theorem states, to find an explicit bound for the 
error of the approximate solution. 

Theorem 4.1. Let T be a given positive number and let M, 
L as in Lemma 4.2. Then, for  x(O) = x°(O), the error between 
the solutions x(  . ) and x° ( • ) over the time interval 0 ~ t -< T 
is given by 

M eLi, Ilx(t) - x°(t)ll ~ ~ 0 ~ t ~ Z. 

Proof  Subtract (30) from (29) to obtain 

X - .~o = f ( x )  - f ( x  °) + g (x ) .  (36) 

By integrating (36) and considering norms, we obtain the fol- 
lowing estimate: 

fo Ilx(t) - x°(t)ll -~ lif(x(s)) - f (x°(s) ) i lds  

f0 + IIg(x(s))llds. 

Now, use of Lemma 4.2 implies that 

LARGE ASYMMETRY PROBLEM 
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c:~- Q . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

T 

U 

L 

X 
: :3  

N 

o-  

T 

iC3  lli ' iiii ' i ill ii 

0 45 .90 135 180 225 
T (sec)  

Fig. 2 Zero-order versus exact solutions for (~dl I 

LARGE RS¥MMETRY PROBLEM 
= ~ SPIN-UP FROM 3.15 RPM TO I0.0 RPM 

t ~  

3e , , ,  I 

;A 

"Am' 
c~ 

c ~ "  . . . i , . . , i  . . . . . .  4-. 

..... V i V  

i 

45 9'0 135 180 225 
T (sec)  

Fig. 3 First-order versus exact solutions for (x) 1 

fo IIx(t) - x°(t)l[ ~ t Ilx(s) - x°(s)ltds + Mt.  (37) 

Now, applying Gronwall's Lemma (Hille, 1969) to (37) gives 
finally that 

I[x(t) - x°(t)[[ -< M eli. (38) 
L 

This completes the proof. [] 

This error formula, involves only known quantities of the 
problem (time duration T of the maneuver, inertias 11, 12, 13, 
acting torques M1, M2, M3, and initial conditions Xl(0), x2(0), 
and x3(0)) and can be computed immediately once these data 
are given. For most of the applications encountered in spacecraft 
problems it turns out, however, that (38) provides a very con- 
servative estimate of the true error, but usually this is the 
most one can expect, without resorting to the numerical solu- 
tion of ( 1 ). 

Having established an error formula for the angular momen- 
tum, it is an easy exercise to find a corresponding error formula 
for the angular velocity vector, using the simple relation be- 
tween the two. Thus, the following corollary holds. 

Corollary 4.1. Let K ~ max{ 1/I~, 1/12, 1/13 }. The error 
between the exact and the zeroth order solutions o f  the angular 
velocities over the time interval 0 -< t -< T is given by 

nw(t) - w°(t)[[-< K M  eL,. (39) 
L 

Proof  It follows immediately from the fact that 

w2 = 0 1112 0 X 2 
w3 0 0 1/13 x3 

and therefore that 

II~(t)[I-< max{I / l , ,  1/12,  1/I3} t lx( t ) l l  = K [Ix(t)[[ 

for all 0 ~ t ~. T. [ ]  
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5 N u m e r i c a l  E x a m p l e  

The analytic solution of Euler's equations of motion for an 
asymmetric rigid body is applied to a numerical example. The 
mass properties of the spinning body are chosen as I~ = 3500 
kg. m 2,/2 = 1000 kg. m 2 and 13 = 4200 kg' m 2. The constant 
torques are assumed to be M~ = -1 .2  N . m ,  M2 = 1.5 N . m ,  
M3 = 13.5 N.  m and the initial conditions are set to ~Ol(0) = 
0.1 r/s ,  ~v2(O) = -0 .2  r/s and ~v3(0) = 0.33 r/s.  Figure 2 
shows the zero-order solution versus the exact solution for ~vj. 
Figure 3 shows the first-order solution versus the exact solution 
for ~ .  Notice the dramatic improvement of the first-order solu- 
tion over the zero-order solution for this problem, where the 
asymmetry parameter, e, is 60 percent. The results for the (.02 
component of the angular velocity are similar. Finally, Fig. 4 
presents the zero-order and the first-order solutions (given by 
(3) and (10),  respectively) versus the exact solution for ~v3. 
Note the bias between the zero-order and the first-order secular 
terms (which is responsible for the frequency shift between 
Fig. 2 and Fig. 3). We mention at this point, although not 
demonstrated here, that the solution also remains valid for spin- 
down maneuvers, as long as the initial conditions ~Vl(0) and 
w2(0) are small and as long as the spin rate ~v3 does not pass 
through zero. These observations are in agreement with the 
previous results of Tsiotras and Longuski (1991a). 

6 Conc lus ions  

Analytic solutions are derived for the angular velocity of a 
nonsymmetric spinning body subject to external torques about 
three axes. The solution is developed as a first-order correction 

to previously reported solutions for a near-symmetric rigid 
body. The near-symmetric solution provides accurate results 
even when the asymmetry is large, provided the initial condition 
for the transverse angular velocity is near zero. The problem of 
the asymmetry becomes apparent when the initial transverse 
angular velocities are not small. It is shown that the first-order 
solution for the angular velocity takes a simple form and is very 
accurate, at least for the cases when the effect of the transverse 
torques is not too large compared with the effect of the initial 
conditions. The formulation of the problem therefore allows for 
nonzero initial conditions in the transverse angular velocities, 
in conjunction with large asymmetries. Finally, an explicit for- 
mula for the bound of the error of the approximate solution is 
derived and a numerical example demonstrates the accuracy of 
the proposed analytic solution. 
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Vertical Oscillation of a Bed 
of Granular Material 
A bed of  granular material which is subjected to vertical vibration will exhibit at least 
one sudden expansion at a critical acceleration amplitude. This sudden expansion 
corresponds to a bifurcation similar to that exhibited by a single ball bouncing on 
a vibrating plate. Theoretical analysis based on this model yields results which are 
in accord with the experimental observations. Other bifurcations may occur at higher 
vibration levels. 

1 I n t r o d u c t i o n  

The vibration of granular materials is of interest for a number 
of reasons. First, vibration is sometimes used instead of an 
upward flow of gas to fluidize a particle bed reactor and in such 
devices it is clearly important to know the state of the bed. 
Secondly, vibration is often used to induce flow in recalcitrant 
bulk flow transport devices such as hoppers and chutes. It is 
also used to induce segregation of different density and different 
size particles. Clearly, knowledge of how vibration affects these 
granular materials provides important design information. As a 
third incentive we note that there has been a growing recognition 
of and interest in the granular state. In a recent review, Jaeger 
and Nagel (1992) have summarized some of the important 
issues, questions, and applications of knowledge of the granular 
state and highlight the need for understanding the response to 
vibration. The analogy to molecular dynamics is often drawn 
but an important difference is that the particles in a granular 
material are inelastic and therefore only sustain random motions 
when either (a) the material is flowing (more specifically, un- 
dergoing continuous deformation) in which case the random 
motions are produced by the collisions or (b) externally im- 
posed vibrations generate particle motions. Consequently, re- 
search on the flow of granular materials and on the vibrational 
excitation of granular material would seem complementary and 
knowledge gained from one should provide insights to the other. 

Several investigators have previously examined the response 
of a bed of particles subjected to vertical vibrations and identi- 
fied a number of states and transitions between those states. 
Observations have been made for fine powders in which the 
interstitial fluid plays an important role in the response (see, 
for example Gutman, 1976a, 1976b) and for larger particles 
(typically > 0.1 mm diameter) in which the effects of the 
interstitial fluid are small. In this paper we shall focus on the 
latter case because, even in the absence of the interstitial fluid 
effects, phenomena occur which have yet to be adequately ex- 
plained. The important variables are the radian frequency of 
vibration, ~, vibration amplitude, a, particle diameter, d, and 
bed height at rest, h0, as well as material properties such as the 
coefficient of restitution, el,, for collisions between the individ- 
ual particles and the base plate. Clearly two appropriate dimen- 
sionless parameters which will influence the state of the material 
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are the dimensionless acceleration amplitude, F = a~2lg,  
where g is the acceleration due to gravity, and the number of 
layers in the bed, hold. 

Most investigators agree that within the range of frequencies 
usually explored (5 --) 100 Hz) the phenomena are relatively 
independent of frequency but depend strongly on the accelera- 
tion level, F, and the bed thickness, hold. We describe the 
phenomena which have been reported to occur as F is increased 
from zero. As long as F < 1, the visual appearance of the bed 
changes little; however Chlenov and Mikhailov (1965, 1972) 
report an increase in mobility and this manifests itself as a 
decrease in the angle of repose (Rajchenbach and Evesque, 
1988). When F exceeds unity by a small amount, the bulk of 
the particles separate from the base plate each cycle of oscilla- 
tion when the downward acceleration exceeds 1 g. We note, 
parenthetically, that one of the effects of the resistance to air 
flow in fine powders is to delay the inception of separation to 
values of 1-" greater than unity (Thomas et al., 1989). For the 
larger particles (typically > 0.1 mm diameter), when F is just 
a little larger than unity the flight time of the particles, At (the 
time between separation and subsequent recontact), is short 
compared with the period, T = 27r/f2, of the oscillations. In 
these circumstances the material essentially comes to rest rela- 
tive to the plate prior to the next flight. 

A number of phenomena are observed to occur when the 
acceleration level, F, is increased to higher levels so that the 
flight time, At, approaches the period, T. It is clear that the 
events depend upon the layer thickness, hold. Douady, Fauve, 
and Laroche (1989) examined fairly thick layers with hold in 
the 10 --) 100 range and observed that when the flight time 
becomes slightly greater than the period, a period doubling 
bifurcation occurred. This resulted in two different flights which 
alternated to produce a 2~ component in the motion. The critical 
F at which this occurred increased from 4.5 for hold = 7 to 
5.3 for hold = 25. 

Thomas et al. (1989) examined much thinner layers including 
very dilute systems consisting of much less than a single layer 
of particles. They describe four identifiable states which can 
occur at large F (typically 2.5 --) 6.0) and are primarily distin- 
guished by different layer thicknesses, hold. For very small 
hold (of order 0.17) they describe a "Newtonian-I" state in 
which the particles are bouncing so randomly that the vertical 
concentration profile changes little during a cycle. At somewhat 
larger hold (at 0.273 for example) there is a transition to a 
"Newtonian-II" state in which a dense layer of particles accu- 
mulates on the surface during one part of each cycle. Thicker 
layers of particles (for example hold = ! .7 ) lead to a ' 'coherent- 
expanded" state in which the particles all oscillate as a coherent 
mass. This mass does, however, expand and contract during 
each cycle. Bachmann (1940) had earlier observed the transi- 
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Table 1 Bead and lid masses for the various experiments 

Experiment Bead Mass Lid Mass 
No. [gm.] [gm.] 

1 250 3.44 

2 125 3.44 
3 125 7.17 
4 375 3.44 
5 125 17.06 

6 625 3.44 

7 45 3.51 
8 125 28.14 

tion to coherent motion and reported that this occurred when 
ho/ d = 6. 

Finally, Thomas et al. (1989) identify a "coherent-con- 
densed" state at larger values of ho/d on the order of 4. In this 
state the particles move as a mass but the mass remains compact 
throughout the cycle. They report that the transition from the 
"coherent-expanded" state to the "coherent-condensed" state 
is sudden and repeatable. 

In the present paper we describe the phenomena which were 
observed to occur as the vertical acceleration of a bed of mate- 
rial is increased and identify a transition or bifurcation similar 
to that which occurs with a single bouncing ball on a vertically 
vibrating plate (Wood and Byrne, 1981; Holmes, 1982). 

2 Experiments 
Experiments were carried out to investigate the behavior of 

a bed of granular material subjected to vertical vibration. The 
materials used were A-285 glass beads with a mean diameter 
of 2.85 ram. Various quantities of these beads were placed in 
a rectangular box with cross-sectional dimensions of 11 cm by 
13.2 cm which was in turn mounted on an electro-mechanical 
shaker and subjected to vertical vibration at frequencies between 
4 and 10 Hz with amplitudes up to about 2.5g. A Statham 
A73TC-4-350 accelerometer was used to measure the accelera- 
tion level accurately. 

The box had a thick aluminum base and back but the other 
three sides were made of lucite so that the behavior of the beads 
could be observed. Paper lids of various thickness were placed 
on top of the beads leaving a clearance of about 1 mm between 
the edge of the lid and the walls of the box. When the box was 
vibrated vertically the bed of beads would expand and the lid 
would float on the beads. Fortunately, the lid proved to be 
quite stable and under all of the conditions used in the present 
experiments would remain horizontal and centralized with a 
roughly equal spacing all around the periphery. Because this 
spacing was smaller than the diameter of the beads, all of the 
beads would remain under the lid. A stroboscope was used to 
examine the motion of the lid and the beads during various 
parts of the oscillation cycle. By this means we were able to 
observe that the spacing, h, between the base and the lid did 
not vary greatly during the oscillations. The beads would bounce 
around below the lid but because of the resistance to the flow 
of air around the sides of the lid, the volume of beads and air 
would remain almost constant during a cycle of oscillation. 
Thus, using the strobe and a scale attached to the exterior of 
the box, it was possible to measure the height, h, for each 
operating condition. 

Experiments were conducted by observing the evolution of 
the bed of beads as the vibration amplitude, a, was increased 
from zero to the maximum of which the shaker was capable. 
Such experiments were conducted over a range of frequencies 
(4 ~ 10 Hz) for various quantities of beads and for lids with 
different weights as listed in Table 1. 

It should be noted that a single packed layer of beads resting 
on the base of the box would weigh approximately 62 gm. 
Consequently the masses of beads range from less than a single 
layer to about ten layers. The 45 gm of experiment 7 was close 
to the minimum at which the lid would remain horizontal for 
the duration of the experiment. 

3 Experimental Results 
The results for the base-to-lid spacing, h, as a function of 

vibration amplitude will be presented in various ways but we 
focus here on the expansion of the bed, h* = h - h0, where 
h0 is the spacing at rest. For reasons which will become clear, 
h* will be presented both as a function of the non-dimensional 
acceleration amplitude F = af~2/g where g is the acceleration 
due to gravity, and as a function of the vibration velocity, a l l  
The typical behavior of the bed is best illustrated by the results 
from experiment 7 which are presented in Fig. 1. 

The bed would begin to expand at an acceleration amplitude 
of about 1 g and this expansion would gradually increase until 
one reached a certain critical value of the acceleration ampli- 
tude, Fc, which appeared to be independent of frequency but 
to vary with both the mass of beads and the mass of the lid. 
At this critical acceleration amplitude the lid would rise quite 
abruptly and then settle down at a substantially larger spacing, 
h. As illustrated in Fig. 1, further increase in the acceleration 
would result in further bed expansion but this was more gradual 
than the expansion encountered during transition. The top graph 
in Fig. 1 illustrates the fact that the critical conditions appear 
to occur at a given acceleration amplitude regardless of the 
frequency. On the other hand, the bottom graph in Fig. 1 illus- 
trates the fact that the supercritical conditions correlate with the 
velocity amplitude, aft, rather than the acceleration amplitude. 

Using the strobe, one could observe that prior to the transition 
the motions of the particles were fairly uncoordinated. However, 
above the transition the beads began to move as a mass which 
collided once per cycle with the base and with the lid. The 
collision with the base seemed quite inelastic and it appeared 
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that the mass only left the base again when the acceleration of  
the base exceeded some critical value. However, it is also im- 
portant to emphasize that the mass expands and contracts sub- 
stantially during each cycle being quite concentrated while  it is 
in contact with the base but quite dilute while it is in flight. 

Experiment 7 was chosen to illustrate the transition because 
it does so most clearly. This is because it used the smallest 
mass of  beads. As the mass of  beads was increased (for the 
same lid weight)  the critical transition became less distinct in 
the sense that the expansion at the critical acceleration became 
somewhat less abrupt and somewhat smaller. The same trend 
was manifest as one increased the weight of  the lid. Both effects 
are illustrated in Fig. 2 which presents data from experiments 
4 and 5. 

The critical acceleration, Fc, also increases with both the 
mass of  the beads and the mass of the lid. These trends are 
shown in Fig. 3. 

In order to understand the fundamental dynamics behind the 
above phenomena it is valuable to present the data non-dimen- 
sionally. This accomplished by nondimensionalizing the expan- 
sion as (h - ho)f~2/g and plotting this versus the nondimen- 
sional acceleration amplitude, F = af22/g. Examples from ex- 
periments 2 and 3 are shown in Fig. 4 in which the subcritical 
and supercritical data clearly form two distinct groups of  points. 
Indeed the two groups of  points both appear to lie close to 
quadratic curves which imply that each group of points corre- 
spond to a roughly constant value of  the inverse Froude number, 

Fr_ t _ [g(h - h0)]  112 
(1) 

af2 

To examine this further, the inverse Froude number is plotted 
versus the acceleration, F, in Fig. 5 for the typical data of  
experiments 2 and 3. 

It seems particularly noteworthy that the subcritical data cor- 
responds roughly to an inverse Froude number, Fr i of  between 
0.5 and 1.0 and that the supercritical corresponds quite closely 
to Fr J = 1.5 (recall that the values of  (h - ho) and a for some 
of the subcritical data are quite small and this may account for 
the larger scatter in that group of points).  The specific values 
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for Fr -1 decrease significantly as the mass of  beads increases 
and as the mass of  the lid is increased. The subcritical data 
shows similar trends though they are less distinct due to greater 
scatter in the data. 

4 T h e o r e t i c a l  A n a l y s e s  

The analytical solutions to the problem of a ball bouncing 
on a horizontal fiat plate performing vertical oscillations (ampli-  
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tude, a,  and radian frequency, ~ )  are of interest for several 
reasons. First, the model could be considered appropriate for 
individual particles when particle/particle collisions are rela- 
tively rare, as, for example, in the case where less than a single 
layer of particles was used. Alternatively, in the case of a larger 
mass of particles, the solution might be considered applicable 
to the whole mass when it performs a coherent periodic motion. 
In either case, we shall consider that the particles bounce off a 
lid which, by some unspecified damping mechanism, is main- 
tained at a constant height above the oscillating plate. The lid 
is, however, entirely supported in the mean by the impulses 
imparted by the particles; thus solutions will be sought for 
various ratios of the lid mass to the particle mass,f. The problem 
also requires specification of the coefficients of restitution, ep 
and ez for collisions with the plate and lid, respectively. 

The dynamics of the ball bouncing problem without a lid 
have now become a classic example of the occurence of bifurca- 
tions (see, for example, Wood and Byrne, 1981; Holmes, 1982) 
and we shall see that this seems the probable explanation for 
the experimentally observed transition. 

The first, simple solution which is useful is that for no lid 
and for ep = 0. The ball remains in contact with the plate until 
the latter is accelerating downward at an acceleration equal to 
g. The maximum height, h,, to which the ball rises above the 
plate can readily be identified parametrically as 

hfl~ 2 
= F[(x2 - xl) cos xl + sin xl - sin x2] (2) 

g 

where 

sin x~ = l / F ;  x2 - xl = F(cos xi - cos x2). (3) 

This relationship between the dimensionless "expansion," 
h,f~ ~/g and the acceleration amplitude was obtained numerically 
and is identified in Fig. 6 as the "no bounce" solution. Note 
that it corresponds quite closely with the subcritical experimen- 
tal data (in Fig. 6 we have used the data of experiment 2 as 
typical). 

When one examines the specifics of this solution for the range 
of F values of interest here (less than about 2) one finds that 

after becoming airborne the particle (or particle mass) will 
return to impact the plate after less than about 0.6 of a cycle. 
Even if ep were nonzero and there were several small bounces 
following this impact there is more than sufficient time left in 
the cycle for the particle (or particle mass) to effectively come 
to rest on the plate before the next occurrence of a downward 
acceleration of 1 g. Thus the solution is valid for a range of ep. 

The second benchmark which is of interest here is the peri- 
odic solution in which the particle (or particle mass) bounces 
off the plate and off the lid once per cycle of plate oscillation. 
In order for such a periodic solution to exist the relative velocity 
of departure from the lid collision, u4, the relative velocity of 
incidence on the plate, u~ (both u4 and u, considered positive 
downward), the relative velocity of departure from the plate, 
u2, and the relative velocity of incidence on the lid, u3, (u2 and 
u3 considered positive upward) must be given by 

ulf~ = 27r(1 + f ) .  u2f~ = 27reF(1 + f )  

g (1 + cp) ' g (1 + ep) 

u3f~ = 27rf ; U4~ '~  27retf 

g ( l  + el) g (1 + ~l) 
(4) 

The solution is most readily obtained parametrically by select- 
ing the times h and t2 during a cycle when collision with the 
plate and the lid, respectively, occur. It then follows that 

[ ~ ( t , -  /2)][  u2~g + ~ ]  

+ [~(t ,  + t2 )+  2~r][Uff~ + u~2 1 

F = (5) 
27r(cos ~2tl + cos f~t2) 

and that the expansion, h, defined as the increase in the spacing 
between the plate and the lid is given by 

h 
- = sin f~t~ - sin fit2 
a 

+ f~(t h) uz + ~ + c o s f ~ t j  +cosf~t2  • (6) 

Thus the choice of two arbitrary values of ~tl and f~h corre- 
sponds to a solution for specific values of f and F and yields 
a specific value for h/a. In addition one must check to ensure 
that there are no unforeseen overlaps between the particle and 
the lid or plate during the oscillation cycle. Typical results for 
this analysis are included in Fig. 6 (identified as "with bounce" 
solution) for ep = 0.25, et = 0, and f = 0.01, 0.1, and 0.2. Note 
that for a given lid and given coefficients of restitution there 
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exist no periodic solutions of this type for accelerations below 
a certain critical level. 

It should be noted in passing that there is a large variety of 
other possible periodic solutions. For example there exist the 
possibilities of one bounce for every two or more plate cycles 
and of two or more bounces in a single plate cycle. Alternatively 
the ball might cycle through two or more types of bounce before 
repeating itself. It is important to point out that studies of the 
dynamics of the much simpler system of a single particle on a 
vibrating plate (Wood and Byrne, 1981 and Holmes, 1982) 
have revealed a system of bifurcations at different critical values 
of the acceleration, F. 

As the acceleration amplitude is increased the dynamics of 
the single ball exhibits the first bifurcation from the "no 
bounce" solution to the "with bounce" state at 

F~ = ~r(1 - cp______.__) (7) 
(1 +~,,) 

The present experimental data clearly indicates that such a bifur- 
cation also occurs with the granular mass. Though the analogy 
may only be of qualitative value, it is nevertheless of interest 
to observe that Eq. 7 yields Fc = 1.88 when e~ = 0.25, a value 
we have arbitrarily chosen to demonstrate the results of the 
analytical calculation. This analysis is qualitatively consistent 
with the current experimental data since the effective ep for the 
mass of particles may be as low as 0.25. 

Thus the analysis is consistent with the following explanation 
of the observed experimental behavior. At small values of the 
acceleration just above 1 g, the data is consistent with the sim- 
ple, no-bounce solution. However, when the acceleration ap- 
proaches the critical or bifurcation value of F, a sudden expan- 
sion of the bed occurs as the particle mass begins to move as 
a fairly coherent whole, bouncing off the plate once each oscilla- 
tion cycle. 

A computer simulation was developed in order to determine 
if a column of inelastic particles vibrating on an oscillating 
plate and bouncing off one another would behave in a manner 
similar to a single particle. A hard sphere model was used 
to simulate a column of up to ten particles with zero radius, 
constrained to move vertically, supported by a sinusoidally vi- 
brating.plate. The separation height, h, between the top particle 
and the oscillating plate was averaged over many cycles for 
values of the parameter F between 1.0 and 5.0. It was found 
that a series of" jumps"  in the bed expansion existed for combi- 
nations of N, the number of particles, and e, the coefficient of 
restitution between particles and between the bottom particle 
and the plate. Figure 7 presents the results of a typical simulation 
where the dimensionless expansion hf~2/g, is plotted against 
the acceleration amplitude af~ 2/g. For cases where N was small 
and c was large, the effective coefficient of restitution of the 
column of particles is nonzero and sudden increases in the 
column expansion occurred. However, when N was large and 

was small, the effective restitution coefficient was zero and 
the column of particles remained grouped together. In this re- 
gime the characteristic sudden expansion was not observed for 
the range of acceleration amplitudes examined. 

C16ment et al. (1993) found similar results both experimen- 
tally and numerically for a column of spherical particles vibrat- 
ing on a sinusoidally oscillating base. They plotted the separa- 
tion height of the center of mass of a column of ten particles 
vibrating on a sinusoidally oscillating base as a function of 
acceleration amplitude and also found sudden jumps at particu- 
lar values of F. They, however, did not discuss the cause of 
these jumps. C16ment et al. also describe regimes where parti- 
cles cluster together and move as a coherent mass. Here the 
column of particles behaves in a manner similar to a single 
particle with a coefficient of restitution equal to zero. Clearly the 
same phenomena are being observed in the present simulations. 

As a last note, it is interesting to consider the possible role 
of the present bifurcations in the onset of the heaping phenome- 
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Fig. 7 Results from the computer simulation of a column of ten particles 
with zero radius. In the simulation, • = 0.90, and the separation height, 
hn=/g was averaged over 400 oscillations. 

non (and its convection pattern) observed in the experiments 
of Evesque and Rajchenbach (1989), Laroche et al. (1989), 
and others. Since the bifurcations observed here occur at nearly 
the same value of F as the onset value for heaping (Fn = 1.2) 
it is worth considering how the two phenomena might be re- 
lated. The authors suggest that the two are in fact not related. 
The sudden bed expansion which occurs for the shallow beds 
examined here are due to a bifurcation in the dynamics of a 
bed that has an effective restitution coefficient which is greater 
than zero, e~fr > 0. Heaping, however, is observed for deeper 
beds where eeff = 0 and the first bifurcation occurs when F 
3.3. Furthermore, when eeef = 0, the bed does not exhibit the 
sudden expansion described in this paper but instead displays 
a period doubling bifurcation. 

5 C o n c l u s i o n s  

A bed of granular material which is subjected to vertical 
vibration will exhibit at least one sudden expansion at a critical 
acceleration amplitude. This sudden expansion corresponds to 
a bifurcation similar to that exhibited by a single ball bouncing 
on a vibrating plate. Theoretical analysis based on this model 
yields results which are in accord with the experimental obser- 
vations. Other bifurcations may occur at higher vibration levels. 
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A Comparison Between the 
Tiersten Model.a.nd 0(H) 
Boundary Conditions for Elastic 
Surface Waves Guided 
by Thin Layers 
In this paper we make a comparison between the boundary conditions ( BCs ) derived 
by Tiersten and the so-called O(h) BCs for  elastic surface waves guided by thin 
films. By a thin layer we here mean a layer for  which the thickness is much smaller 
than the wavelengths involved. The advantage of  the O(h ) model is that it starts with 
the general three-dimensional equation of motion and derives the boundary conditions 
in a rational manner keeping all terms linear in the layer thickness. The Tiersten 
model is obtained from the approximate equations for  low frequency and flexure of  
thin plates by neglecting the flexural stiffness. We consider straight-crested surface 
waves under plane-strain conditions, so-called Rayleigh-type waves (P-SV), and 
Love waves (SH). It is shown that for  the Rayleigh type waves the O(h) BCs gives 
a much better approximation of  the exact case than the Tiersten BCs. Even for  the 
Tiersten model including flexural stiffness, the O(h ) BCs yields more accurate results. 
Concerning Love waves both the Tiersten model and O(h) model reduces to the 
same dispersion relation which quite well approximates the exact solution. 

Introduction 
It is well known that thin layers of finite width coated on an 

isotropic half-space can be used to guide elastic surface waves 
in the substrate. The first one to study this problem seems to 
be Bromwich (1899) who considered long waves. For a half- 
space of incompressible materials, the work was extended by 
Love (1911), who considered short wavelengths compared to 
the thickness of the layer. Over the past decades there has been 
a renewed interest in the problem of effective modeling thin 
layers for application in wave propagation problems. Important 
technical applications are flaw detection and nondestructive test- 
ing of components which, due to manufacturing or surface con- 
ditioning, have been covered with thin films of different materi- 
als. Other areas where effective modeling of thin layers are 
important include signal processing and microwave theory 
where surface acoustic waves (SAW) and so-called SAW-filters 
are of great interest. Also in piezoelectric media, in which a 
deformation produces an electric field, thus giving rise to a 
coupling of mechanical and electric phenomena, we find im- 
portant technical applications of electromechanical surface 
waves, Parker and Maugin (1988). 

Probably the most commonly used approach to model thin 
elastic layers is the so-called "spring contact model." This 
model emplo3~s boundary conditions which are linear and relate 
the discontinuity of the displacement to the surface traction. 
With this model it is also possible to model, not only the open 
and closed crack, but also perfectly lubricated cracks and par- 
tially closed cracks (Wickham and Bostr6m, 1991). 
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In some recent investigations of scattering properties of thin 
interface layers surrounding certain elastic inclusions, Olsson 
et al. (1990) and Bostr6m et al. (1992) showed that the spring 
contact boundary conditions are in fact inadequate to describe 
the scattering from a thin elastic layer. Regarding quantities 
like the scattering cross sections of coated elastic inclusions, 
the use of spring contact boundary conditions, in some situations 
lead to a prediction of a decrease in the scattering cross section 
when in fact both exact solutions (when available) and a more 
careful approximate analysis predict an increase. There is also 
one rather obvious and somewhat absurd consequence of the 
spring contact boundary conditions: They predict a scattering 
from the layer itself even when the layer is of the same material 
as the matrix. 

In B6vik and Olsson (1992) effective boundary conditions 
for SH waves were derived for almost arbitrarily curved elastic 
isotropic layers imbedded in a different elastic isotropic mate- 
riaL These boundary conditions are exact up to and including 
the first order in the layer thickness. The method was extended 
in B6vik (1994) to cover the full three-dimensional vector case 
and with more material configurations though the configuration 
in this paper were not included. In a paper by Tiersten (1969), 
elastic surface waves guided by thin films are considered by 
using the approximate equations of low frequency extension 
and flexure of thin plates. These approximate equations enable 
the effect of the plating to be treated as a boundary condition 
at the surface of the substrate. The model by Tiersten have 
been widely used in many different contexts concerning wave 
propagation in thin layers, and in this paper we will numerically 
compare the dispersion relations for the two models which will 
be referred to as the O(h) boundary conditions and the approxi- 
mate model by Tiersten. 

In Section 1 we review the solution of elastic surface waves 
guided by a thin elastic layer coated on a semi-infinite elastic 
half-space of a different material. In Section 2 we review the 
model derived by Tiersten and derive the dispersion relation 
for Rayleigh-type waves and in Section 3 we use the perturba- 

162 / Vol. 63, MARCH 1996 Transactions of the ASME 

Copyright © 1996 by ASME
Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



tion method to obtain the O(h) boundary conditions and derive 
a similar dispersion relation. In Section 4 we show that both 
the Tiersten model and the O (h) model give identical dispersion 
relations for Love waves in a layer on a semi infinite half- 
space. This results corrects an error in Wickham (1992) where 
different dispersion curves were obtained for the two models. 
Finally in Section 5 we give some numerical results showing 
comparisons between the different models. 

1 Preliminary Considerations 
In this section we briefly review the solution of elastic surface 

waves guided by a thin coating bonded to its surface, the coating 
being of a different material than the substrate. The Lain6 pa- 
rameters in the half-space are X, and #, respectively, and the 
density is denoted by p. The corresponding parameters in the 
coating are denoted by h', #'  and p '  (see Fig. 1). 

The elastodynamic equation of motion for a linear isotropic 
elastic material (without any body forces) can be written in 
terms of the displacement field as 

# u ; j s  + ( h  + tz)uj.j; = pfi; .  (1) 

The stress tensor is given by 

T o = hu , . k6  o + # (u i , j  + uj.;). (2) 

u~ = k [ A e  -~ 'k~  + B e  ~'kx~ - 13 'Ee  ~ ' ~  + ,O 'Fe~ ' kXqe  ;k% ~'~ 

u ;  = i k [ a ' A e  -"'kx2 - ce 'Be  "'kx2 + E e  ~'~2 + Fe~'*~2]ei*(xt a> 

u~ = o (5)  

for - 2 h '  < x2 < 0, and where 

( a ' )  z = 1 - r ~ ( d ' ) 2 q  2 

( f l , ) z  = 1 - r~Zq 2 

r~ = c J c ~  

d '  = c ; / c ; .  

Equations (4) and (5) inserted into (2) gives the stress com- 
ponents, which together with the boundary conditions (3) yields 
six linear algebraic equations in A, B, C, D, E, F. Nontrivial 
solutions are given by the vanishing of the determinant of the 
coefficients. This 6 x 6 determinant can be reduced to a 4 × 
4 determinant, so the dispersion relation can be written as (here 
we adopt the same notation as in Tiersten (1969)) 

- ( 2 a ' O ,  + atcrc) (2a'/30, + ta..) a'(20~ - t a t )  ( 2 a ' 3 ' O s  - t a d  
(tO.. + 2 a 3 ' a . J  - ( f l t O ~  + 2/3'a,) (2a'/3'~r, - tO,) f l ' ( 2 a ~  - to t )  

a(2 - r , t )  ( ru t  - 2 + q2)  a , r j ~ q 2  0 
( ru t  - 2 + q2 )  [3(2 - rut)  0 / 3 ' r , r ~ q  2 

= 0 (6) 

The traction vector on surfaces with a normal vector pointing 
in the xz-direction is given by the components r2j. 

Let us now consider the problem of Rayleigh-type surface 
waves propagating along a plated surface and confined to the 
vicinity of the surface of the substrate shown in Fig. 1. Equa- 
tions (1) and (2) are valid in the half-space and the same 
equations but with the material parameters primed are valid 
within the coating. The boundary conditions for a surface wave 
a r e  

% = 0 at x2 = - 2 h '  

~-~j=% at x 2 = 0  

a s  X2 ~ co.  

u j  = uj  and 

u s ~ 0 (3) 

A general solution to this problem is given by 

ul = k[ C e  - ~ x 2  - f i D e  /3kx2]eit(x'-ct) 

u2 = i k [ a C e  -~kx2 - D e  ' ~ 2 ] e  ~ % - ~  

u3 = 0 (4) 

valid forx2 > 0, where a 2 = 1 - ( c / 6 , )  2 = 1 - ( c , / c ; , )  2 
× ( c / c s )  z =  1 - d Z q  2 , /32  = 1 - q 2 ,  a nd  

x 1 

Fig. 1 A thin layer of thickness 2h' over a semi-infinite half-space 

J o u r n a l  o f  A p p l i e d  M e c h a n i c s  

where 

O, = sinh ( a ' 7 )  0c = cosh ( a ' 7 )  

a~ = sinh ( /3 'y)  crc = cosh ( 3 'Y )  

r~ = ~ ' / ~  t = 2 -  r ,}q 2 

= 2kh ' .  (7)  

This is the exact dispersion relation which governs the propaga- 
tion of all Rayleigh-type waves in a coated isotropic semi- 
infinite solid. When the coating is very thin compared with the 
wavelengths involved it is possible to derive an approximation 
to this exact theory, and in the next two sections we briefly 
review a model derived by Tiersten, and a more rational ap- 
proach to derive boundary conditions which are exact up to 
O(h).  

2 The Tiersten Model 

In a paper by Tiersten (1969) the propagation of elastic 
waves guided by thin films are considered by using the approxi- 
mate equations for low-frequency extension and flexure of thin 
plates. He shows that it is possible to treat the entire effect of 
the plating as a nonzero homogeneous boundary condition at 
the surface of the substrate, and by omitting also the flexural 
stiffness the resulting dispersion relation becomes a polynomial 
in the wave number which is much more readily informative 
than the transcendental equation of the three-dimensional solu- 
tion. The same technique, using higher order plate equations 
that include shearing deformation and rotary inertia has been 
employed by Achenbach and Keshava (1967) in a similar situa- 
tion. 

The two-dimensional equations governing the low-frequency 
extensional motion of thin plates may be written 
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1 1 , .  (0) F ~ ° ) (  1 - v ' 2 )  
- v )ub,~. + ~ )u.,,,o + 2 E ' h '  

(1 , .  (o) (1 + v 

= p - -  
E'  (1 - v'Z)ii(b°) (8) 

and for the flexural motion we have 

n,,,(0) ~(o) F(2 o) 2p,h,~.(2o) (9) - -  L ~  t4 2 , a a b b  "t- + ~ a , 2 a  

where v'  is the Poisson's ratio and the flexural stiffness D '  and 
Young's modulus E '  are 

D'  = 4h'3#'  
3(1 - v ' )  

E '  = 2# ' (1  + v ' ) .  

• In the following we will use the convention that the indices 
a,  b, c, d range over the numbers 1, 3 and skip 2 whereas i, 
j ,  k, 1 range over 1, 2, 3, u~ °) = u(.°)(Xl, x3, t) are the components 
of the extensional motion in the midplane of the plate. By 
making the assumption that 7-~) = 0 and also neglecting the 
shear strain components ~-(°)2. = O, we find 

k' 
u(o)  , (o) ( 1 0 )  

2,2 - -  ~ a , a  
X' + 2#'  

u(o) _, (o) (11) 
a,2 ~ I ' t2,a, 

where x~ = x2 + h ' .  The total displacements at x2 = 0, are 
obtained from (16) together with ( 1 0 ) - ( 1 2 )  as 

. °  = .~o)_ h ' . ~ ? 2  

u2 u~ °) h '  ' (0)  lb. t2 ' (o) (17) = - -  K H a ,  a + ~ l ~  K b l 2 , a a  

where K' = h ' / (h '  + 2# ' )  = v ' / (1  - v ' ) .  
Equations (14) and (15) determine the approximate form 

taken by the traction boundary condition at the coated surface 
of the substrate with 7-z;(0) given by (2). The relation between 
the plating displacements u} °) and the substrate displacements 
uj at the surface of the substrate are given by (17). Hence, Eqs. 
(14), (15 ), and (17) yield the boundary conditions at the sur- 
face of the substrate and the displacement field at the substrate 
is given by (4). 

The motion of the surface of the substrate does not coincide 
with the motion of the centerplane of the plating, which are 
given by 

u~ °) = kGeik(.h-co 

u(2O) = ikLeik(x, c,) 

u(o) = O. (18) 3 

Substituting the Eqs, (4) and (18) into the boundary conditions 
(14), (15), and (17) yields a fourth-order system of linear 
algebraic equations and the dispersion relation is obtained 
through the condition of nontrivial solutions as 

--o~ 1 

- 2 a  2 - q2 

( 7 (2 -- q2))  2 - - q 2 + y a  - 2f l+.~-  

- 1  

T K  r 

2 

--Tru( c ' 2 -  r~q 2) 

0 

Y 
2 

0 

y2 
Yru( r~q2 6 ( 1 - v ' ) )  

= 0 (19) 

From the condition that 7- ~,½ = 0, and by using (11 ), we also 
find 

u~O~2 = , (0) (12) - -  t~ 2 , a a  • 
k' + 2#' 

The applied forces and couples at the midplane of the plate and 
perpendicular to the plate are given by 

F}°)= 7-b(O) 

F(.°,~ = h'7-~.(O) 

F(O) = O. (13) 2,2 

Inserting Eqs. ( 1 0 ) -  (13) into the equations of motion of the 
plate, i.e., (8),  (9) gives the traction components at x2 = 0 as 

(1 + v ' )  ,(o)1 p ' h ' a ~ ,  °)  (14) 
7-~(0) = " "  " L "b ' °°  + (1 v ' )  - -  ~ a , a b  J + 

7-22(0) + h'7-2.,a(0) = D'u(2°,.).ob + 2p'h'a(2 °). (15) 

The total displacement components uj at any point in a plate 
undergoing both flexural and extensional motion are given by 

~ t  , , ( 0 )  
u" = u(~ °) + ~2,.~,2 

u~ = u~ °) + x~u~°)z + x{Zu~°)zz (16) 

where c '  = 2 [ (k '  + # ' ) / ( k '  + 2/z')] 1/2. Expanding the deter- 
minant (19) results in a fourth-order polynomial in y. In the 
following we will call Eq. (19) the dispersion relation of the 
Tiersten model including flexural stiffness. 

Tiersten simplifies this dispersion relation further by neglect- 
ing the flexural stiffness D '  and the surface couples .~'rr(0).2,, in 
Eqs. (14) and (15) while still retaining the vertical inertia and 
the extensional stiffness and inertia. Moreover, in the plate dis- 
placement continuity conditions (17) he neglects all O(h '  ) and 
O(h '2) terms keeping only the lowest order terms so Equation 
(17) reduces to uj = u} °). In this respect the boundary conditions 
(14), (15) reduce to 

r2b(0) = -2 / z ' h '  uh~,, + (1 - v'-------~ u°.~b + 2p'h'gb (20) 

7-22(0) = 2p'h'E2 (21) 

where 7-v(0) are given by (2).  Equations (20) and (21) are 
Tiersten's approximate boundary conditions which replace the 
vanishing of the traction in the Rayleigh problem. By this we 
have removed the layer and applied nonhomogeneous BCs at 
the surface xz = 0. Equations (2) and (4) inserted into (20) and 
(21) and the condition for a nontrivial solution gives Tiersten's 
dispersion relation as 

2a + ru( c ' 2 -  rzq 2) q 2 _  2 + ru(r~q 2 - c  '2) 1 
2 - qZ _ rurZq2ay rT~q2y - 2/3 = 0. (22) 
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Expansion of (22) gives 

Ao + AiT + A23  ̀2 = 0 

where 

(23) 

Ao = (2 - q2)2 _ 4aft (24) 

A ,  = ruq2[(r~2q 2 - c ' 2 ) f l  + ro2q2o~] (25) 

A2 2 2 2r t 2  = r . r ~ q  t c  - r~Zq2)(1 - a f t ) .  (26) 

It is noted that the equation A0 = 0 is the well-known Rayleigh 
dispersion equation for Rayleigh waves on a free surface. 

Equation (23) is a quadratic in the dimensionless wave num- 
ber 3  ̀ and the coefficients are functions of the dimensionless 
phase velocity q. Hence, for a given real q, any real positive 
root 3' gives a point on the dispersion curves, Complex and real 
negative values of y are inadmissible as points on the dispersion 
curves since h '  is positive and we have restricted ourselves 
to real positive wavelengths. Equation (23) will be compared 
numerically with the dispersion relation obtained through the 
use of the O (h) boundary conditions for the layer which will 
be derived in the next section, 

3 The O(h) Boundary Conditions 
In this section we will use a different approach in deriving 

an approximation to the dispersion relation for Rayleigh-type 
waves on a layered half-space. In B6vik and Olsson (1992), 
boundary conditions for scattering of SH waves from a thin 
elastic layer were derived by using a perturbation technique in 
which the field variables were expanded in the layer thickness 
in the normal direction. An extension to cover the full three- 
dimensional case, and to other material combinations was given 
in B6vik (1994). The advantage of this method is that it takes 
into account all terms which are of the first order in the layer 
thickness. 

The boundary conditions at the two surfaces x2 = 0 and xz 
= - 2 h '  in Fig. 1 can be written 

r L , 2  = p ' G '  - rL ,b  

7"~2,2 = pt l ,  l~ - -  "7"~ . . . .  (32) 

By summing the two equations in (32) we can write the normal 
derivative of the traction in terms of the tangential derivatives as 

t t r2j,2 = p ' a ;  - 661%'b,. -- 62ir2 . . . .  (33) 

From the expression for the traction vector ~-~j we can write 
the normal derivative of the displacement components in lerms 
of tangential derivatives as 

Uj '2=raj[~7 '7"~a--U~, , , ]  + ~ - ~ 6 2 y [ T ~ 2 - - h ' U ~ j , ] .  (34) 

Combining Eqs. (33) and (34) and using the boundary condi- 
tions (27) and (28) to replace the primed fields in the tangential 
derivatives by the fields in the substrate (see Brvik and Olsson 
(1992) for more information), the approximate boundary con- 
dition (31 ) can be written (where we omit the O (h '2)-terms) 
as 

r2b = - 2 h ' # '  uh,.. + (1 v ' )  

- 2h'K'r22,b + 2 h ' p ' a b  (35) 

r22 = - 2 h ' [ r ~ , ~  - P'g21 (36) 

where K' = h ' / (k '  + 2/.z') = v ' l ( 1  - v ' ) ,  
These equations (35) and (36) should now be compared with 

Tiersten's approximate boundary conditions (20) and (21 ), We 
note that there are some terms missing in (20) and (21) which 
are of first order in magnitude. The advantage of the perturba- 
tion method is that it starts with the general three-dimensional 
equation of motion and derives the boundary conditions in a 
rational manner keeping all terms linear in h' .  For the Rayleigh- 
type waves, i,e,, Eq. (4) and the expressions for the traction 
components in the substrate (2), the boundary conditions (35) 
and (36) result in a dispersion relation similar to (22) as 

11 
2~ + 7ru(c '2 - r~2q z) - 3`•'(2 - q2)] - [ 2  - q2 _ T r u f l ( r ~ q 2  _ c , 2 )  _ "yK'2/31 [ 0 

(37) 
[2 - q2 _ 7 a r j ~ q 2  + 2a3`] - [2/3  - y r ,  r ~ q  2 + (2 - q2)3`] I 

u; Io = . j lo  (27)  

r~j [o = rzj[o (28) 

~-~j l-2h' = 0 (29) 

where r~j and uj are the traction field and the displacement 
field inside the layer, respectively. If we subtract Eq. (29) from 
(28) and expand the field at the surface x2 = - 2 h '  around x2 
= 0 inside the layer in the normal direction we find 

- {r~jl0 + r~j,210(-2h' - 0) 

+ ~lr'2j.22 Io ( -2h '  - 0) 2 + O(h '3)  } 

= 2h'r%21o ,2 , ' - 2h r2~,221o + O(h '3) .  (30) 

To first order in h '  we find 

r2jlo = 2h'r~j,=lo + O(h '2) .  (31) 

Combining Eqs. (1) and (2) we can separate the equations 
of motion into one tangential part and one normal part as 

Journal of Applied Mechanics 

Expanding the determinant we obtain a quadratic polynomial 
in y as 

P23  ̀2 + Al3` + Ao = 0 (38) 

where the coefficients Ao and A1 are the same as in Tiersten's 
dispersion relation, i.e., (24) and (25), and P2 is given hy 

P2 = A2 + ru(2afl - 2 + q2) (c '2  -4- r~q2(K  ' -- 1)) (39) 

where A2 is given by (26). 

4 Love Waves 
It is well known that for c~' < c < c., there exist guided SH- 

waves, known as Love waves which can propagate along a layer 
overlaying a semi-infinite half-space. In our coordinate system 
the only nonzero component of the displacement field is u3 
which is independent of x3. For a layer with thickness 2h' the 
exact dispersion relation is given by 

~q2rv2 -- 1 tan (yx fq2r~ - 1) - 1 x/1 - q2 = 0. (51) 
r, 

For the approximate models it is straightforward to show that 
both the Tiersten model, i.e., equations (20), (21) and the 
O (h)-boundary conditions, i.e., Eqs. (35), (36) reduce to iden- 
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Fig. 2 Roots of dispersion relations for Rayleigh-type waves in a gold 
layer over a fused silica substrate 

tical boundary conditions, hence the only nonvanishing compo- 
nent of the BCs for both models is 

T23 = - - 2 h '  #'U3.H + 2 h '  p ' a3 .  (52) 

With the ansatz for u3 like 

u3 = Pe-Zk~2e ik(~l ~t), (53) 

we obtain the approximate dispersion relation as 

y(qZr.2 - 1) - ~ ~/1 - q2 = 0 (54) 
r .  

which to first order agree with the exact dispersion relation. 
In the paper by Wickham (1992) a comparison was made 

for Love waves by comparing the dispersion relations (Fig. 4, 
p. 208) for the Tiersten model (curve d),  O(h) -BCs  (curve c) 
and the so-called PIE (Polarized Integral Equation) technique 
(curve b).  The material configuration was a copper layer over 
a steel or glass substrate, There obviously are some errors in 
his Fig. 4. As have just been shown both the Tiersten model 
and the O (h)-BCs yield identical dispersion relations for Love 
waves in layers over a semi-infinite half-space, hence the curves 
c and d should be identical. 

5 N u m e r i c a l  R e s u l t s  

In this section we numerically compare the approximate mod- 
els against the exact solution for some different material con- 
figurations. We have used the same materials as those used in 
Tiersten (1969).  In Fig. 2, the roots of the dispersion relation for 
Rayleigh-type waves (P-SV waves) are plotted for the Tiersten 
model including flexural stiffness, the Tiersten model, and the 
O(h)  BCs against the exact solution. The first branch is the 
fundamental Rayleigh-type branch and the second is the higher 
M2-mode (or Sezawa-branch, see Sezawa and Kanai (1935)) .  
The materials are a gold layer on a fused silica substrate, hence 
the material parameters are # '  = 2.85 10 -~° N/m 2, X' = 15 
10 -t° N/m 2, c~' = 1200 m/s, c~ = 3240 m/s, g = 3.12 10 -l° 
N/m 2, ~ = 1.61 10 -1° N/m 2, c, = 3764 m/s, cp = 5968 m/s. It 
is seen that the O(h)-boundary  conditions yield more accurate 
results than both the model by Tiersten and the Tiersten model 
including flexural stiffness. 

In Fig. 3, where the layer is faster than the half-space, we 
likewise find good agreement with the O(h)  BCs and the exact 
solution. The Tiersten model gives qualitative poor results. The 
dispersion curve consists of two roots which becomes complex 
at the maximum point. For the Tiersten's model including flex- 
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0.1 0 .2  0 ,3  0 .4  0 .5  0 .6  

y= 2kh' 

Fig. 3 Roots of dispersion relations for Rayleigh-type waves in an alu- 
minium layer over e heavy silica substrate 

ural stiffness, qualitative correct results obtained though the 
O(h)  BCs yield better results. The materials are an aluminium 
layer over a heavy silica (flint glass) substrate with material 
parameters, # '  = 2.5 10 -1° N/m 2, k'  = 6.1 10 -1° N/m 2, Cs' = 

' = 6420 m/s, # = 2.18 10 -1° N/m 2, h = 1.77 3040 m/s, cp 
10 -1° N/m 2, cs = 2380 m/s, Cp = 3980 rn/s. 

In Figs. 4, 5, and 6 we compare the roots of the exact and 
approximate dispersion relations (i.e., both O (h)-  and the Tiers- 
ten model) for Love waves in a gold and copper layer over a 
fused silica substrate and a copper layer over a stainless steel 
substrate. As is seen the approximate dispersion relation gives 
quite good results. Love waves only exist when the layer loads 
the substrate, hence no Love wave exists for an aluminium layer 
over a heavy silica substrate. 
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Fig. 4 Roots of dispersion relations for Love waves in a g01d layer over 
a fused silica substrate 
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F i g .  5 Roots of dispersion relations for Love waves i n  a copper layer 
over a fused silica substrate 
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Fig. 6 Roots of dispersion relations for Love waves in a copper layer 
over a stainless steel substrate 

7 Concluding Remarks 
In this paper we have compared two different models of 

approximating thin layers in elastic and acoustic wave propaga- 
tion, the model by Tiersten and the O(h) BCs. Both models 
actually replace the layer by a mathematical surface at the sub- 
strate and specify a nonzero expression of the traction as an 
equivalent boundary condition. The advantage of this is that it 
clearly simplifies the mathematical treatment of wave propaga- 
tion problems in thin layers, The O(h) BCs can be used for 
almost arbitrarily curved layers (B6vik, 1994), and even for 
anisotropic layers (B6vik and Olsson, 1991 ) whereas the model 
by Tiersten only works for planar layers. 

Both models yield accurate results when the layer is slower 
than the substrate, though the O(h)  BCs give better results. But 
for layers that are faster than the substrate the Tiersten model 
gives results that are not even qualitative comparable to the 
exact solution. 

In conclusion it can be stated that since the O(h)  BCs are 
far more general in nature (they work with other material con- 
figurations and for curved layers as well) than the BCs by 
Tiersten and give better results, they should be the more versa- 
tile and useful ones. 
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Rough Balanced Collisions 
In multibody systems, balanced collisions--in which the sliding velocity would not 
change if friction was negligible--are a generalization of central collisions. For 
them Newton's and Poisson's rules are energetically consistent, but even though they 
are applied an "all linear solution" does not exist if the sliding varies its direction 
and does not stop. The properties of these collisions are reviewed, the hodographs 
of  the sliding velocity are calculated and used to develop a systematic method to 
integrate the equations of motion that relies on a single integration from which the 
remaining unknowns are calculated by means of algebric expressions. 

1 Introduction 

For smooth single-point collisions in multibody systems with 
perfect constraints, the percussive rigid-body dynamics leads 
always to an "all  linear" solution relating the velocities at the 
end of the collision to the initial ones. This is not so if friction 
is considered at the collision point because, in the general case, 
the friction laws for forces cannot be extended to the friction 
impulses calculated over the collision interval, and Newton's 
and Poisson's rules (with coefficient of restitution e, 0 -< e -< 
1, independent from initial conditions) are, in general, energeti- 
cally inconsistent (Batlle, 1993; Smith and Liu, 1992; Smith, 
1991; Stronge, 1990, 1991a, 1991b). Consequently the equa- 
tions of motion for rough collisions must be integrated over 
the collision interval, (Routh, 1905; Beghin, 1951; Batlle and 
Condomines, 1991). Beghin developed a geometry-based 
method to solve three-dimensional rough collisions. Batlle and 
Condomines (1991) extended Routh's and Beghin's approach 
to multibody systems by means of the Lagrangian formulation. 

Balanced collisions are a particular kind of single-point colli- 
sions in which there is no inertial coupling between the normal 
and tangential direct ions--and consequently the sliding veloc- 
ity would not change if friction was negligible. They have been 
referred to for nonplanar collisions in multibody systems by 
several authors (Smith and Lin, 1992; Batlle, 1993) who have 
shown the energetical consistency of Newton's and Poisson's 
rules for them. However, this energetical consistency does not 
guarantee an "all  linear" solution in all cases. Such a solution 
does not exist when there is sliding that varies its direction and 
does not stop. 

In this article the properties of the balanced collisions are 
reviewed and a method for integrating their equations of motion 
when there is not an "all  linear" solution is developed. This 
method requires a single analytical or numerical integration that 
relates the normal velocity to one of the components of the 
sliding velocity at the collision point. From the result of this 
integration, the remaining unknowns are calculated by means of 
algebric expressions. Two illustrative examples are presented. 

2 The Lagrangian Formulation of Rough Balanced 
Collisions 

If the n-degrees-of-freedom of the system are described by 
means of the generalized velocities { u } r = { ui, u2 . . . . .  u, }, 
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the differential Lagrangian equations of motion can be written 
in matrix form as 

[M]{du} = {dIIn} + {dH,} =- {dH}, (1) 

where [M] is the n × n inertia matrix of the system for the 
impact configuration and { dFI. } and { dIq, } are the generalized 
normal and tangential differential impulses, respectively. The 
ti-vector { dH} is related to differential normal and tangential 
impulses dP. and dP, by means of the equation 

 dP,} 
{dlFl} = [ k l [ d p ,  ~ [k]{dP} ,  (2) 

where [k] is a n × 3 matrix of coefficients relating the normal 
velocity v. and the sliding velocity v, at the collision point to 
the generalized velocities 

{vn} =- [k ]qu} .  (3) 
{v}-= v, 

[{,~}[#]]~{u} 

From (1),  (2),  and (3),  

{du} = [M]- I[k]{dP} ,  (4) 

{dr} = [klr[M] l[k]{dP} ..~ [NI{dP} ,  (5) 

where [N] is a symmetrical positive definite matrix that is con- 
veniently written in the form 

[N]=  L/3rM-Ia ~rM-l/SJ ~ h [b] ' (6) 

It coincides with matrix [N] used by Smith and Liu (1992). 

Condition for Balanced Collisions. The lack of inertial 
coupling between the normal and tangential directions requires 
h = 0, and this condition reduces (5) to 

dvn = adP,,; or Av. = aAP~ (7) 

dr ,  = [b]dPD or Av, = [b]AP,  (8) 

If Coulomb's friction and infinite tangential stiffness are as- 
sumed at the collision point, when sliding occurs dP] can be 
expressed in terms of dP~, the friction coefficient # and the 
unit vector o, = v,/Iv, I along the sliding direction, dP~ = 
-#o'dPn.  Substitution into (8) and (4) leads to 

dvt = - / z [b ]  ordP,, (9) 

{du = [M]- l[k]{  1# } d P ' ~  o" (10) 

when there is no sliding, according to (8),  dPf" = 0, and 
substitution on (4) leads to 
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{du} = [ M l - l [ k l { l o } d P , , ~  {C"~}dP,, (11) 

Equations ( 7 ) -  (9) lead to interesting propemes. 

Autonomous Evolution of v , .  Usually the evolution of v,, 
is linked to that of v, by means of the term h rdp ,  of (5) in 
which dP, depends upon v, through the friction law considered. 
However, for balanced collisions its evolution is autonomous 
as shown by (7).  The relationship dv,,/dP,, = a is independent 
of the sliding or nonsliding conditions and keeps a constant 
value over the collision interval. Consequently balanced colli- 
sions verify the sufficiency condition for energetical consistency 
of Newton's and Poisson's rules (Batlle, 1993). 

The Origin of the Hodograph Plane of vt is a Sink Point. 
According to (9),  the projection of dv,/dP,,  (9) over o" is 
opposite to ~r, 

O'rdVt  = - y o ' r [ b ] o  " < O, (12) 

because [b],  defined in (6),  is positive definite. 
Consequently the hodographs of v, are centripetal in all their 

points and the origin v, = 0 of the hodograph plane is a sink 
point. Hence once the sliding has stopped it does not restart. 

The Tangential Impulse P ,  When there is no sliding, ac- 
cording to (8),  dP', '~ = 0 and consequently when sliding stops 
the normal force at the collision point vanishes to zero. So the 
tangential impulse comes only from tangential force during the 
sliding, and according to (8) 

P, = [b ] - lAv, .  (13) 

In cases where the sliding stops (13) leads to P, = 
-[b]-tvl°) ,  because Av, = - v l  °), being vl °) the initial sliding 
velocity. 

Energy Dissipation. The energy dissipated by the normal 
force is readily calculated from dW,, = v,,dP,, = a -lv,,dv,,, where 
v,, = -ev,,  if Newton's rule is applied. Integration over the 
collision interval leads to 

1 v~ °)2) = -~--a-1 _~ W , = ~ a - l ( v ~  - v,(1 - e2). (14) 

The energy dissipated by friction can be analytically calcu- 
lated by integrating dWt  = v, dP, = v,[b] ~dv, over the collision 
interval, which leads to 

W, = AT, = T, - TI °), (15) 

where 

i r (16) T, =-- iv, [b ] - lv  t .  

According to (16), T, could be given the meaning of "kinetic 
energy associated with sliding." Equation (15) equals the re- 
duction of this kinetic energy to the energy dissipated by fric- 
tion. 

3 The Hodographs Sliding Velocity 

The set of hodographs for the sliding velocity v, give a de- 
tailed picture of the evolution of v, for the collision configuration 
considered and arbitrary initial conditions. 

If the eigendirections of matrix [b] are taken as the axes 1 
and 2 for vt on the tangential plane, (8) leads to 

dr,2 b2 Vt2 
, (17) 

dv, l bl vrl 

where bl and b2 are the eigenvalues of [b]. The hodograph 

2 

bl < b 2 

Fig. 1 Hodograph plane for balanced collisions 

equation is obtained by integration of (17) from an initial slid- 
ing velocity v~ °), 

(0 (0) b Ib v,2 = v,2 (v, I v .  ) ~ ,. (18)  

Figure 1 depicts the hodograph plane where bz > b~ (axis 1 
is associated with the smaller eigenvalue of [b]) .  Axes I and 
2 - -which  are the eigendirections of [b] - - a r e  the only asymp- 
totes in the hodograph plane. From vl °) the sliding velocity 
evolves towards the origin along the hodograph containing the 
initial sliding velocity vl °), until the end of the collision. 

The end point vl e) depends upon the value of the initial nor- 
mal approaching velocity, v, = -vl,  °). For increasing values of 
v, the end point approaches the origin, reaching it for a certain 
threshold value v~. For greater values of v~a  phase without 
sliding follows the initial sliding phase until the collision is 
over. 

For b~ = b2 the hodographs degenerate to straight lines 
through the origin, (Fig. 2). 

4 "All Linear" Solution 

Newton's and Poisson's rules (with coefficient of restitution 
e, 0 ~ e -< I, independent from initial conditions) are energeti- 
cally consistent for balanced collisions, If any of them is used, 
an "all  linear" solution exists provided that an explicit expres- 
sion for Pt can be found. 

This happens if the sliding keeps a constant direction and 
does not stop (or stops just when the collision ends), as in this 
case P, = -#~rP,, ,  or if the sliding stops during the collision, 
regardless of its direction being constant or not, as in this case 
the constraint condition vt = 0 leads to P, = - [b] -~v~ °), ac- 
cording to (13). 

If Newton's rule is used, 

Av,, = +(1 + e)v~, = - ( 1  + e)v~ °) 

= - ( 1  + e){a}r{u(°)} ,  (19) 

where the value " e "  is the restitution coefficient relating the 

2 

b1=b~ 

Fig. 2 Hodograph plane for balanced collisions with b~ = b= 
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normal separating velocity to the normal approaching one, at 
the collision point, Vs = eva. 

In the case of constant tr (the hodograph is one of the asymp- 
totes), as C ~ in (10) is constant this equation can be integrated 
over the collision interval leading to 

{ ~ u }  = { c * } e . ,  (2o)  

but from (7),  

P . =  a - l A y . .  (21) 

Substitution of (18) and (20) into (19) leads to 

{ A u } = [ P ] { u ( ° ) } ,  or {u ~ ) } = ( [ l ] + [ P ] ) { u ( ° ) } ,  (22) 

where [I] is the unit matrix of dimension n and 

[P] = - ( 1  + e ) a - ' { C  * } { a } r  (23) 

If the sliding stops during the collision, the substitution of 
(13) with &v, = - v l  °) = - [ f l ] r{u(° )} ,  (19) and (21) into 
(4) integrated over the collision interval leads to 

{ A u } = [ P ' ] { u ( ° ) } ;  or {u < ~ ) } = ( [ l ] + [ P ' ] ) { u ( ° ) } ,  (24) 

with 

[ P ' ]  = --[M]-X(a-l(1 + e){a} {a} r 

+ [fl] [bJ -l[/~]r). (25) 

5 Non "All Linear" Solution 
If sliding does not stop and its direction varies there is not 

an "all  linear" solution because, even if applying Newton's 
(or Poisson's) rule, the two equations concerning Pt would be 
lacking. In this case the equations of motion must be (analyti- 
cally or numerically) integrated over the collision interval. 

If the hodograph equation is used, this integration needs to 
be extended only to the calculation of Vn(V,~). 

From (8) 

U t l  
dvtl  = - # b l a  - l  . ~  dye,  (26) 

and by substitution of va from (18) 

- -  - -  , , r ( 0 ) 2  t 2 [ u - - l ] A , , /  t a ~/1 + ~a  v,l -~,a = d r . ,  (27) 
#b~ 

where u =- b i b 1  > 1 and adimensional velocities v '  -~ v / v l  °~ 
are used. 

Integration of (27) leads to 

~"?)  ~1 + ~'2 ~tl --ota = ~V,, (28) 
a 

, ,  t ( 0 ) 2 , ,  ¢ 2 I v - l ]  A , ,  t t 

with 0 < v'ff ) -< 1. 
For practical purposes this result is better expressed by means 

of the adimensional velocities 9. =- V./Va and ~1 °~ --= vl°) /v ,  in 
spite of working out the integral by means of adimensional 
velocities v',  

f ~'I~ , , , (o)2, , ,2>-ua. . ,  ~ . .  (29) - -  __a ~(o)  ~/1 ~- u t2  Ut l  t~Utl  
#b~ ~t~ o l  = 

The integration over v [1 converges better because axis 1 corre- 
sponds to the smallest eigenvalue of [b].  

• t~I13 

• j J J  

Fig. 3 Diametrel collision of an homogeneous ellipsoid of revolution. 
Notation. 

If Newton's rule is applied, the end value v;ff ) corresponds 
to 

AO,, = 1 + e. (30) 

From (29) and (30) the threshold value v~ above which 
sliding stops during the collision is given by 

f; u~ = a .,(o) x/1 + .,,(o)2,,,ef,,-ll.4.,, (31) 
#bl(1 + e) ~tl ~t2 ~tl ,*~,l. 

Once the end value v}~) = ~"'(~)"(°)~,1 has been found by means 
of (28) or (29), vt2 is obtained from the hodograph equation, 
(18), the impulse {P} is obtained from (7 ) - (8 ) ,  

P .  = a - l A y .  = a - l ( 1  + e ) v ~ ]  

P, = [b]-~Av'J~" , (32) 

and substitution into (4),  integrated over the collision interval, 
leads to the increments of the generalized velocities: 

{Au} = (1 + e ) a - l v a [ m ]  l{a} 

+ [Ml-l[/~][b]-l{z~xv,}. (33) 

6 Application Example 1: Balanced Collision of an 
Homogeneous Ellipsoid of Revolution With a Fixed 
Surface 

The bounding of an homogeneous ellipsoid of revolution with 
a rough fixed surface is a balanced one provided that the colli- 
sion point belongs to the equator, as it is assumed in this exam- 
ple, or coincides with one of the poles, because in such cases 
P, goes through the mass center, and consequently vt is un- 
changed if friction is neglected. The sliding direction will 
change if vl °~ is not directed along one of the ellipsoid axes, 
and in this case there is not an "all  linear" solution if sliding 
does not stop. 

Let's assume the case depicted in Fig. 3 with friction coeffi- 
cient/.z = 0.5. The degrees-of-freedom { u } and initial velocities 
{ u (°) } are described by 

{ u } =  f~l ; { u ~ ° ) } =  - v .  

f~2 
9t3 

(34) 
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Table 1 End sliding velocity ~") and .a(~)t --t~(°) for different 
values of e 

0 1.000 0.652 -0.768 - 1.116 
0.2 0.829 0.470 -0.939 - 1.298 
0.4 0.652 0.308 - 1.116 - 1.460 
0.6 0.467 0.172 - 1.300 - 1.595 
0.8 0.276 0.069 - 1.491 - 1.699 
1.0 0.088 0.008 - 1.688 - 1.760 

The basic matrices, vectors, and parameters are 

1 
1 

[M] = m 
1 

( 2 / 5 ) r  2 
F 2 

F 2 

0 
0 
1 

{o~} = 0 

0 
0 

r 

a = - - ;  [b] = - -  ; u = - .  (36) 
m m 4 

According to (36),  axes 1 and 2 are the eigenvectors of [b] 
and axis 1 is associated with the smaller eigenvalue as assumed 
in the presented integration method. 

The hodograph followed by ~, --= v f l v ,  is defined by 

f ~f2 ~314 ~ 7/4 

: t T - )  
(37) 

The integration of (29) with A~, = 1 + e leads to the end 
sliding velocities ~,~), shown in Table 1 and depicted in Fig. 4 
for several values of e. The incremental values A~, in Table 1 
are used to calculate the incremental values of  the generalized 
velocities, according to (33),  

1.5 

1 

0.5 

V.i 2 

, ~  S e=O 

~e=l o.s 1.s 

Fig. 4 Evolution of the normalized sliding velocity vt ~ vtlv. 

Fig, 5 
tion. 

3 

body B II .~y')02 of body A 

Bounding of two articulated bodies on a rough fixed plane, Nota- 

{Aa}  = 

A ~ J 2  
(2/7)A~,2 

l + e  
( 5 / 7 ) A ~ , 2 / r  

- A ~ , l / 2 r  

0 

(38) 

The energy dissipated by the normal force is given by (14) 

W n  = I 2 - ~mva(1  - e 2 ) ,  (39) 

while that dissipated by friction is defined by (15) 

W , =  x 2 ~ 2s ~ (~ -~ , z2 ) ]  (40) 5 m r . [ g (  T - ~ , )  + - _ 

The threshold normal approaching velocity v~ above which 
sliding stops during collision is. for ~,~"(°) = v,z"(°), and according 
to (31) 

[] n 1.) a 
2/z(1 + e) 

01 t 3/2 t vii"(°) ~/1 + v t l  d v , i  

1,174 

2#(1 + e) 
v ( 0 )  (41) tl • 

7 Applicat ion Example  2: Bounding  of  Two  Artic- 
ulate Bodies  on a Rough Fixed Plane 

The balanced collision considered in this example is no 
longer a central or a colinear one. Let 's  assume the mechanism 
shown in Fig. 5. The mass is concentrated at points P~, Pz, and 
P3. The articulation is free from friction. At the configuration 
shown and with a translational initial movement  defined by x (°), 
y(O) and, a negative z (°), z <°) < 0, the system collides at P1 with 
a rough fixed surface which is horizontal at that point. 

The degrees-of-freedom { u } and initial velocities { u ~°) } are 
described by 

{i} i;01 • /x o/ 

0~ ; {u (°~} 
{ u }  = 02 

(42) 
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The basic matrices, vectors, and parameters are 

0 2 
0 0 2 

[M] = m  0 - L  0 L 2 ; 
0 0 0 0 S z 
0 0 0 0 0 S 2 
L 0 0 0 0 0 L 2 

[ii]°°°1 { a }  = ; [ /3]= , (43) 

a = ~ m ;  [b] . . . .  m 2 ; h (44) 

The value h = 0 confirms that the collision is balanced. In 
this case u =- b2/bl  = 2, and consequently the hodographs of 
v, are parabolas 

r,,(o)1,,~o)2~, 2 (45) 
1)t2 ~ \ v t 2  t U t l  ) U t l .  

At the collision point, the initial velocities lead to 

Ua = UO; , (0) ,,(0) v,i = ~',2 = kVo. (46) 

The particular value of u allows the analytical integration of 
(29) defining the reduced normal velocity ~, ~ v,/vo 

-~- Oll°)[,~ + In (1 + ~/2) 0~ = - 1 + 4# 

,2 ' ~]1 + v'~Z)] (47) - v/ix/1 + v,1 - in (v, l  + 

where v;l ~ Vtl/Vll °). 
If Newton's rule is applied, the end values of vii  correspond 

to #~') = e. For both of them, e = l and e = 0, the end values 
v[(~) and their corresponding (~}[), ~}~)), for different values of 
~(0) 0.75. ,l are shown in Table 2, and depicted in Fig. 6 for/z = 
From these values the incremental values of the generalized 
velocities can be calculated by means of (33), 

_ A'Otl 
A~,2 /2  

(1 + e) /3 
{ At~ } = A ~ a / 2 L  (48) 

- (1  + e)2/35 
A ~ t 2 / 2 5  

- A ~ t l / L  

where A ~ t l  = - k ( 1  - 1)~1 (e ) )  and A~,2 = - h ( 1  - vt'(*)2). 

8 C o n c l u s i o n s  

Lack of inertial coupling between normal and tangential di- 
rections in balanced collisions leads to direct proportionality 
between normal velocity and normal impulse at the collision 
point and to interesting specific properties concerning the tan- 
gential impulse and the energy dissipated by friction. 

T a b l e  2 E n d  s l id ing  ve loc i ty  ~e) for  e = 1, e = 0 a n d  severa l  
va lues  o f  v}~ ) = ~}~) 

(0) _ _  X , , ,  (e) ~, (e) _ _  X , , t  (e) U ~ )  - ~  ~kU ~l(e)2 
e v i i  = / ~  v i i  Utl - - i W t l  

1 4td3 0.14725 0.1963# 0.0289# 
1 2# 0.46490 0.9298# 0.4323# 
1 8#/3 0.61156 1.6308# 0.9973# 

0 4#/3 0.61156 0.8154# 0.4987# 
0 2# 0.74930 1.4986# 1.1229# 
0 8#/3 0.81494 2.1732# 1.7710# 

Fig. 6 

2 

1.5 

~2 

p = 0 . 7 5  

/ 
/ 

i 

o e=O 
• e:1 

0.5 1.5 2 

Evolution of the normalized sliding velocity 0t -~ vdv. 

The analytical expression v,2 (v, 1 ) of the hodographs of vt has 
been obtained and used to develop a general and systematic 
method to integrate the equations of motion when there is not 
an "all  linear" solution--which is the case if sliding varies its 
direction and doesn't s top- -has  been presented. This method is 
based upon on a single integration relating the normal separating 
velocity v, to one of the components of the tangential velocity 
at the collision point. A convenient choice of this component 
is made in order to improve the convergence of the integral. 
From the result of this integration the remaining unknowns are 
calculated by means of algebric expressions. 
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The Effect of Water on Thermal 
Stresses in Polymer Composites 
The fundamentals of  the thermodynamic theory of  mixtures and continuum thermo- 
chemistry are reviewed for  a mixture of  water and polymer. A specific mixture which 
is mechanically elastic, where the strain states remain infinitesimal and where water 
concentration gradients are possible is considered. An expression for  the partial 
pressure of  water in the mixture is obtained from Gibbs relation based on certain 
assumptions regarding the thermodynamic state of  the water in the mixture. Along 
with a simple diffusion equation, this partial pressure expression may be used to 
simulate the thermostructural behavior of  polymer composite materials due to water 
in the free volumes of  the polymer. These equations are applied to a specific polymer 
composite material during isothermal heating conditions. The thermal stresses ob- 
tained by the application of  the theory are compared to measured results to verify 
the accuracy of  the approach. 

Introduction 
In their application as thermal protection barriers, polymer 

composite materials are subjected to severe heating conditions. 
The success of these materials as thermal protectants is contin- 
gent upon a thorough understanding of the thermostructural 
behavior so that sound design practices may he employed. Wa- 
ter and other volatiles may be entrapped in the polymer during 
curing or they may be adsorbed from the surroundings prior to 
their use. Since it is common for these volatiles to be present 
in the polymer, it is also essential to characterize how they 
will alter the thermostructural response of polymer composite 
materials. 

Over the past few years, there have been many attempts to 
model, in an explicit manner, the thermostructural response of 
phenolic resin composites as they are heated to high tempera- 
tures t . These attempts have been based on and derived from 
the porous media theory. Although some have included the 
effect of water on the thermomechanical response, the primary 
emphasis has been to simulate the effect of thermal decomposi- 
tion of the polymer on the structural behavior of the composite. 
These attempts have been successful in the sense that they have 
demonstrated the direct dependence of the transient thermome- 
chanical response on the diffusion process. The shortcoming 
with the porous media approach is the inability to accurately 
relate the stresses in the polymer chains to the chemical state 
of the volatile species. 

The present effort approaches this problem from the perspec- 
tive that the polymer and the water in its free volumes constitute 
a miscible mixture. In this study, we will review the principles 
of the thermodynamic theory of mixtures as discussed in the 
works by deGroot (1963), Guggenheim (1933), Katchalsky 
and Curran ( 1965 ), and Prigogine ( 1955 ) and apply these prin- 
ciples to a specific binary mixture of polymer and water. We 
restrict our attention to a mixture which is mechanically elastic, 
where the deformation states are assumed to remain infinitesi- 
mal and where no chemical reactions occur which would cause 
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the generation or consumption of any of the chemical species. 
Furthermore, only the water constituent is considered volatile. 

It is well established that the mechanical response of glassy 
polymers is viscoelastic at temperatures near and above the 
glass transition temperature. Therefore, an accurate high tem- 
perature mechanical model for the polymer should include vis- 
cous terms. However, our main goal here is to establish the 
contribution from water residing in the free volumes of the 
polymer to the total stress expression. For  simplicity sake, we 
will assume that the polymer behaves as an elastic solid and 
develop the total stress expression accordingly. We will leave 
the task of incorporating a viscoelastic constitutive theory into 
the present formulation as the subject of a future study. 

Through the application of mixtures principles to this specific 
problem, an expression for the partial pressure of water is devel- 
oped based upon certain assumptions regarding the thermody- 
namic state of water as it resides in the polymer free volumes. 
This partial pressure expression is a function of the partial den- 
sity of water in the mixture and the entropy of water in the 
polymer. In the final section, a simple diffusion equation and 
the partial pressure expression are employed to model the ther- 
mal stress response of carbon phenolic composite specimens 
under uniform heating conditions. The diffusion equation is 
used to determine the local partial density of water in the speci- 
men as a function of spatial location and temperature. From 
these results, the volume average partial density in the speci- 
mens is determined for each temperature. Using the volume 
average partial density and the expression for the partial stress, 
the volume average partial stress of water is calculated. Compar- 
isons are made between the calculated thermal stresses and 
measured stresses in order to exercise the theory and determine 
its accuracy. 

Review of Thermochemistry and Formulation of the 
Theory 

Description of the Mixture. Figure 1 illustrates the archi- 
tecture of a reinforced polymer composite. The sketch shows 
the reinforcing fiber bundles embedded in the polymeric resin, 
the polymer free volumes and the polymer network crosslink 
junctions 2. The enlarged view illustrates the relation between 
polymer free volumes and occupied volumes. The volume 

2 It should be noted that the polymer chains are not drawn to scale with respect 
to the reinforcing fibers. The polymer chains have been exaggerated for illustrative 
purposes. 
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occupied free volume 

Z ~ /  unoccupied 

polymer molecule 

polymer free volumes 

~ fiberbundles 

Fig. 1 Sketch showing the architecture of a polymer composite material 

which the water occupies is only a fraction of the total polymer 
free volume. The occupied volume fraction may be defined as 

g oc 
~ o c  = _ _  ( 1 )  

V' 

where V °c is the volume occupied by water molecules and V' 
is the total volume which is the sum of the volume occupied 
by polymer, that which is occupied by water and that which is 
unoccupied. 

Treating the polymer and water in the free volumes as a 
mixture, the density of this mixture p is the sum of the partial 
densities of the individual constituents, namely 

P = Pw q- Pp (2) 

where Pw and pp represent the partial density of water and poly- 
mer, respectively. Since only the water constituent is volatile 
and since no chemical reactions occur which would cause the 
generation or consumption of either of the chemical species, 
then the mass of the polymer within the mixture must remain 
constant. Furthermore, since the deformation states remain in- 
finitesimal, the density of the polymer pp remains constant. 
Thus, the density of the mixture varies only with the partial 
density of water in the mixture p,~. 

The partial density of water in the mixture may be written 
as  

p ~  = ~oocp °c (3) 

where pO,- is the density of water inside the occupied volume 
which we shall refer to as the occupational density of the water. 
Since the mass of each water molecule remains constant, the 
occupational density depends upon the volume that each water 
molecule will effectively occupy. This effective volume will 
depend primarily upon the forces which exist between the water 
molecules and the polymer molecule since these forces restrict 
the motion of the water molecules in the free volumes 3. 

We will assume as a primary postulate that the forces which 
exist between the polymer molecules and the water molecules 
are such that the occupational density of water may be approxi- 
mated by the density of pure, condensed water which we denote 
by pO. Equation (3) may now be rewritten as qo °c = pwlp ° and 
it becomes obvious that the occupied volume fraction represents 
the ratio of the density of water in the mixture to the density 
of pure, condensed water. We may now think of the occupied 
volume fraction as defining the mass concentration of water in 
the mixture in addition to being a volume ratio. 

3 Other factors which may determine this volume include the space available 
in the free volumes, the temperature and the forces which exist between the water 
molecules themselves as they reside in the free volumes. 

Since condensed water is nearly incompressible and doesn't 
vary considerably upon heating, variations in the partial density 
of water in the mixture are due only to variations in ~o °C. For 
homogeneous mixtures, ~o °c is a function of the affinity for 
storage of water in the polymer, the relative humidity of the 
surroundings and the temperature of the system. For nonequilib- 
rium or transient conditions, the occupied volume fraction is a 
function of the spatial coordinates as well as the time coordinate. 
The variation of the local occupied volume fraction within the 
mixture is dependent upon the process of diffusion of water 
molecules through the polymer. 

Conservation Laws for a Binary Mixture in a Continuous 
System. Let us consider a miscible mixture of polymer and 
water occupying some arbitrary volume. Within this volume, 
the temperature, stress and partial density of the water may be 
continuous functions of the spatial coordinates Xi and the time 
variable t. The conservation laws which govern the variation 
of the temperature, stress and partial density inside this mixture 
are the conservation of energy, force equilibrium and the conser- 
vation of water mass, respectively. Following the usual ap- 
proach in continuum mechanics, the conservation laws are writ- 
ten for the entire volume in the form of volume integrals using 
Gauss' theorem (Chung, 1988 and Fung, 1965). The local form 
of these laws are then extracted from the volume integrals. 

For the binary mixture of polymer and water with water 
concentration and temperature gradients present, the local form 
of the conservation laws are written 

Conservation of Water Mass: 

P w+ div]w = 0; (4) 

Force Equilibrium: 

div O" = 0; ~(5) 

Conservation of Energy: 

pu = tr (O'.~) - div Jq + pr; (6) 

where/) w is the local time derivative of the partial density of 
water, ~ is the Cauchy stress tensor for the mixture, /t is the 
time derivative of the specific internal energy, ~ is the time 
derivative of the infinitesimal strain tensor, and r is the heat 
supplied per unit mass. The vectors Jw and ]q are the water 
mass flux and heat flux vectors, respectively. In Eq. (5), body 
forces have been ignored. 

The local entropy balance equation is (Coleman and Gurtin, 
1967; Katchalsky and Curran, 1965) 
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p~ + div j ,  = a + p-f- (7) 
T 

where A, is the local time derivative of the entropy of the mixture 
per unit mass, Js is the entropy flux vector, a is the local rate 
of entropy production, and T is the absolute temperature. 

Since we have assumed an elastic mixture, there are no irre- 
versible effects due to the viscosity of the polymer; the entropy 
flow and entropy production are due only to the heat and mass 
flows. The entropy flow vector J., is 

]s ~q -- #wJw (8a) 
T 

and the local entropy production rate a is given by (Katchalsky 
and Curran, 1965) 

= ]~.~ + j , , , . % ~ .  (8b) 

In Eq. (8a), #w is the chemical potential of the water in the 
mixture. The vectors Xq and Xw are the forces responsible for 
the heat and mass fluxes, respectively. Mathematically, they are 
written Xq = grad ( l / T )  and ~ = grad ( - # w / T ) .  

Claussius-Duhem Inequality, The local form of the sec- 
ond law of thermodynamics is known as the Claussius-Duhem 
inequality and it states that the local rate of entropy production 
for any admissible thermodynamic process must be non-nega- 
tive (Coleman and Gurtin, 1967). Therefore, for the two simul- 
taneous irreversible processes, there is the restriction that 

Jq°Xq -1- J,v °Xw ~ O. (9) 

For a continuous system where heat and mass fluxes occur 
simultaneously, the simplest relation between the flux vectors 
Jq and Jw and their corresponding force vectors Xq and X,~ are 
the linear relations 

jq = LqqXq + LqwXw ]w = LwqXq + Lww~w (10) 

where L~j is the set of arbitrary constitutive coefficients known 
as the phenomenological coefficients The Claussius-Duhem in- 
equality imposes the restriction on the matrix of constitutive 
coefficients L~j that the determinant must be non-negative, I L0 ] 
~- 0. Furthermore, Onsager (1931) established that Lij = Lji, i 

2 ~= j ,  giving for the present case that LaqLww ~ Lqw. 

Isothermal Conditions. Under isothermal conditions, the 
second expression in Eq. (10) reduces to 

Jw = -L'~"--L grad #w. ( 11 ) 
T 

Choosing the variables ~, T and Pw as independent, the chemical 
potential may be written as a function of these variables, namely 
tz~ = I.~w (e ,  T, Pw). However, if the strain tensor has a negligible 
effect on the chemical potential, then, for an isothermal body, 
Eq. (11) takes a form similar to Fick's law which is 

]w = - D  grad Pw. (12) 

In (12), D is the diffusivity coefficient and is a fnnction of 
temperature. 

Substituting Eq. (12) into Eq. (4), we obtain the familiar 
equation for the diffusion of moisture through an isothermal 
body which is nondeformable or one where the deformation 
states do not affect the chemical state. This is 

Pw - div (D grad Pw) = 0. (13) 

The choice of (13) as the equation which governs the diffu- 
sion of water through the polymer implies that the diffusion 
process is independent of the pressure. This is not strictly so as 
a general rule. However, we will show in what follows that this 
simplifying assumption is sufficient for the present application. 

The partial density of water is therefore assumed to be indepen- 
dent of pressure and the forces which drive the diffusion of 
water are due solely to the concentration gradients which exist 
within the polymer/water mixture. 

A Simple Thermnmeehanieal Model. In order to develop 
an expression for the total stress at each spatial location in the 
mixture, we consider the mechanical analog shown in Fig. 2 
which consists of a spring in a parallel arrangement with a 
piston and cylinder device. The spring represents the collective 
stiffness of the polymer network as well as any additional stiff- 
ness provided by reinforcing fibers. The cylinder contains a 
mixture of water and the nonvolatile polymer with a mass con- 
centration of water defined by Pw. 

Since we have assumed a miscible mixture, the force in the 
piston and the force in the spring act over the same area 4. The 
total stress of the mixture is therefore the sum of these forces 
divided by the infinitesimal area. Mathematically, this is simply 

O '=  O "p+ 6 "~ (14) 

where gr p is the partial stress tensor of the polymer and gr w is 
the partial stress tensor for the water. 

In the most general sense, the partial stresses are functions 
of the independent variables ~, T and pw. The differential of 
the partial stress of the polymer can be expanded in terms of 
these independent variables as 

L Oe JT,p,~ OT Ji~,p.. L Opw JT,~ 

(15) 

where the subscripts on the brackets indicate differentiation 
with those variables held constant. In the model of Fig. 2, the 
force in the spring is independent of the density of water in the 
cylinder when temperature and strain are held constant. Thus, 
the expression for the polymer partial stress increment, Eq. 
(15), reduces to 

d # "  L - ~ - J r p ,  w d~ + [ OT J~,Pw dT. (16) 

Recognizingthe first term in brackets as the fourth-order stiff- 
ness tensor C p and the second term as the negative product of 
the stiffness tensor and the tensor of thermal expansion coeffi- 
cients tiP, Eq. (16) may be written 

dO "p = (2 t, d~ - (2P[I"dT. (17) 

An Expression for the Partial Pressure of Water in the 
Mixture. In arriving at Eq. (13), we assumed that the chemi- 
cal state of the water in the mixture is independent of the strain 
state. Similarly, we now neglect the effect of strain on the partial 
stress of water. Therefore, in general terms, ~r w = drW(T, Pw). 
The partial stress of water is related to the partial pressure of 
water P,v by ~w = -IPw where T is the identity tensor. In 
view of these relations, the differential increment in the partial 
pressure of the water may be written as 

dPw l--~-jpwdT+ L ~ j  apw. (18) 
In order to determine the first term on the right-hand side of 

Eq. (18), we will assume that processes that occur under con- 

4 We follow the traditional approach in solid mechanics where the Cauchy 
stresses are defined as the internal forces acting over an infinitesimal area. This 
area is assumed much larger than the atomic dimensions, so the forces in the 
lattice network are assumed to be evenly distributed over the infinitesimal area. 
Therefore, in the present case, the partial stress of the polymer is the force in the 
polymer network evenly distributed over the total or bulk area of the mixture and 
the partial stress of the water is the force exerted by the water in the free volumes 
evenly distributed over the bulk area. 
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~p 

I 

Fig. 2 Sketch of the mechanical analog 

stant composition conditions also occur under the condition 
that the chemical potential of the water in the mixture remains 
constant. Gibbs expression for constant composition conditions 
is (Guggenheim, 1933) 

d#~ = V~dP - SwdT (19) 

where Vw is the partial volume of water in the mixture and S~ 
is the partial entropy. Setting the differential increment in the 
chemical potential equal to zero and noting that the partial 
volume is the inverse of the partial density, we obtain 

( OPw ~ = --~- j,,,~ pwSw. 

The differential in the second term in (18) will be a function 
of temperature. In order to determine its variation with tempera- 
ture we invoke Maxwell 's reciprocal relation between the partial 
pressure and the variables T and p~. That is 

OZP~ 02Pw 
= ~ (21)  

OTOp~ Op~OT " 

Substituting (20) into (21), we obtain 

02pw O 
- -  = (pwS~) = S~. (22) 
OTOp~ Op~ 

Integrating (22) with respect to temperature yields 

f 
T 

[ Op~ Jr  ro 

where Ro relates variations in the partial pressure to variations 
in the partial density at constant temperature To. 

Substituting (20) and (23) into (18) and upon performing 
the integration, we obtain 

p~ = p o + p~,S~dT + SwdT ~ + Rodp., 
ro po po 

where P~ is the partial pressure at temperature To and water 
concentration p ; .  Integrating the first integral term in (24) by 
parts yields two terms one of which cancels with the second 
integral in (24). Equation (24) then reduces to 

T fPw 
Pw = P~ + P~ SwdT + Rodpw. 

r,, p~; 

Substituting the partial entropy of water in the mixture with 
the specific entropy of pure, condensed water Sw and neglecting 
the term involving Ro, Eq. (25) becomes 

5 Pw = P~ + p,v swdr.  (26) 
7; 

The partial entropy of water in the mixture is replaced by the 
specific entropy of pure, condensed water for the same reason 
that the occupational density was replaced by the density of 
pure, condensed water. 

Using (26), the expression for the partial stress tensor of 
water is 

J7 ~ . . . .  = ~o  - tpw swdr  (27) 
L, 

where &~' = - [ P ~ .  
Integrating Eq. (17) and combining with (27), the total stress 

expression is 

& = &o + CPd~ - C e f i P d T -  Ipw swdT (28) 
~o To 

where t o  is the initial total stress at temperature To and strain 
state ~o. 

D e m o n s t r a t i o n  a n d  V e r i f i c a t i o n  o f  t h e  T h e o r y  

Test Description. We will now apply the principles and 
equations which have been established in the previous section 
to simulate the effect of water in the free volumes on the thermo- 
mechanical response of a specific polymer composite material 

(20) under a specific set of heating conditions. The material which 
is chosen for this simulation is carbon phenolic. Carbon pheno- 
lic is a general class of laminated, composite materials which 
are constructed with carbon fabric which has been impregnated 
with a phenolic resin. 

We will simulate the conditions imposed during the tests 
reported in Hubbert (1989) where cylindrical specimens made 
of FM5055 carbon phenolic were heated uniformily at a con- 
stant rate of 5.5 °C/see. The specimens were 1.27 cm in diame- 
ter and 2.54 cm in length and were fabricated such that the 
direction transverse to the fabric plane was aligned with the 
axial direction of the specimen (Fig. 3). As the specimens were 
heated, the stress required to maintain zero strain in the axial 
direction was measured as a function of temperature. The oven 
chamber in which the specimens were heated was maintained 
at zero percent relative humidity. 

In Fig. 4, the measured restraining stress is plotted versus 
temperature. The results are shown for specimens with three 
different initial moisture contents. The amount of water in the 

(23) specimens has two effects on the measured thermal stresses. 
The most obvious effect is that the magnitude of the restraining 
stress is proportional to the initial moisture content in the speci- 

lltlllll 
( 2 5 )  Fig. 3 Sketch of the carbon phenolic specimens end heating conditions 

imposed during the tests by Hubbert (1989) 

176 t Vol. 63, MARCH 1996 Transact ions  of the  A S M E  

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



100. 

~,1 m.~..= ,.,.,. ~ . ,  [ 

~ 8O 

'E 

1 

~ 20 

8% Initild M O I S ~ e ~  

100 200 300 400 500 

Temperature (C) 

Fig. 4 Plot of the measured restraining stresses versus temperature for three 
different initial moisture conditions 

men. In addition, water is known to lower the glass transition 
temperature in glassy polymers (Meares, 1965). For carbon 
phenolic, this effect is illustrated in Fig, 4 where we have identi- 
fied the approximate glass transition temperatures for the zero 
percent and four percent moisture conditions. The glass transi- 
tion temperature for the eight percent initial moisture specimen 
is more difficult to identify since, in this case, the partial stress 
of water becomes more significant and obscures the glass transi- 
tion effect on the measured stress. 

Analysis Approach.  Since the specimens were heated uni- 
formily, the temperature is independent of the spatial coordi- 
nates. Furthermore, we will assume that the response of the 
specimens is axisymmetric with symmetry about the r-z plane 
and that the diffusion of water occurs only in the radial direction 
(Fig. 3). The variables dr and pw are therefore independent of 
0. We will also assume that these variables are independent of 
z so that dr = dr (r ,  t) and pw = pw(r, t). 

The axisymmetric, one-dimensional form of Eq. (13), with 
diffusion in only the radial direction, is 

P., - - rD~ = 0 (29) 
F 

where Dr is the diffusivity of water in the radial direction. The 
boundary and initial conditions which are imposed are 

pw(a, t) = 0 and p,~(r, O) = pw,, 

respectively, where a is the radial dimension of the specimen 
and p~, is the initial partial density of water in the specimen. 
The initial partial density is estimated as the product of the 
initial moisture content and the dry density of the composite. 
In the case of carbon phenolic, we'll  approximate the dry density 
as 1.5 g/cc. 

In Fig. 5, the diffusivity of FM5055 carbon phenolic in the 
direction parallel to the fabric plane is plotted versus tempera- 
ture. The hollow circles represent measurements made by 
Stokes (1990). The solid line represents the diffusivity versus 
temperature description which will be used for this simulation. 
It was obtained by a linear fit through the measured data points. 

The diffusion equation is solved numerically under the im- 
posed boundary and initial conditions using the finite element 
method. The Galerkin weighted residual method was used to 
cast the diffusion equation into a matrix equation which is nec- 
essary for the numerical solution s. Linearone-dimensional ele- 

5A detailed discussion of the method is given in Zienkiewicz (1977) and 
Segerlind (1984). 

ments were used to discretize the domain of the problem and 
to implement the finite element method. 

Results. Figures 6 (a )  and 6(b)  are plots of the calculated 
partial density of water versus radial location at various temper- 
atures obtained from the numerical solution of Eq. (29). Figure 
6 (a )  shows the partial density for the four percent moisture 
specimen and 6 (b) shows the values for the eight percent mois- 
ture specimen. In both cases, the partial density is initially uni- 
form. As time and temperature increase, the diffusivity increases 
according to the model in Fig. 5. Driven by the density gradient, 
the radial diffusion of water begins to occur to a noticable extent 
at temperatures above 350°C when the diffusivity has reached a 
sufficient value. Diffusion continues until approximately 475°C 
when, as the numerical results indicate, there is very little water 
left in the specimens and therefore the density gradients at all 
spatial locations approach zero. 

The volume average partial density of water is given by p,  
= fpwdV/V.  For this specific problem, where the partial density 
is only a function of time and the radial coordinate and where 
the time variable is related to the temperature variable by a 
constant, the volume average partial density may be written 
specifically as 

_ _  

Pw ( T )  = ~3 pw(r, T )  rdr. (30) 

The volume average partial density in the specimen was calcu- 
lated using Eq. (30) and the numerical results of Figs. 6. The 

-10' 

-20' 

5 

-30 , . . . . . , . . . 
100 200 300 400 500 600 

Temperature (e l  

Fig. 5 Plot of the moisture diffusivity versus temperature in the direction 
parallel to the fabric plane 
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Fig. 6 Partial densi ty  of water as a function of radial location for various 
temperatures 

average densities are plotted for the two initial moisture condi- 
tions in Fig. 7. 

We may approximate the volume average partial pressure of 
water in the specimen using the volume average densities of 

Q 

r~ 
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Fig. 7 Volume average partial density of water as a function of tempera- 
ture for the two initial moisture conditions 

Fig. 7 and the expression for the partial pressure given in Eq. 
(26). The numerical values for sw are obtained from Keenan, 
et al. (1969). The variation of s~ with temperature is specified 
by the path along the liquid portion of the saturation curve 
(Kestin, 1966). In Fig. 8, the average partial pressure is plotted 
versus temperature for the two initial moisture conditions. From 
room temperature to 350°C, the partial pressure increases with 
temperature since the partial density remains constant and since 
the specific entropy is a positive function of the temperature. 
The increase in the partial pressure with temperature is governed 
by the integral term in Eq. (26). As the diffusion of water 
occurs above 350°C, the partial pressure drops with the drop in 
partial density and falls to zero when the partial density falls 
to zero. At all temperatures, the partial pressure of water for 
the eight percent initial moisture case is twice that of the four 
percent initial moisture case. 

The present approach may be verified by comparing the total 
stress given by Eq. (28) to the total stress measured by Hubbert 
for both the four percent and eight percent conditions. We may 
rewrite Eq. (28) as 

dr = ~'? + gr~' - I,o~ s ~ d T  (31) 
ro 

dr p = ePo + C P d ~  - C P ~ P d T  
~o To 

where 

(32) 

and where ~'Po is the initial partial stress of the polymer. Setting 
@~ equal to zero, the total stress component in the axial direc- 
tion, according to equation (31), is 

crzz = crfz - s , . d T  (33) 
o 

where we have replaced the partial density with the volume 
average partial density. 

The measured restraining stress for the zero percent water 
condition shown in Fig. 4 is a direct measurement of the poly- 
mer partial stress component cr{~. The second term on the right- 
hand side of Eq. (33) is the volume average partial pressure 
which has been plotted in Fig. 8 for the two moisture conditions. 
Superimposing the measured restraining stress profile for the 
zero percent condition with the two pressure profiles of Fig. 8, 
the total stress profiles for the four percent and eight percent 
moisture conditions may be determined. These are plotted in 
Fig. 9 along with the measured values. 

There are slight discrepancies between the calculated and the 
measured total stresses near the glass transition temperature. 
This results from simply superimposing the two profiles to- 

5 .  :I 
:i 

8% Initial ~ 

100 200 300 400 500 600 

T e m p e r a t u r e  (C) 

Fig. 8 Volume average partial pressure of water as a function of temper- 
ature for the two initial moisture conditions 
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Fig. 9 Measured and calculated restraining stress in the axial direction 
plotted versus temperature for the two initial moisture conditions 

gether. The polymer partial stress profiles have not been ad- 
justed to account for the effect of moisture content on the glass 
transition behavior of the polymer. In spite of these slight dis- 
crepencies, the measured and calculated total stress profiles 
compare quite well for both moisture conditions. 

Discussion and Conclusions 
From the framework of continuum thermochemistry and the 

thermodynamics of mixtures, we have developed an analytical 
approach for modeling the transient thermomechanical response 
of polymer composite materials which are influenced by the 
presence of water in the free volumes of the polymer. An equa- 
tion for the partial pressure of water has been obtained and has 
been applied along with a diffusion equation to model the time 
and temperature-dependent thermal stresses in carbon phenolic 
composite specimens under isothermal heating conditions. The 
numerical results obtained from this method compare quite well 
with the measured response. 

In calculating the partial pressure of water in the mixture, we 
assumed that the thermodynamic state of the water in the free 
volumes of the polymer could be approximated by the thermo- 
dynamic state of condensed water. The fact that the numerical 
results were consistent with the measured effect of water vali- 
dates this assumption. This approach is in contrast to previous 
analytical techniques which treat the escaping volatiles as being 
in the gaseous state. 

The diffusivity model which was used for this simulation has 
been extrapolated from measurements made at lower tempera- 
tures. The accuracy of the diffusivity model at higher tempera- 
tures cannot be fully verified in this problem since the specimens 
failed before the total stress measurements could indicate when 
the exodus of moisture occurs. The diffusivity model is verified, 
in part, since the exodus of moisture must occur at temperatures 
higher than the failure point and since the partial pressures 
calculated with this diffusivity model are consistent with this 
observation. 
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Steady Motions 
of a Drawn Cable 
The steady motions of  nonlinearly elastic and inextensible strings which are being 
drawn between two fixed points and are subject to a gravitational load are examined. 
It is shown that, dependent on the boundary conditions, constitutive equations and a 
reference drawing speed, multiple co-existant steady motions are possible in certain 
situations. Using a variational method, stability criteria are also established for  some 
of  these motions. 

1 Introduction 

This paper examines the steady motions of a string which is 
being drawn between two fixed points. While undergoing these 
motions the string is assumed to be under the influence of a 
gravitational force (cf. Fig. l ( c ) ) .  This system forms an im- 
portant component of many industrial processes, in particular 
in the textile industry. To accommodate as large a variety of 
materials as possible, both nonlinearly elastic and inextensible 
strings will be considered. For certain boundary conditions, a 
reference drawing speed c and the constitutive relations for 
the string, the existence of multiple steady motions will be 
established. These steady motions are conveniently classified 
as convex and concave. The former are similar in appearance to 
the classical catenary, while the latter are similar to the inverted 
catenary. Nonlinear stability results are also established for cer- 
tain convex steady motions. 

Before presenting an outline of this paper, it is appropriate 
to discuss a selection of recent work on this system. Briefly, 
this work has focused primarily on an examination of the linear 
stability of steady motions of elastic and inextensible strings. 
It was necessary to obtain an explicit analytical expression for 
the configuration of the string undergoing the steady motion of 
interest. The difficulty of this endeavor has necessitated the 
introduction of various simplifying assumptions. For inextensi- 
ble strings under symmetric boundary conditions, Simpson 
(1972, cf. Section 6 in particular) established the surprising 
result that the convex steady motion is (linearly) stable for 
all c. Perkins and Mote (1987, cf. Section 5.3 in particular) 
established a similar result for a particular class of elastic cables. 
In a subsequent paper, Perkins and Mote (1989) demonstrated 
experimentally the existence of a concave steady motion and 
the manner by which this steady motion stabilizes. O'Reilly 
and Varadi (1995) examined certain qualitative features of the 
steady motions for various nonlinearly elastic strings as c was 
varied. All of these works assume a unique convex and (where 
appropriate) a unique concave steady motion. The present work 
significantly extends certain aspects of these earlier works by 
demonstrating a far larger variety of possible steady motions 
and in some cases establishing their stability. The latter results 
rely only on easily obtained estimates and not on a precise 
expression for the deformed shape of the string. Our analysis 
is also trivially applicable to the threadline problem--where  
the gravitational force is neglected. 
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The following section of this paper discuss the convenient 
formulation of the equations governing the motion of the string 
with respect to a suitably chosen intermediate configuration. 
The various constitutive equations are also discussed there. Sec- 
tion 3 discusses two functionals which are used later to establish 
the stability results. The stability criteria for elastic and inexten- 
sible strings are developed in Section 4 using a variational 
method and rely on the conservation of the two aforementioned 
functionals. The required restrictions limit the applicability of 
the stability results obtained. Variants of the method we employ 
may be found in the fluids literature (cf. Abarbanel, Holm, 
Marsden, and Ratiu (1986) for further references) and in a 
paper by Healey (1990) where it was used to investigate the 
stability of rotating circular loops of string. It should be noted 
that our stability criteria lack the validation of existence results 
for dynamic solutions of the partial differential equations gov- 
erning the motion of the string. Unfortunately, these results 
appear to be currently unavailable. 

A method for determining the steady motions of the string 
is presented in Section 5. This section exploits an observation 
dating to Routh (1882, Section 524) that the boundary value 
problem for steady motions, when formulated with respect to the 
variables of an appropriately chosen intermediate configuration, 
correspond to the equilibrium conditions for the stationary string 
under a vertical gravitational load. This allows us, after some 
modifications, to use earlier work by Antman (1979) and 
Dickey (1969 and 1976) on the stationary string subject to a 
gravitational load. Their results, and Antman's in particular, are 
used extensively in preparation for the remaining two sections 
of this paper. 

In Section 6 it will be shown how to determine all the steady 
motions of the string. As will become apparent, the task of 
determining all of these motions is nontrivial and will not be 
attempted here. Instead, results pertaining to the qualitative na- 
ture of these motions will be obtained. These results show that 
the nature of the deformation present in some of these steady 
motions are quite distinct from those recorded in the literature. 
In addition, several specific cases will be given additional con- 
sideration. These include convex steady motions of stiffnonlin- 
early elastic strings. It will be established for this case that such 
motions are unique, exist for all c and, provided symmetric 
boundary conditions are considered, are always nonlinearly sta- 
ble. The case of a linearly elastic string is also considered. 
However, for stiff strings the stretch will become unbounded 
for sufficiently large c and the validity of their assumed stiffness 
becomes questionable. A brief discussion of the more physically 
reasonable soft string is included to address this issue. The 
concluding section (Section 7) of the paper addresses inextensi- 
ble strings. For these types of strings the existence and unique- 
ness result for both convex and concave steady motions is estab- 
lished. After suitably restricting the boundary conditions, non- 
linear stability of the convex motion is also established. It 
remains to remark that the stability criteria developed here are 
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Fig. 1 The configurations of the string: (a) reference, (b) intermediate, 
and (c) deformed 

inconclusive for all the concave steady motions. As a conse- 
quence, the results developed there cannot be used to demon- 
strate the stabilization of any concave steady motion. 

2 C o n f i g u r a t i o n s  a n d  B a l a n c e  L a w s  o f  t h e  S t r i n g  

The string in this paper is modeled as a one-dimensional 
material curve £ which is embedded in ~3,  and whose material 
points are uniquely specified by a (convected) coordinate 0. 
The reference configuration of t '  is assumed to be undeformed 
and to occupy a straight curve C'. We denote the space curve 
occupied by £ in the deformed configuration by (.. The location 
of a material point in the reference and deformed configurations 
of the string are determined by the vector valued functions R 
= R(0)  and r = r(O, t ) ,  respectively. In the later sections of 
this paper interest is focused on steady motions of strings and 
it is convenient to reformulate the boundary value problem 
in terms of an intermediate configuration. We provide a rapid 
summary of this configuration here and refer the reader to O'Re- 
illy and Varadi (1995) for further details (cf. also Antman and 
Reeken, 1987). 

The motion r = r(O, t) is decomposed into two motions: r(O, 
t) = r2(rl (0, t ) ,  t ) ,  where r~ (0, t) represents a rigid translational 
motion of speed c of the (undeformed) reference configuration 
along the 0 coordinate direction: r~(O, t) = (0  + c t ) O R / O 0 .  
The resulting configuration of £ is known as the intermediate 
configuration (cf. Fig. 1 ). The material points of this configura- 
tion are identified by the coordinate ~ = 0 + c t. Consequently 
the intermediate formulation of the motion r2 is given by P2(~, 
t). The steady motions of the string which are of interest in 
this paper then correspond to r(O, t) = r2(~). In the sequel the 
string will be assumed to be drawn between an inlet and an 
outlet. The position vectors of these two points are denoted 
• ~, and ~o,,, respectively, and the parameter E represents the 
constant length of the intermediate configuration between these 
two points. 

The local form of the balance laws which are assumed to 
hold at any point 0 of £ are now provided. These may, be 
obtained from the directed theory of rods after suitable restric- 
tions have been employed (cf. Naghdi (1982) and references 

therein). The referential formulation of mass conservation for 
g is 

po(O) = k(O, t )p(O, t ) ,  (1) 

where the stretch k(0, t) = ~[(Or/OO).(Or/O0) and O(0, t) is 
the mass per unit length of o. This balance law is supplemented 
by the referential formulations of balance of linear momentum, 

On 
- -  + p o f  = po*, ( 2 )  
O0 

and balance of angular momentum, 

Or 
- -  X n = O, ( 3 )  
O0 

v = t" = v(O, t) is the velocity vector, f = f(O, t) is the body 
force per unit mass, n = n(O, t) is the (contact) force and the 
superposed dot denotes material time derivative. It is convenient 
at this point to record the conservation law of energy in the 
form 

d 02(½v.v + e)pdg= f 'vpdg+ (n.v)g~, (4) 
dt , 1 

where d~--- Xd0, e = e(0, t) is the internal energy per unit mass 
and the symbol ( g ( O , t ) ) o° ~ is used to denote g ( 02 , t) - g ( 01, t ) . 

The constitutive relations for n are determined using standard 
methods. A discussion of these methods may be found in 
Naghdi (1982, Sections 10-12). For elastic strings, c = A = 
A ( k ,  0) ,  where A is the free energy, and consequently, 

1 0 A  Or 
n = po k ak  O0 (5) 

For inextensible strings, the constraint of inextensibility (i.e., 
k(0, t) = 1) is imposed and ~ is assumed to be 0. For this case 
n is specified by the constitutive relation 

Or 
n = m -  ( 6 )  

00 

where m = m(O, t) is often identified as a Lagrange multiplier. 
We note that the constitutive relations (5) or (6) identically 
satisfy balance of angular momentum (3), and this balance law 
is not considered further. 

For future purposes the Helmholtz free energy A = A (k, 0), 
is assumed to have the following functional behavior (cf. Figs. 
2 ,3) ,  

0A 0Z {:} (O} 
- ~  -- 0, ~-~ ~ as X ~  

OZA 
and > 0, (7) 

0k 2 

and A ( . ,  0) ~ C 2 ((0, ~ ), ~'3. In preparation for the discussion 
of Sections 4 and 6, it is convenient to define certain classifica- 
tions of the constitutive relation A(k).  A string is locally s t i f f  
if 

OZA 1 0 A  
0x ---z > ~ 0--~ vx ~ (Xl, x2), (8) 

otherwise the string is locally soft. If (kl, k2) = (0, ~ )  then, 
following Healey (1990, Defn. 4.2) and with the assistance of 
(7)2.3 the string is said to be stiff, otherwise it is soft. Further 
classifications of strings are possible by relaxing (7)3; however, 
this is beyond the needs of the present purposes. 

The intermediate formulation of the balance and conservation 
laws can be obtained from their respective referential formula- 
tions ( 1 ) - ( 4 )  by changing the functional dependence of the 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 181 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



variables and by suitable modification of the integration limits 
of (4).  These transformations are greatly facilitated by noting 
the equivalence of the partial derivatives, c)g(O, t)/O0 = Og(~ 

- ct, t)/O~ = O~(G t)/O~ and by the undeformed state of 
the intermediate configuration. In the sequel, the intermediate 
formulation will be used exclusively. For convenience the 
^ 's employed earlier will be dropped and P2(G t) will be de- 
noted by r (G  t). The remaining nontrivial balance law is the 
intermediate formulation of the balance of linear momentum 
(from (2)) :  

O n  
Pof + - -  a~ 

( 02r(~' t) 02r(G t ) )  0 2 r ( ~ ,  t )  c2  + 2 - - c  + ~ . 
= I0° O~ 2 O~Ot Ot 2 

(9) 

This equation is supplemented by the boundary conditions, 

r ( ~ = 0 ,  t ) =  @~.=0, 

r (~  = E, t) = ~out = aEl + bE2, (10) 

the appropriate consitutive relations (5) or (6),  and possibly 
the constraint k = 1. 

Henceforth it is assumed that Po and A are independent of 0, 
and f is constant (i.e., the string is homogeneous). The steady 
motions of the string of interest are of the functional form r = 
r (  G t) = r (~) .  For these motions, (9) simplifies considerably: 

Pof + ~ (n - poCV) = 0, (11) 

where v = v(~) = c(Or/O~). As remarked by Routh (1882, 
Section 524), for inextensible strings the equations for the 
boundary value problem (10) - ( 11 ) are identical to those for 
a stationary string, provided one considers n - pocv as an 
effective force (cf. also Love (1897, Sections 270-271), and 
Lamb (1929, Section 50)). This observation has recently been 
used by Healey and Papadopoulos (1990) to construct steady 
axial motions of both nonlinearly elastic and inextensible strings 

(a) 

• ¢2  

(b) L OB' 1 =- po--~ [ 

c=0 T 

Fig. 2 The dependence of the functions (a) C(h,  c) and (b) L(T, c) for 
a stiff string on c. Note that OA/Ok = C(k, c = 0). 

(a) 
0A' 

C = po-~ 

J c = 0  

(b) 

3B' 
L =- po - -~  

i . 

T 

Fig. 3 The dependence of the functions (a) C(~., c) and (b) L(T, c) for 
a sof t  str ing on c.  Note that  OA/Ok = C(k,  c = 0). 

when f = 0. In Section 5 of this paper Routh's observation will 
also prove to be valuable. 

3 Conserved Quantities 
Using the energy conservation law (4),  a Lagrangian 2' and 

its Lagrangian density ~ may be defined 

f f; Z = ~:d~ = (½v'v - e + f'r)pod~. (12) 

With the assistance of a Legendre transformation, the corre- 
sponding Hamiltonian 3f and its density 7f are obtained from 
(12): 

f? f? ;7C = ,~d~ = po(½v'v + e - f ' r ) d G  (13) 

where the canonical variables are ( r ,  p = pov). We refrain 
from writing the variable p explicitly in what follows as it does 
not form an essential part of the work. 

The kinematical quantity F and its density F which play a 
crucial role in the subsequent analysis are defined as 

F = Fd~ = v . ~  pod~. (14) 

The quantity F/po is related to a quantity which is known in 
fluid dynamics, after Kelvin, as theflow (cf. Lamb (1932, Sec- 
tion 31 ) and Casey and Naghdi ( 1991 )).1 

The conditions under which 3~ and F are conserved are of 
interest in the next section of this paper. For elastic and inexten- 
sible strings, from (4) and (13) it is follows that 

d J( 
- -  = ( n . v ) L  (15) 
dt 

Note added (21 Nov. 1994): After an earlier version of this paper was submit- 
ted for publication, Prof. T. J. Healey informed me that he and Prof. J. H. 
Maddocks had obtained a conservation law for the quantity described by (14).  
However, 1 had not seen their work, which has since appeared in J. H. Maddocks 
and D. J. Dichmann, 1994, "Conservation Laws in the Dynamics of Rods," 
Journal of Elasticity, Vol. 34, pp. 83-96.  The latter paper references a forthcom- 
ing related paper by Healey (which 1 have not yet seen). 
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The material derivative of F for homogeneous elastic strings 
under a constant body force is 

dt Po v v + f ' r + k O A - A  , - -  : • 

OX 
(16) 

where (29, (5) and an integration by parts were used in the 
calculation. The corresponding result for inextensible strings 
(cf. (6) and (7)) is 

d F =  (½PoV'V + po f ' r  + m(~ ) )~ .  (17) 
dt 

The relations (15) - (17) provide the boundary restrictions 
which are sufficient for the conservation of J(. and F. We also 
summarize them here for future reference, 

( v . v ) ~  = O , ( n . v ) ~  = 0, 

( f . r )~  = 0, h(0, t) = X(E, t). (18) 

These conditions will severely restrict the steady motions whose 
stability can be determined using the methods described in the 
next section of this paper. Anticipating the results of Sections 
6 and 7, they imply that the stability criteria can only be applied 
when the inlet and outlet have the same height (i.e., b = 0). 
The steady motions in this case are symmetric, 

4 Stabil i ty Cr i t e r ia  for Elastic and Inextensible  
Strings 

We now address the establishment of stability criteria. In the 
interests of brevity only the elastic case will be completely 
discussed. The corresponding result for inextensible strings will 
be presented at the end of this section, along with a brief descrip- 
tion of how the result may be obtained. For elastic strings, using 
(13) and (14) the following functional is defined: 

f; 1 ~(ce(r, v, #) = Po v ' v  + A - f . r  d~ 

(y? Or ) 
- U p o V . - ~ d ~ -  ro , (19) 

where # is a constant Lagrange multiplier and Fo represents the 
value of F for the steady motion of interest. The following norm 
is defined for the linear space (r,  v): 

lir, vllMe = max IIr(G t)ll 
(e l  

Or((, t) I + max + max IIv(~, t)l[, (20) 
(eI 0 ~  ~CI 

where I = [0, E]. From the differentiability of A, it may be 
shown using standard methods that 7Cc~ is a continuous function 
of (r,  v) with respect to this norm (cf, e.g., Troutman (1983, 
Chapter 5)). Admissible variations of r and v will be consid- 
ered, i.e., r ~ r + aa,  v --, v + o~b, where (a, b) ~ 1): 

It should be noted that there will be additional restrictions on 
the boundary values of a(( ,  t) which arise from the need to 
preserve 3t and F (cf. (18)). These additional restrictions play 
no role in what follows and are not discussed any further. 

To proceed the first Gfifiteaux variation 2 of fftCl with respect 
to a is calculated and evaluated at a = 0: 

= d3tce = + f ] '~c~ "-~--o=o fo'=[5~(~ aA-~ #V) "a 

+ v -  i.z . bpod~ .  (22) 

We note that in calculating (22) a standard integration by parts 
has been performed. From (22) and with the assistance of (5) 
and ( 11 ), it follows after setting # = c that if (r, v) corresponds 
to a steady motion of the string then ~%c~ has an extremum (i.e., 
6.7~cE = 0). The extremum (r (~), v (~), # = c) of J(ce is 
henceforth denoted (r~, v~,/zs). 

To establish the stability result, consider 7feE(re + a(G t), 
v~ + b( G t)) - J(ce(r, ,  vD where (a, b) E # and (r,  v) = 
(r~ + a, v~ + b) is a solution of the boundary value problem. 
Using Taylor's theorem, (21)- (22)  and provided Ila, bllMe is 
sufficiently small, then there exists a real number aJ (0 < 0v < 
1) such that 

17icE(re + a (L  t), v, + b(~, t)) - JtcE(r.  vDI 

= ½162~Tt:ce(r, + a~a(~, t), v~ + ~vb(~, t))l,  (23) 

where 62.7~cE is the second Gfiteaux variation of JCce: 

62JCce(r~ + tva, v~ + wb) 

= dZT~ce(r, + aa,  Vs + ab )  
d°12 a=~ 

= b - • b - + 

( __  aa ~ ) P o  ~, (24) + (A) _ ~ .  0~aa + ~ O~ Oa\2 d 

where 

1 0 A  
f ,  = = - =  (x~) - c 2, 

( 0 2 A  1 0A ) 

) 0a) (25) 

Assuming that the string is locally stiff, i.e., f2 > 0 (cf. (8)) 
in a sufficiently large neighborhood of k = ks(() = 
~/(ar,/0(). (Ors/at) v~ E [0, El,  then (from ( 2 3 ) - ( 2 5 ) )  

I ~tce(r~ + a(G t), v, + b(G t)) - 3tee(r,, vs)l 

2 Our terminology here follows Nashed(1966) .  

4)= ~ ( a ( . ,  t), b ( . ,  t ) ) ~  (C1([0, E], ~3) ,  C0([0, E], gf3)), ~ 
a(0, t) = a ( E , t )  = b(0, t) = b ( ~ , t )  = 0 .  J" (21) [ 
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( coal > ~  b - c ~ "  b -  O~] 3~c+(r, v,/z~, #2) = v . v  - f . r  pod~ 

10A ) Oa Oa 
+ ~ - ~  (k,) - c ~ - ~ . - ~  pod~, (26) Or Fo) 

for some real valued positive constant a. Tacitly assuming that 
n(~) - poh,(~)c ~ > O, V~ ~ [0, E],  the term on the right- 
hand side of (26) may be used to define a semi-noma for (a,  
b) ~ "/): 

1 0 A  ) + ~ ( x , ) - 5  ~ or or d ~ ' ~ ' ~  Po ~, (27) 

where r = g(~, t) = r(~, t) - r , ( ( ) ,  V = v(~, t) = v( ( ,  t) - 
v~((). It should be noted that this semi-norm may also be used 
to define a norm for ~/9 using some standard inequalities (cf. 
Knops and Wilkes (1966, Section 4.4), for instance). We are 
now in a position to state the stability criterion: 

Theorem 4.1 I fn (~ )  - pok,(~)c 2 > 0 V~ ~ [0, ~] where 

Po OA 
ns(~) = k(~) 0--k (k , (~)) ,  (28) 

and the string is locally stiff in a sufficiently large neighborhood 
of h = k , ( ( ) ,  then the steady motion (r, ,  v,) is nonlinearly 
stable. 

Proof." From the continuity of .TCce(r, v, #) with respect to 
the norm Hr, V[Ime, it follows that given e > 0, E6 > 0 such 
that if Ila(~, 0), b(~, 0)l]ue < 6, then 

13ece(r~ + a(~, 0), v~ + b(~, 0)) - 3(c~(r,, vs)[ < e. (29) 

Recalling the conservation of 3(ce(r, v), (6),  ( 2 6 ) - ( 2 7 ) ,  it 
follows from (29) that 

cr 

Ila(~, t),  h(~, t)ll~ 

< 13(ce(r, + a(~, t),  v, + b(~, t)) - 5~ce(r,, v,)[ < e (30) 

and nonlinear stability is concluded. 
The method of proof used in theorem 4.1 closely followed 

the work of Healey (1990). As a particular case of this theorem, 
a linearly elastic string is now considered. For strings of this 
type, 

^ 

A(X) = ~ ( k -  1) z, (31) 

where ~ > 0 and Young's modulus E = Pob:. It may be shown 
using (8) and (31) that strings of this type are always stiff. 
With the assistance of (5) and (31), the stability result of 
theorem 4.1 when interest is restricted to linearly elastic strings 
reads 

Corollary 4.2: For linearly elastic strings if hs(~) > E/(J~ 
- c 2) V~ ~ [0, ~] then the steady motion (r~, v~) is nonlinearly 
stable. 

We remark that c 2 = ~ corresponds to a well-known resonant 
instability (the translational speed c equals the longitudinal 
wave speed). 

For inextensible strings, a stability theorem whose statement 
and proof are similar to theorem 4.1 may also be established. 
Among the principal differences is that the functional ;7(c~ is 
replaced by the functional 

f o # 2 (  OrOr  ) + "-2 0~ O~ 1 pod~, (32) 

where ].z 2 = # 2 ( ~ ,  t) is an additional Lagrange multiplier. As 
in the discussion following (22), 6,7~cl = 0 for a steady motion 
of the string if #~ = c and po#2 = mi( ( ) ,  where m, ( ( )  is the 
tension in the string during the steady motion. 

After noting that variations of r~(~) are considered which 
satisfy the linearized inextensibility constraint ( (0 r J0~)"  (0a/  
0() = 0) it is easily shown that 3(ci is quadratic in c~. Conse- 
quently, for inextensible strings the relation corresponding to 
(26) is 

[J(cz(r, + a(~, t),  v, + b(~, t)) - 3~c+(r,, v,)l 

, ;  ( = ~  po b - c  " b - c  

Oa 0a 
+ ( m , ( ~ )  - poc 2) ~ . ~  d~. (33) 

With some obvious differences, the proof of the following theo- 
rem is similar to that used in obtaining theorem 4.1 and we 
merely quote its statement: 

Theorem 4.3. For an inextensible string if m ( ~ ) - Po c 2 > 
0 V( ~ [0, ~] ,  then the steady motion (rs, vs) is nonlinearly 
stable. 

For further details on methods which are similar to those used 
in establishing this result, the reader is referred to Abarbanel and 
Holm (1987)and Healey (1990). We shall concern ourselves 
exclusively with steady motions in the forthcoming sections 
and the subscript s accompanying rs, Vs, ms, n,, etc., will be 
dropped. 

5 Determination of the Steady Motions 
To determine the steady motions of the string it is convenient 

to reorganize ( 11 ) as 

Pof + d~ (T(()e~(~))  = 0, (34) 

where T(~) = n(~) - pok(()c 2 and e l ( i )  is the unit tangent 
vector to o at r (~) .  Tis the tangential component of the effective 
force we referred to earlier (following (11 )). It is also conve- 
nient to adapt the following form for the external body force 
term Po f (due to Antman, 1979): 

OG(~) 
Pof = - - -  E2, 

a (  

OG( ~ ) 
where G ( , ~ = 0 )  = 0  and ~ > 0 .  (35) 

o~ 
G(~) E (CI([0,  El ) ,  ~ )  and for a vertical gravitational force 
G(()  = pog( (g = 9.81 ira/s2). In the sequel, the solution of 
(10), (34) and (35) with appropriate constitutive relations and 
possibly subject to the constraint k = l, is referred to as the 
boundary value problem for steady motions. The present formu- 
lation of the boundary value problem for steady motions permits 
the results of Antman (1979) and Dickey (1969 and 1974) 
analyses of the stationary string to be readily applied in order 
to solve for the steady motions of the string. There will be some 
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complications which are consequences of the drawing, but these 
will be accommodated. 

From the previous discussion, the following four restrictions 
on the nature of steady motions follow from Antman's work 
by trivial extension and are provided here without proof. (I)  
Any solution {r (~) ,  n(~)} ~ {C2([0, ~] ,  gy3), C~([0, ~] ,  
~3)} of (10), ( 3 4 ) - ( 3 5 )  where k(~) > 0 and x({)  lies en- 
tirely in the El-E2 plane. As a consequence of (I)  it is conve- 
nient to define the variable zg(~): 

e l ({)  = cos (zg(())El + sin (zg(())E2, (36) 

and to specify T ( ( )  as 

T(~)  = T( ( ) e l (~ )  = T~(()E~ + T2(~)Ez. (37) 

Integrating (34) and then using ( 3 5 ) -  (37), the following rela- 
tions are obtained (using the El,  E2 and e~ (~) vectors, respec- 
tively), 

T(~) cos (tg(()) = T,(~) = T,(0) ,  

T(~) sin ( 0 ( ( ) )  -- T2(() = Tz(O) + G(~),  

T(( )  = T,(0)  cos (O(())  

+ (T2(0) + G(~))  sin (0(~)) .  (38) 

The second result which follows trivially from Antman 
(1979) is; (II) if there exists a point ~ ~ [0, ~] where either 
T(~) or cos (~(~))  vanish then T( ( )  and cos (0(~))  vanish, 
and the string is vertical (i.e., e~(() = E2 and a = 0). For every 
other solution either n(~) > pok(~)c ~ or n(~) < pok(~)c ~. 
In the sequel the vertical solution will not be considered and 
consequently the following Cartesian parameterization for the 
steady motion r ( ( )  of the deformed space curve (~ is allowed 
( l iD:  

r ' E 1  = x and r .E2  = y (x ) ,  (39) 

where y(x )  is a strictly convex or concave function of x. The 
fourth result which follows from Antman's work is (IV): for 
convex (concave) steady motions of both elastic and inextensi- 
ble strings if a > 0, then T~(0) > 0 ( < 0 )  and y(x )  is a 
convex (concave) function of x. We remark that the deformed 
configuration shown in Fig. 1 is an example of a convex steady 
motion. Its inverted form is an example of a concave steady 
motion. It should be noted that the force n ( ( )  in a convex steady 
motion is always tensile. However, the force n(~) in a concave 
steady motion may be tensile, compressive or both, 

The results presented in the last two paragraphs are indepen- 
dent of the constitutive relations for the string. Prior to establish- 
ing the method for solving the boundary value problem, it is 
necessary to address further details concerning constitutive rela- 
tions. The functional assumptions on the free energy A (cf. 
( 7 ) - ( 8 ) )  permits the definition of a complimentary energy 
B(n)  where 

OB(n) 
k(n)  = P o - - ,  (40) 

On 

using a Legendre transformation: ~ 

Or 
B ( n ) - = n k ( n ) - a ( k ( n ) )  = n ' - - - A ( k ( n ) ) .  (41) 

Motivated by (34), an augmented free energy is defined: 

1 . 2  2 A ' ( k ,  c) = A(K) - ~A c , (42) 

3 It should be noted that i f A  is a convex (concave)  function of  k, then its dual 
B defined by the Legendre transformation is a convex (concave)  function of  n. 

where 

OA'(k, c) 
T = Po ~ C(k, c).  (43) 

Ok 

Finally, from ( 4 0 ) - ( 4 3 )  and after using another Legendre 
transformation: 

where 

B ' ( T ,  c) = T .0--~- - A ' ( L ,  c),  (44) 
o(  

OB'(T, c) 
k = Po - -  -- L(T,  c). (45) 

OT 

Representative examples of the functions C and L are shown 
in Figs. 2 and 3. 

We are now in a position to expand upon an observation of 
Clebsch (1860), who noted that the solution r ( ( )  of (34) for 
inextensible and linearly elastic strings may be determined using 
Hamilton-Jacobi theory. We will first consider elastic strings. 
Setting v = c ( Or/0~ ) in (12) and using (40) - (45), it follows 
that we may define a Hamiltonian system whose canonical vari- 
ables are ( r ( ( ) ,  T ( ( ) )  which is equivalent to (34): 

Or 
= :~(T, r ,  ~) = p o T ' 3  - poA' + pof 'r  

= poB' + Pof'r,  

O ~ Or 0.~ OT 
OT = po 0~ ' Or 0~ (46) 

We now make use of the results summarized by ( 3 6 ) -  (38) to 
reduce the three differential equations in (46)2 to two algebraic 
equations. First, we use (46)2 to write 

; o (  0r ) 
poT" ~ - ,.7C d{ = 0. (47) 

Then with the successive assistance of (38), (i.e., T = To + 
G(~)E2 = Ta(0)E1 + T2(0)E2 + G(~)E2),  (46), (34) and 
an integration by parts, (46)2 may be rewritten as two algebraic 
equations 

0[ f; ] 0To ( T . r ) ~  - poB'd~ = 0. (48) 

For inextensible strings, algebraic equations similar to (48) may 
be established by appending a constraint equation similar to 
that used in defining ,Jfc/(cf. (32)) to (12) and then setting e 
= A = constant and v = c(Or/O~) in (12). The resulting 
equations corresponding to (48) are 

0[ f ; ]  ~ o  ( T . r ) ~  - Td( = 0. (49) 

The final development is to define two other Hamiltonian 
systems. For elastic strings this (canonical) Hamiltonian system 
is defined using (48), 

7('* = J (*(q ,  p ,  K) = p b  + qa - poB'  (Tqp(~, ~'), c2)d~ 

f ~  r(To,,( ~, r ) ,  c 2) dq _ 03C* _ b - (p(7-) + G(¢))d~,  
dT- Op Tqp(~, 7-) 

dp 0~('* ~x L(Tq,(~, 7-), c 2) 
. . . . . .  a + q ( r )d~ ,  (50) 
dr  Oq Jo Tqp(~, T) 
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L(T,c) 

outlet 

T 

Fig. 4 A possible L(T,  c) for a fixed value of c. Also shown are possible 
convex (T > 0) and concave (T < 0) steady motions of the string. 

where K denotes the parameter set (a ,  b, c, ,~, G),  

Tqp(~, r )  = +,/q2(T) + (p(-r) + a ( ~ ) )  2, (51) 

and we have usedthe boundary conditions (10). We emphasize 
that the equilibria (q, p)  = (~7,/~) of the Hamiltonian system 
(50) may be identified with ( Ti (0),  T2 (0)) .  Consequently the 
equilibria of (50) provide the solutions of (48). The corre- 
sponding Hamiltonian for inextensible strings is obtained by 
setting poB' = T in (50)1 and L = 1 in (50)2.3. It remains to 
note that the " t ime"  parameter ~- in both of these Hamiltonian 
systems has no physical relation to the dynamics~ of the string. 

Once the equilibria of (50)23 have been determined then 
(following Antman, 1979) by using (37) with (38)~.2 and 

tan ( 0 ( ( ) )  = T2(0) + G ( ~ ) ,  (52) 
T~(0) 

T(~)  and ~(~) can be determined. Finally, r (~)  may be calcu- 
lated by integrating (46)2 and these results then specify n(~) 
(or m(~) for inextensible strings) (cf. (34)).  

In the work of Antman (1979) (cf. also Dickey, 1969 and 
1974) on the stationary string (c = 0), a system of equations 
similar to (50)~.3 with dq/dr = dp /dz  = 0 and r = constant 
is obtained by integrating dr~dE, using ( 3 6 ) -  (38) and finally 
using (41). Our alternative development of (50)2.3 suggested 
itself to us by Antman's (1979) use of topological degree theory 
to examine the equilibria of his version of (50)2,~. 

6 Qualitative Features and Stability of the Steady 
Motions for Elastic Strings 

Recall that for convex steady motions of the string T(~) > 
0 (i.e., n(~) > pok(~)c2), and for concave steady motions of 
the string T(~) < 0 (i.e., n(~) < poh(~)c2). In this section, 
existence and uniqueness of these steady motions are examined 
for nonlinearly elastic strings. Consider the relation (T, L(T,  
c)) shown in Fig. 4. It may be subdivided into a series of 
branches based on the following criteria: 

L OL 
T , ~ X  0, and - - X 0 ,  (53) 

OT 

where (53)2 is an alternative statement of the convexity ( > 0 )  
or concavity ( < 0 )  of B ' 4  ( c f .  (44)).  It should be noted that 

4 The nongeneric cases of  (53)2 (i.e., c 2 = 02A/Ok 2) are not considered here. 
As may be seen from (42)  strict convexity or concavity of  A '  does not hold and 
consequently the Legendre transformation (cf, (44)  - (45) )  is degenerate for these 
cases. 

(53)z > 0 ( < 0 )  applies for convex (concave) steady motions. 
Referring again to Fig. 4, a constitutive relation of this form if 
it were presented as a constitutive equation for k(n)  would be 
dismissed as physically unreasonable. It is a consequence of 
the dependence of L on c that it arises. 

The principal motivation for distinguishing the various inter- 
vals of the relation (T, L(T,  c)) using (53)2 is provided by the 
following proposition: 

Proposition 6.1: For convex steady motions of the string, 
either OL/OT > 0 or OL/OT < 0 for V~ E [0, ~] .  A similar 
result holds for concave steady motions. 

Proof." Suppose a convex steady motion exists where T(~) 
E (C2([0, ~] ) ,  ~ ) .  Without loss of generality, assume that for 
an interval ~ E [ ~ 1 ,  ~),OL/OT > 0, while for ~ E (7, ~2],OL/ 
OT < 0. From continuity L(T(7) ,  c 2) = ~. For the interval 
where OL/OT > 0, (denoted branch I); X > ~ Vh = L(T,  c). 
Similarily, for the interval where OL/OT < 0, (denoted branch 
II);  ~ < k VX = L(T,  c). It should be noted that OL/OTis not 
defined at L(T(~) ,  c 2) = X, It is evident after differentiating 
(45) with respect to ~ (after using (38)):  

0~. 02B ' OG . 
O~ Po OT 2 0 ~  sm (z9), (54) 

that for continuity of T and consequently k, it is necessary that 
sin (0(7))  = 0. From (II) (i.e., the result following (38)) tg(() 
is a strict monotonically increasing function of (, which implies 
that ~1 = 0 and ~2 = -~. By examining (54), for various cases 
the desired contradictions are obtained. For example, consider 
the case where sin (0(~))  < 0 on branch I and >0 for branch 
II. For branch I, 0h/0~ < 0 implying h(~ = 0) > ~, which is 
the desired contradiction. 

The result is similarily established for concave steady mo- 
tions. I~ 

The previous proposition can also be considered a conse- 
quence of our tacit neglect of shock-like solutions. As a conse- 
quence of Proposition 6.1, in order to examine the existence of 
steady motions it suffices to construct separate Hamiltonian 
dynamical systems (50) for the various intervals of the relation 
(T, L(T,  c)) using (53) and for given values of the parameter 
set K. For the case shown in Fig. 4, six dynamical systems need 
to be constructed (three for the convex steady motions alone). 
There is also the added difficulty that the states (q, p)  of the 
appropriate Hamiltonian dynamical system are in some cases 
bounded. In order to establish the existence of an equilibrium 
on such intervals it is necessary to examine whether or not the 
appropriate Hamiltonian system (50) has an equilibrium for the 
given value of the parameters •. 

There are several interesting differences between the steady 
motions of these strings and previously reported steady motions 
of strings. These are reflected in the following two propositions: 

Proposition 6.2: For convex steady motions of elastic 
strings where B '  is convex (concave), if 0(7) = 0, for some 
7 E [0, ~], then the point of minimum (maximum) X(~) occurs 
when ~ = ~. Otherwise, if 0(~) < 0, V( E [0, ~,], then the 
point of minimum (maximum))t  ( ( )  occurs when ~ = E, and 
if z9(~) > 0, V~ E [0, ~], then the point of minimum (maxi- 
mum) X(() occurs when ~ = 0. 

Proof" To establish the point of minimum (maximum) 
stretch h (54) is used. If at some point 0(7) = 0, for some 7 
E [ 0, ~] ,  the first statement can be readily established by taking 
the second partial derivative of (54) with respect to ~ and then 
using the convexity (concavity) of B '  and the definition of G 
(cf. (35)).  The remaining statements where tg(~) ~ 0, V~ E 
[0, ~] ,  follow from (54) and monotonicity of z9(~). 0 

A similar result can also be established for concave steady 
motions: 
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Proposition 6.3: For concave steady motions of elastic 
strings where B '  is convex (concave), if 0(~) = 0 for some 
E [0, El, then the point of maximum (minimum) h(~) occurs 
when ( = ~. Otherwise, if 0(~) < 0 V~ E [0, E] then the point 
of maximum (minimum) h ( ( )  occurs when ~ = E and if 0 ( ( )  
> 0 V~ E [0, ~] then the point of maximum (minimum) k(~) 
occurs when ( = 0. 

In words, Propositions 6.2-3 state that it is pgssible to have 
a convex steady motion of a string where the maximum stretch 
occurs at its lowest point. Furthermore, it is possible to have a 
concave steady motion where the minimum stretch in the string 
occurs at its highest point. 

Dependent on the nature of the interval of (L, T) of interest, 
a uniqueness result can be established without recourse to a 
detailed examination of the Hamiltonian vector field. The 
method of proof follows the earlier cited work of Antman and 
Dickey. 

Theorem 6.4: For convex (concave) steady motions of an 
elastic string, if B '  is convex (concave) and the Hamiltonian 
system defined by (50) has an equilibrium, then it is unique. 
Consequently there is a unique solution to the boundary value 
problem and there are no other solutions on this particular inter- 
val of (T,  L ( T ,  c ) ) .  

Proof" Standard analysis shows that for a convex (concave) 
steady motion, the Hessian of 3(* with respect to (q, p)  is 
negative (positive) definite (i.e., ~7(:* is strictly concave (con- 
vex)).  Consequently the equilibrium (q, p-) is unique. The re- 
mainder of the result follows from the construction of tiC* and 
its vector field. • 

For intervals of (L, T) when B'  is not strictly convex (con- 
cave), the definiteness of .3g* for convex (concave) steady mo- 
tions is questionable and necessitates an examination of the 
integral terms on the right-hand sides of (50)z3 for each L ( T ,  c) 
separately. A similar situation is encountered when examining 
concave equilibria of the stationary string (cf. Antman (1979, 
Section 3) and Dickey (1969 and 1974) where they are known 
as compressive solutions). After incorporating the results of 
Section 5, their analyses can be used to conclude the possible 
existence of multiple concave steady motions of the string. For 
convex steady motions the analysis is similar and nonuniqueness 
of convex steady motions are also to be expected. 

There are two cases for elastic strings where results can be 
established without recourse to the estimates aluded to in the 
previous paragraph. The first of these is for convex steady mo- 
tions and the second is for concave steady motions. 

Theorem 6.5: For convex steady motions of stiff (nonlin- 
early elastic) strings, A '  is a strictly convex function of ~, Vc, 
and k has a unique lower bound k*: 

K*poC 2 = n (h*) ,  (55) 

which is a monotonically increasing function of c z. If a > 0, 
then there is a unique steady solution of the boundary value 
problem V c where n (~) > poKC 2 and if b = 0, then this solution 
is nonlinearly stable V c. 

Proof" For convex steady motions n(h)  - pokC 2 > 0 and 
from the definition of a stiff string (cf. (8))  OZA/Oh 2 > n/poh, 
consequently 02A/Ok z > c 2, and the strict convexity of A '  
follows. This implies that n (h)  - poKC z is a strict monotonically 
increasing function of K, and it is readily seen that (55) has a 
unique solution k*, which is a lower bound for X (cf. (II) and 
Fig. 2). The monotonicity of h* as a function of c 2 is established 
by differentiating (55): 

( 0 n ( k )  ) 0 ) t *  
Ok po c2 --OC 2 -~" po)k *, (56) 

and using the convexity of A '. For stiff strings (53)1 holds Vk 

> h* and VT > T(h*)  = 0. Uniqueness then follows from 
theorem 6.4. 

When b = 0, then from (35), (50)z and a mean value theo- 
rem, T2(0) = pogE/2.  From (52) and Proposition 6.2, the 
steady motion is symmetric about ~ = E /2  and the boundary 
restrictions placed on the use of the stability criteria are satisfied 
(cf. (18)).  Referring to theorem 4.1, the steady motion can be 
concluded to be nonlinearly stable. 0 

Apart from the case b = 0, the previous theorem implies that 
even if the convex steady motion looses stability, there will be 
no other additional neighboring convex steady motions of this 
type present after the loss of stability. 

Corollary 6.6: For convex steady motions of linearly elas- 
tic strings, A '  is a strictly convex function of h, Vc 2 < E/po, 
and h has a unique lower bound k* = E / ( E  - poc 2) where E 
is Young's modulus of elasticity. I f a  > 0, then there is a unique 
convex steady motion and furthermore if b = 0, then this steady 
solution is nonlinearly stable Vc 2 < E/po. 

Proof" The proof follows from theorem 6.5 and corol- 
lary 4.2. • 

The physical reasonableness of the results of theorem 6.5 and 
corollary 6.6 should be questioned. In particular, these results 
imply that the stretch k must become unbounded for sufficiently 
large c. Consequently the string will have an indefinite length. 
To investigate this situation further it: is appropriate to consider 
convex steady motions of soft strings. From a result of Healey 
(1990, Lemma 4.3) that all soft strings are initially (locally) 
s t i f f for  K E (1, k~), it follows that given A(k)  as shown in 
Fig. 3, a sufficiently small c and appropriately chosen (a,  b, 
~, G),  a convex steady motion where h(~) E (1,)t t)  will exist. 
As c increases from 0, k(~) necessarily increases and the st~ng 
will eventually become locally soft at a particular ( = ( E [0, 
E] (i.e., from (8),  (42) and (44): OL/OT(T(~))  > 
L ( T ( ( ) ) / T ( ~ )  > 0). As c increases further, the interval of (T, 
L ( T ,  c))  where k(~) E L ( T ,  c),  T > 0 and (1 = L ( T  = O, c 
= 0))  will diminish and eventually disappear (cf. Fig. 3). In 
conclusion, the convex steady motion ceases to exist for a finite 
value of c. If b = 0, then this steady motion will initially be 
stable (from theorem 4.1 ). However, when the string described 
above becomes locally soft the functional Y('cE (cf. (24)) be- 
comes indefinite and stability can no longer be concluded using 
the methods of Section 4. 

The proof of the result for concave steady motions is similar 
to the latter part of the theorem 6.5. A particular interval of (T, 
L ( T ,  c))  which corresponds to that which is about to be de- 
scribed may be seen in Fig. 3. Such an interval will not arise 
in stiff strings. 

Theorem 6.7: For concave steady motions of stiff strings, 
i f B '  is a strictly convex function of h, Vc > Co, Vh > k*(c) ,  
and a > 0, then there is a unique steady solution of the boundary 
value problem Vc > Co where n(~) < po~.c 2. 

It remains to note that for the stability criteria developed 
here, the functional 3(cE looses definiteness for all concave 
steady motions. This indefiniteness holds even when the heuris- 
tic criterion for stabilization of the concave steady motions, 
n ( ~ ) ( = n ( ~ )  " e l ( i ) )  > 0, applies. 

7 Qualitative Features and Stability of the Steady 
Motions for Inextensible Strings 

Before establishing existence and uniqueness results for inex- 
tensible strings, the following well known restriction on the 
boundary parameters (a,  b) is noted. For any solutions of (9) 
and (10) of an inextensible string, (a ,  b) must satisfy the in- 
equality, 

a 2 + b 2 <  ~2. (57) 

For inextensible strings it is possible to explicitly calculate the 
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equations describing the Hamiltonian vector field (50) which 
are valid for both Tqp X 0: 

d.._q = b -  ~ [~/q2 + (p + pog~)2 _ q~ + p2], 
d7 Pog 

dp Iql 
- -  a + - -  

dr Pog 

× log [P + Pog~ + ~fq2 + (P + Pog~) 2] 
p + ~ + p 2  , ( 5 8 )  

where G(~) = pog~ was used in evaluating the integrals. 
For given values of a and b which satisfy (57), numerical 

simulations of (58) show that this system has two equilibria 
(g~, if1) and (gz, tY2), where c71 > 0 and ~2 < 0 (cf. Fig. 5). 
From the earlier discussion in Section 5, the former corre- 
sponds to a convex steady motion and the latter to a concave 
steady motion. These equilibrium values also provide 
(T~ (0),  T2 (0)) .  To establish the existence of these equilibria 
is not convenient to use (58) directly. Instead the Hamilto- 
nian JC* shall be used, for the two cases of Tqp > 0 and <0. 
Using (50)1, with poB = T as the string is inextensible, it 
can be shown that for Tqp > 0, ,7C* is a strictly concave 
function of (q, p)  and for Tqp < 0 it is strictly convex. Fur- 
thermore it can be shown that ~ > b - 0,7¢*/0p > 0 and 
> a - 03~*/Oq > -c~. For the particular case b = 0, then 
the steady motion satisfies the boundary restrictions required 
to use the stability theorem established in Section 4. Refer- 
ring there to theorem 4.3, the convex steady motion will be 
nonlinearly stable for all c. This last statement is in 
agreement with a related result of Simpson (1972). However 
the tension in the string m(~) will necessarily become un- 
bounded as c is increased indefinitely. In summary: 

Theorem 7.1: For an inextensible string if a 2 + b 2 < ,~2 
and a > 0, then there is a unique convex steady motion for all 
c where T(~) > 0 (i.e., m(~) > poC2). Similarily there is a 
unique concave steady motion where T(~) > 0 (i.e., m(~) < 
poC2). If, in addition, b = 0, then the convex motion is nonlin- 
early stable for all c. 

The uniqueness results of theorem 7.1 may also be obtained 
by deriving a second-order differential equation for y(x) using 
Eq. (52).5 The solution of this differential equation is identical 
to the classical catenary solution which satisfies the boundary 
condition y(x = 0) = 0: 

y(x) = Tl(O----2Pog Cosh ~ ' ~ 6 ~  ix - ~) 

- Cosh ( P°g ~) ] (59) 
\ T l ( 0 )  ' 

where T~(0) = _+(m(0) - poc 2) cos (0(0) ) ,  2-is specified 
by the remaining boundary condition y(x = a) = b, and 
T~ (0) is as yet unknown. Provided the boundary parameters 
(a, b) satisfy (57), the existence of a unique T~(0) > 0 (i.e., 
a convex steady motion) and a unique T~(0) < 0 (i.e., a 
concave steady motion) can be readily shown by using the 
integral of d~/dx with respect to x. The solution y(x)  is in 
agreement with the observation of Routh ( 1882, Section 524) 
and the calculation of Love (1897, Section 270). It also 
agrees with those of Perkins and Mote ( 1989, Eqs. (7) - ( 8 )) 
and Simpson (1972, Eq. (14)) upon taking the appropriate 
limits of their results. 

5 For elastic strings a differential equation for y(x) may also be obtained. The 
reader is referred to Antman (1979) from which it may be readily derived after 
some suitable modifications. 
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Fig. 5 Phase portraits of the dynamical system ( 5 8 )  (Pog  = 1., ~ = 1., 
a = 0.8,  b = 0 .2 ) .  The equilibria • ( = (Ch, .~ l )  = ( .3552 ,  .3764)) and + ( =  (~=, 
P2)  = ( .3552 ,  - . 3 7 6 4 ) )  correspond to the c o n v e x  and c o n c a v e  motions, 
respectively. For other values of the parameters which satisfy (57) the 
phase portraits are qualitatively similar. 
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Some Phenomena of Cracks 
Perpendicular to an Interface 
Between Dissimilar 
0rthotropic Materials 
The problem of  two aligned orthotropic materials bonded perfectly along the interface 
with cracks embedded in either one or both o f  the materials while their directions 
being perpendicular to the interface is considered. A system of  singular integral 
equations for  general anisotropic materials is derived. Employing four effective mate- 
rial parameters proposed by Krenk and introducing four generalized Dundurs' con- 
stants, the kernel functions appearing in the integrals are converted into real forms 
for  the present problem which are keys to the present study. The kernel functions for  
isotropic dissimilar materials can be deduced from the present results directly, no 
any limiting process is needed. These kernel functions are then employed to investigate 
the singular behaviors for  stresses at the point on the interface. Characteristic equa- 
tion which determines the power of  singularity for  stresses is given in real forms for  
the case of  cracks that are going through the interface. Studies of  the characteristic 
equation reveal that the singular nature for  the stresses could vanish for  some material 
combinations and the singular nature for the stresses is found to be independent of  
the replacement of  the material parameter A by A ~. The kernel functions developed 
are further used to explore analytically some interesting phenomena for  the stress 
intensity factors, which are discussed in detail in the present context. Some numerical 
results for  the stress intensity factors for  a typical dissimilar materials are also given. 

1 Introduction 

The problems of a crack or cracks near an interface between 
dissimilar materials have long interest in fracture mechanics. A 
considerable progress has been made for isotropic materials 
(Cook and Erdogan, 1972; Erdogan and Biricikoglu, 1973; Er- 
dogan, 1972; Hutchinson et al., 1987; etc.). As to anisotropic 
materials, the problem of a crack with arbitrary size and orienta- 
tion near the interface has been considered by Miller (1989) in 
which the stress intensity factors are computed numerically for 
mismatch materials. For the problem of two aligned orthotropic 
materials with a semi-infinite crack perpendicular to the inter- 
face has been investigated recently by Gupta et al. (1992). 
The importance of such an analysis in predicting the overall 
performance of a composite material has also been addressed 
in Gupta et al. (1992). 

In this paper, the problem of two aligned orthotropic materials 
bonded perfectly along the interface with cracks embedded in 
either one or both of the materials while their directions being 
perpendicular to the interface is considered. A system of singu- 
lar integral equations is derived by means of distribution of 
dislocations along the crack faces, wherein the fundamental 
solution of point dislocation acting in a general anisotropic 
bimaterials, obtained by Ting (1992) and Sue (1990), is used. 
By introducing four generalized Dundurs' constants and em- 
ploying four effective material parameters proposed by Krenk 
(1979), the kernel functions, originally in complex forms, are 
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then converted into real forms that are useful for the present 
study. These kernel functions can be reduced directly to those 
for isotropic bimaterials so long as the actual material parame- 
ters corresponding to the isotropic bimaterials are substituted 
in, contrast to the common analysis of orthotropic materials 
from which the isotropic results usually can not be deduced 
directly. The kernel functions can also be reduced to those for 
a half-plane solid with traction-free boundary, which has been 
studied by the present authors (Sung and Lieu, 1994) for more 
general material alignments, by letting one of the materials 
being very soft. The kernel functions are then used to investigate 
the singular behaviors at the point on the interface for the case 
when crack is through the interface. The characteristic equation 
which determines the power of singularity for stresses is given 
in real forms and the singular nature for the stresses is found 
to be independent of the replacement of the material parameter 
A by A - l .  Furthermore, there exists some material composi- 
tions such that the stresses at the point of interface would be 
finite. Analysis of this type of singularities for isotropic bimate- 
rial problems has been given, e.g., by Erdogan and Biricikoglu 
(1973), their characteristic equations can be recovered from 
the present analysis. It is noted that analysis of the singular 
behaviors for the problem of one of the crack's tip terminating 
at the interface has been given by Sung and Lieu (1994). Their 
results are for more general material alignments and some fea- 
tures about the singular behaviors for the stresses have been 
discussed in detail in that paper. Interested readers please refer 
to that paper (Sung and Lieu, 1994). The kernel functions 
developed are further employed to investigate the behaviors of 
the stress intensity factors for cracks subjected to self-equilibrat- 
ing loadings. Many interesting phenomena, which will be dis- 
cussed in the present context, can be observed directly from 
the explicit expressions for the kernel functions. Finally, some 
numerical results for the problem of a cracked isotropic material 
jointed perfectly to a crack-free orthotropic material are given. 
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Fig. 1 Geometry of the problem 

2 Singular Integral Equations 
The problem considered here is shown in Fig. 1. Two aligned 

orthotropic materials are bonded perfectly along the interface 
while cracks may exist in either one or both of the materials, 
their directions being perpendicular to the interface. The faces 
of cracks are subjected to self-equilibrating loadings. It is known 
that the above problem can be formulated by distributing dislo- 
cation densities on the crack faces. By summing up the tractions 
induced by these dislocation densities, and then enforcing, on 
the crack faces, the satisfactions of the tractions induced by 
these dislocation densities, one leads to a system of singular 
integral equations from which the unknown dislocation densities 
can be determined. Although the singular integral equations 
can be derived for general anisotropic bimaterial problems, the 
kernel functions involve certain complex vector functions 
multiplied by matrices whose elements are determined by solv- 
ing a sextic eigenvalue problem. Due to this fact, the results 
will be usually in complex form which are difficult to interpret. 
We will see in this section that for the present problem under 
consideration, by introducing four new generalized Dundurs' 
constants and by using the effective material constants proposed 
by Krenk (1979), the derived singular integral equations turn 
out to be in a real form from which many interesting phenomena 
can be observed. 

To formulate the singular integral equations, the basic solu- 
tion due to a point dislocation b acting in a crack-free bimaterial 
problem has to be determined. This solution has been considered 
by Ting (1992) and Suo (1990). Results are valid for any 
two general anisotropic materials and are expressed in complex 
forms due to the fact that is mentioned above. For further details, 
please refer to the paper, e.g., by Ting (1992) (or Eshelby et 
al., 1953; Stroh, 1958). The result of Ting's (1992) is given 
by 

~b = 2 Re{B(~)f(z)} (1) 

where ~b is the stress function and function f ( z )  is given in 
Appendix A (only those items that are relevant to the present 
discussions are list). Superscript ot in Eq. ( 1 ) is 1 (or 2) when 
point dislocation is acting at material #1 (or #2). Besides, super- 
script a with parenthesis in matrix B and in what follows will 
denote quantity that is associated with material a ( a  = 1, 2). 
Matrix B (~) in Eq. (1) is defined by 

B (~) = R(~)~A(~) + T(~ )A ( " )P  (~) (2) 

where A (~) = [a~ ~), a~ ~)] and P(~) = diag<p~ ~), p~) )  are formed 

by the eigenvectors a~ "), k = 1, 2 and eigenvalues plY), with 
Im{p~ ~)} > 0, k = 1, 2, respectively. The pair (p~),  a~) ) ,  k 
= 1, 2 satisfied the following eigenvalue problem: 

F ¢ ' ( ~ )  _L. ~ ( a ) 2 ( ' ~ ( a )  ~ ( a ) ( ( . ( a )  "] 

~k ~12 ]a~ ~) = O, / I"'11 T /Yk 1"--'66 -t- C(6~ ) )  
I ~ ( a ) I t - " ( o ~ )  .a_ I-"(ot)'t ~ ( c e ) 2 t - " ( c t )  
L/. 'k t ~ 1 2  T L,  66 ) C ( 6 ~  ) + It.,k I .~22 

(k = 1 ,2)  (3) 

where ,~,,~r'("), (n, l = 1, 2 or 6) are the elastic moduli which 
relates the stress components to the strain components by 

~ (  = c ~ ;  ~ c~; ) o ~ f .  (4)  
O'lzJ 0 0 C(6~ ) 2£12J 

The matrices R (") and T (~) in (2) are defined by 

(5) 

and 

respectively. In Eq. (1),  zk = Xl  '~ p(k")X2, (k = 1, 2). The 
traction at any point on a plane curve whose unit outward nor- 
mal vector is n can be computed from the stress function by 

aO 
f,, = - -  (7) 

Os 

where s is the arc length measured along the curve. Positive 
direction of n is on the left-hand side when one faces the direc- 
tion of increasing s while the material is located on the right- 
hand side. With the known stress function given by Eq. ( 1 ) and 
the tractions evaluated by Eq. (7),  one can follow the proce- 
dures described above to obtain the following system of singular 
integral equations: 

, t ~ -  ~ at + , K " ( ~ , t ) b ( l ) ( t ) d t  

t ) + Kl2(( ,  t)b(2)(t)dt  = to(G), h~ -~ ~ ~- l~ 
2 

f I 
I 

2~r lab2 t - ~  ,2 

+ K21(~ , t )b° ) ( t )d t  = tn(~) ,  hz-< ~ ~ 12 (8) 
I 

with auxiliary conditions 

f? b(l)( t )dt  = O, b(2)(t)dt = 0 (9) 
~1 2 

which have to be satisfied for single displacements around a 
closed contour surrounding each crack. In the above equation, 
t .  is the traction applied on the crack faces, b(~)(t) (a  = l,  2) 
is defined by 

b(1)(t) = L(1)bl(t), hi -< t -< 11 

b(Z)(t) = -L(2)b2(t),  hE ~- t --< 12 (10) 
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while b, (t)  and b 2 ( t )  are dislocation densities each defined on 
different crack faces. L (~) is the matrix defined by (Ting, 1986) 

L (") = -2 iB(~)B (")r (11 ) 

which is real, symmetric, and positive definite (Chadwick and 
Smith, 1977), i = ~/-1.  The kernel functions in Eq. (8)  are 
given by 

2 2 
K i ' ( ~ ,  t )  = - Z  Z Re{ F ' ' , c  " ' ~ ( ' ) ~ " ~ ( ' ) '  kj t,q, , ,,,t:~ k ~,s  ~u,j I 

k=l j=l 
2 2 

Ki~(~, t ) =  Z Z Re{F~}({, .,=(,)~.,2,~(2), t J l U  k z.vl lZ~j ] 
k=l j=l 

2 2 

t ]L~  k **,t ~ j  
k=l j=l 
2 2 

Kz ' (~ ,  t) = ~ ~ Re{F~)(~,  , ,~(~)~21w(,)  . ~  . . . .  j } (12) 
k=l j=l 

where EJ ~) = B(C<)I~B (~)-', I. = diag < 1, 0) ,  Iz = diag (0, 1 > 
and 

= p~)  

k'j t 

= p~2) 

F~) p~2)~ + p J l ) t "  

Matrices Man(a ,  fl = 1, 2) in Eq. (12)  are given by 

M li = H - i G ,  M 22 = - H - I G ,  

M ~ = I + M  u, M ~ 2 = I + M  2z 

(I  is a 2 × 2 unit matrix) .  

where H and G are expressed as 

H = (iA°)B ('>-') + (iA(~)B (2)-') 

and 

G = (iA(I)B ~i)-') - (iA(2)B(2)- ') ,  

(13)  

where 

D = R e { H }  = ( L  <')-' + L (2)-') 

W = Im{H} = ( - S ° ) L  <')-' + S(2)L  (2)- ' )  

U = R e { G }  = L (l)-' - L (2)-' (19)  

and S (") = i (2A(")B (")r - I )  is a real matrix (Ting, 1986). 
The kernel functions shown in Eq. (12)  will now be rewritten 

in real forms that are more suitable for further investigations. 
To this end, first let 's  introduce the following four generalized 
Dundurs'  constants as follows: 

- U i i .  -U22 
0/1 ~ - -  , 0 / 2 - - - - - -  , 

Dil D22 

-W,2 -W,2 
f l i  = , 32 = -  (20)  

Dil D22 

where D , ,  and U, ,  (no sum) are the diagonal components of 
the matrices D and U, respectively. W~2 is the element of first 
row and second column of  W.  Next, instead of expressing the 
kernel functions in terms of the elastic moduli ,~,z'¢"), (n,  l = 1, 
2 or 6) ,  we will employ four effective parameters proposed by 
Krenk (1979) ,  the usefulness of this adoption will be seen in 
the following. These parameters are related to the elastic moduli 
by 

6('~)2 E(c<) u (c<) E (c<) 
c~?> = 1 - u 7 a 7 '  c ~  = --~'1 - 

E(a) E(-) 
C~ ) = 6(.:(1 _ u(°: ) , C(62 ) = 2(K(.) + u(~) ) (21) 

where E (~) is the plane strain effective stiffness, u (") is the 
effective Poisson r a t i o , ,  <") is the stiffness ratio and K <~> is the 
shear parameter. The positive definiteness of the strain energy 
density requires that 

lu(°)l < 1, K ~") > - 1 ,  6 ~) > o, E ~) > 0. (22)  

(14)  Note that for isotropic material~ ,¢") = K ¢") = 1 a n d E  ~"), u ~") 
are reduced to E~") / (1  - v l  "~ ) and u}" ) / (1  - u}" ) ) ,  respec- 
tively, where El '~) is the Young's  modulus and ul ") is the Pois- 
son ratio for isotropic material. Note also that the parameters 

( 15 ) K ~') a n d ,  ¢"~ are similar to those p and h defined by Suo (1990).  
With the Krenk 's  parameters, the matrices B ~"), L ("), S ~"~, and 
the eigenvalues p(") take the following forms (Sung and Liou, 

(16)  1994; Dongye and Ting, 1989): 

[ [ E(a--~m) r - - [ ' ( a ) ( W ( + a )  + tO(ff))]l/2e/~r/4 

= ~V8to': '~-°' L [,(")(tot°' + wL"~)] -''2e-"1' 

B(") / ~ r [ ' ( : ) ( t°(c<)-  ito(+a))]l/lei~"4 
t ~ / ~  L [ ' (°)(,,,<--">- iwC<'))] -'ne"`4 

[ ,  (a)(0j(+c<)- Oj(_a)) ] ll2 e -irr /4 ] 

[6 (")(w(ff) w ( ? ) ) ] - ' / 2 e ' ~ / 4 J  , 

- [ ,°~)(w( '~)  + iw~g))] l /2e i~/4]  

[,(c<)(w~_ ") + iw~+"))] - l /2e i ' /4J  , 

K (") > 1 

(23) 

respect ive ly .  Here  we have to ment ion that matr ices  
( iA(I)B ~')- ') and (iA(2)B ( 1 : ' )  are both positive definite Her- 
mitian, hence matrix H will have this property too and its in- 
verse will exist. For later reference, matrices H and G are further 
writ ten in the following form: 

H = D + i W  ( 1 7 )  

and 

G = U + iW (18) 
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S (a) = 

2w (+~) 6~-)-' , 

1 - v (~) [,<0 7 ]   24, 
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1 co(- ~) + ~+~) 
[ i6 ~)-' 

E],) = 
1 [wL ~) - iwT ) 

2 ~  6 ('~) ' l_ 
1 [oo~? ) - w(+ '~ 

2 ~ - a )  L __i~:a)-I 
E ~  ~) = 

1 [ ~ V  > + i~(+ ~) 
[ 

i6 (") ] 
~ . o _  ~+~ ' 

6 (") ] 

-i5 (") ] 
c~(~) + ~"~ , 

- - ~ ( " )  ] 

~o(Y ) -  i ~ J  ' 

K (~) > i 

t< (~) > 1 

IK(")[ < I 

and 

& = 6(~)16 (2). (30b) 

It has been observed by the present authors (Sung and Liou, 
1994) that the degenerate materials occur when K (") = 1 since 
the eigenvalues p~"~ and p~") are the same. In the degenerate 
case the matrix B ("~ will be singular. Note also that matrices 
B (~, L (~), D (~), and U (") are independent of u ("). It is interest- 
ing at this stage to consider the isotropic bimaterial problems, 
i.e., consider both orthotropic materials being reduced to (differ- 
ent) isotropic materials. In this case, ~ (t) = K (2) = 1, 6 (t) = 

(2) = 1 so that 

p~) = f {i6(")(w~ ~) + Cd(a)), 

I 6(")(i~,L "~ + j " ) ) ,  

t¢ (") > 1 

IK¢~I < 1 

K (") > l 

(25) D = 2 (E  (1) ' + E(2)- ' )I  

U = 2 (E  (1Y' - E(2)-t)l .  

(26) With these results, one can easily verify that four generalized 
Dundurs'  constants defined in Eq. (20) are reduced to 

where 

w~'*) = ~/(1 + K(~))/2, WL ~) = x/il - Kc=)l/2 (27) 

Matrices D, U, and W defined in Eq. (19) can also be expressed 
in terms of Krenk's  parameters. The results are 

ce, = a2 = ao = a,  /3, = /32 =/3o = /3 (31) 

where a and/3 are Dundurs'  constants (1968).  Matrices M "~ 
shown in Eq. (14) can be written in forms that completely 
depend on four generalized Dundurs '  constants, i.e., 

D= [ 2w{])(6(')E(1))-' + 2w~)(6(2)E(2))-~ 0 ] 
0 2~9)6(I)E O)-t + 2w(+2)6(2)E (2) ' 

U = [ 2W~''(6(''E('))-]-O 2w~'(6(2'E(2)) ' 2w~+"6("E (1'-' _0 2w(+2'6(2)E(2)-t ] 

[ 0 (1 - u( ' ) )E(t)  1 - ( l  - u(2))E(2)- ']  

W = - ( 1  - u(1))E (1)-' + (1 -- M(2))E (2) ' 0 " (28) 

Substitute the components of the matrices U and W into Eq. 
(20),  one obtains 

O~ 1 = 
(1 + ao) - (1 - ao)~X 1 

(1 + ao) + (1 - ao)& -l  

(1 + ao) - (1 - Ceo)A 
Ot 2 ~- 

(1 + ao) + (1 - ao )A  

/31 = 6 (2) 2/30 
(1 + ao) + (1 - ao )A -1 

/32 = ~(2) 
2/3o 

(1 + a0) + (1 - a 0 ) ~  
(29) 

where 

E(2) E(t) 

E (2) E o) 

/30 = 

1 - u (2) 1 - u (1) 

E(2) E(J) 
(30a)  

M11 = ~ [ --Or, + /3,/32 i f l , ( 1  - a 2 ) ]  

1 -/3,/32 L - i & ( 1  - o. )  - o ~  + & & J  

M,2______I___ [ 1 + a ,  i/3,(1 +c~2) ]  

1 -- fll/32 -if12(1 + a l )  1 + 0/2 J 

M2 2 = ~ [ at + /3,fl2 - i f l : (1  + c ~ 2 ) ]  

1 - /3d~2 Lift2(1 + a l )  a2 +/31fl2 J 

M 2 t _  __1____ [ l - a N  - i B j ( 1 - a 2 )  1 . (32) 
1 - f l ~ f l 2  i / 3 2 ( 1  - a l )  1 - a2 

Substitution from Eqs. ( 23 ) - (26 )  and Eq. (32) to Eq. (12) ,  
one leads to the kernel functions which are expressed in real 
forms: 
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K, l_____~__  [c,~2+ cz~t+ c3t~ 0 ] 
d.(~,  t) 0 * 2 c*t 2 c,  ~ + c ~ t  + 

K 12 = 

d,2({, t) 

K 22 = 

d22 (~, t) 

K 2 , _ 

dz, (G t) 

[ C4{  3 -]- C5~2t + c 6 ~ t  2 + C7 t3 0 1 

J 0 * 3 * 2 * 2 C 4 ~ q- C 5 ~ t + C 6 ~t  -~- CT*t 3 

[ Cs~ 2 + C9~t + C,ot 2 0 ] 

o c,~* ~ + c ~ t  + cl*ot ~ 

[ C l I ~  3 + C12~2t + C,3~t 2 + C,4  t3  0 l 

* 2 * 2 c .4 t3  0 C~Ri~ 3 "}- C , 2  ~ t + Cl3~t  + 
(33) 

where the coefficients appearing in the diagonal terms are 

Cl = - N I l  c t = - N ~  

, ( l ) A r ' '  l '  _ ( 4 w 9 )  ~ 1 ) N I l  C 2 = ~ +  ~v2 ,  - -  N 2 2  

C2 @ '9 , ( , )  A?,I , ,  . . . . . .  2' - N, ,  - (460(+ 1)~ 1)N2'~ 

= - -  9 t " ( 1 ) & / l '  C3 ~ = Nil  ~ +  * , , =  c3 N ~  - ~ +  " ,2  _ O,.,(')nr" 

c4 = N ]  2 c* = N ~  

/ A , . , ( I ) , . , ( 2 )  h?',2 ,2 , '),., (2) A[,2~ A - I 
C5 = k ~ +  ~ +  a * ,  1 - -  A N 2 2  - -  ~ +  z * 2 , ) t . . a  

C5" / A , , ( ' )  . ( 2 ) ~ r , 2  O , , ( l ) A - l ~ r l 2  _ ~ N l l ) ~  = \-rt , t . ,+ ¢~,'+ 1v22 "{- .~t,t/+ t...t I v 2 ,  - '  ,2 -- ,  

c6 = ( ( 4 w 7 ) ~ -  1)N]~ - --~+O'"(l)hI'2''2, - -  2w(+2)ANI~)A -z 

C6" = / ' 9 ~ . , ( ' ) A / ' 2  ~ , ( 2 ) A - I A I ' 2  , ~ +  - , 2  + . . . . . .  ~, + (4~,?)~ 1 ) N ~ ) 6  -2 

C7 (N~2 z - o ,( ,)a, ,2,A-2 = ~a.~ + z v , 2 )  Z...X 

c~ ~ 11 o , (~ )~m~A-3  = (A  N n  + - ~ +  ,, ,2) 

~ = - U ~  c ~ : - N ~  

9,., (2) At22 22 -- __ 
C9 = -- . . . .  2, -- N a  (4W? ? 1 )N~  

C ~  "~t' ~ (2) &~22 22 = - ~ +  ,,~, - U u  - (4w?)= - 1)N2Z~ 

= - -  0 , , , ( 2 )  A122 clo N2~ . . . . .  12 

e l ,  = N~2I 

C,2  ~ (A t .~ (1 ) , . , ( 2 )A121  __ 
\ ~ +  ~ +  ~ * l l  

= - -  9 t , , ( 2 )  M22 C~*o N ~  . . . . .  ,2 

- - '  21 O , ( ' )  Ar2l "t A 

Cl*2 = {A" ' ( ' )" ' (2)M21 O , ( 2 ) A M 2 1  . . . . . . . .  22 -'[- . . . . . .  2' - AN~I)A 

ct3 ((4w?)2 1)Nil  o,.,(2)^m O , . , ( ' ) A - '  M 2 '  X A 2  = - -  - -  ~u .J+ z v 2 ,  - -  ~ +  ~ ZVl2fZ..x 

C1@3 = ( ~ ,  , (2 )~ [21  ~ ,  , ( ' ) A A I 2 '  
k x ~ ' t J +  ' ' , 2  "~ . . . . . .  2, + (4w(+ ')= 1)N~2t)A 2 

= ~ +  zv 12)z..a 

= 9~ .1 ( ' )  Af21 ~ A 3 
C1~4 (ANTI + . . . . .  ,2J~ (34) 

and d,e(G t) ( a , / 3  = 1, 2) are given by 

d, , (  G t) = (~ + t)(~ 2 + (4w? ? - 2)~t + t 2) 

d,2(~, t) = ~4 2V 4W(+,)W~)A-It~3 

+ (4w(+ 1)2 + 4W~ )2 _ 2)A-2t2~2 

+ 4w~-')w?)A-3t3~ + A 484 

d=( G t) = (~ + t)(~ ~ + (4w~)~ - 2)~t + t 2) 

d2,(~, t) = ~4 + 4w?)w?)At~ 

+ (4w(+ ' ?  + 4 w ?  ? - 2)A2t2~ 2 

+ 4w~)w~)A3t3~ + A4t 4. (35) 

In Eqs. (34) and (35).  A and N~ ~ (0/. /3, k , j  = 1, 2) are 
defined by 

[ N']  NI~]  _ 1 [ - 0 / ,  + f i , f2 f i , ( 1 - a Q ]  

Nzq N ~ J  i - -  ? , f i 2  L ?2(I  - 0/,) -am + /3,/32J 

[ N[~ N I l ]  _ 1 [ ~  i "1- 19/, i l l (1 -I- Ol2) 1 
N~} N ~ J  1 - ~ , / ~ 2  1~2(1 + 0 / , )  1 --~- 0/2 J 

(36a)  

Nil 2 N~ l _ 1 [ ~, "-I- f , f 2  f , ( 1  + 0/2)] 

N ~  N ~ J  1 - -  f , a 2  L / 3 2 (  1 + 0 l l )  0/2 + f , a 2  J 

(36b) 

[ N~: N12~] = 1 [ . 1 - 0 / ,  f , ( 1  - 0 / 2 ) ]  
21 NIl N = J  1 - f l f 2 L & ( 1 - 0 / , )  1 - 0 / ~  

(36c)  

(36d)  

d l  = - - 6 ( l ) - 1 / 3 1 ,  f i 2  = - - 6 ( 1 ) / 3 2 ,  

fi, = 6 ~2~ '/3,, f2  = 6(2)&. 

Note that the kernel functions for many special cases can be 
obtained from the above results. For example, the kernel func- 
tions for the problem of a half-plane solid (say, only material 
#2 exits) with traction-free boundary can be obtained by letting 
the material parameter E ('~ of material #1 being small (i.e., E (') 

E(2)). The results are found to be the same as those obtained 
by the present authors (Sung and Liou, 1994). Another example 
is the problem of a half-plane solid (say, material #2) with 
clamped conditions. For this case the matrix given by Eq. (36c)  
will take the following simple form: 

N~21 N ~  = 4w(+ 27 - (1 - u(2)) 2 

[ 4 w ~  )2 + (1 - u(2)) 2 4w~)(1 - u (2)) ] 

× L 4w~)(1 - u (2)) 4w~ ? + (1 - u(2)) 2] (37) 

if the condition of E (2) < E (1) is enforced. With this results, 
one can obtain the kernel function K = for clamped problem 
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which shows that it is independent of 6 (2) and E (2) and its 
diagonal terms are exactly the same. There are still more special 
cases, e.g., when one of the orthotropic materials becomes de- 
generate (say, material #1 is degenerate, K (~) = 1), or when 
both of materials are degenerate (i.e., K (~ = 1 and K (2) = 1 ), 
etc. No matter how the special case is, the corresponding kernel 
functions can be obtained directly from the general expressions 
shown above, no special considerations are needed. This is 
contrast to the common analysis of orthotropic materials which 
usually requires limiting processes to obtain isotropic results. 
One final remark to be mentioned is that the kernel functions 
developed by Erdogan and Biricikoglu (1973), who considered 
the isotropic bimaterial problems, can be obtained from the 
present results. 

3 Singular Behaviors  at the Point  on the Interface 
When cracks go through the interface or one of the cracks 

terminates at the interface, the singular behavior near the inter- 
face is different from that for a crack in a homogeneous medium, 
which is the well-known square root singular for stresses. Ac- 
cording to the analysis of Zwiers et al. (1982), only one singu- 
larity of the type r-~(0 < TT < 1 ) will occur near the interface 
for cracks through the interface for the present problem under 
consideration. For the case of a crack terminating at the interface 
the stresses will exhibit two different singular behaviors, i.e., 
r-v~ and r T2 (77~ and TT2 > 0) for in-plane problem. The more 
general case of two anisotropic elastic media which accounts 
for the effect of the anti-plane deformation has been investigated 
by Ting and Hoang (1984). Their results show that the stresses 
will in general have three different powers of singularity. The 
analysis done by Zwiers, et al. (1982) and Ting and Hoang 
(1984) employs essentially the techniques of eigenfunction 
expansions around the crack tip. A characteristic equation is set 
up by which the powers of singularity can be determined. Great 
effort and care for locating the roots are usually needed (Ting 
and Hoang, 1984) due to the fact that the characteristic equation 
involved is complicated. For the present problem we will de- 
velop the characteristic equation directly from the singular equa- 
tions by considering the singular behavior of the equations at 
the points near the interface for the case when crack is going 
through the interface. The obtained characteristic equation is 
given in a real form and can be reduced to those for isotropic 
media. Furthermore, we found that the singular behaviors for 
stresses may vanish for some material combinations for cracks 
going through the interface. The problem of a crack-tip termi- 
nating at the interface has been investigated by Sung and Lion 
(1994). In that paper, the two powers Y~ and 3'2 stated above 
can be identified to which mode is associated with, which can 
not be told from the results given by Ting and Hoang (1984). 
There are more features for the singular behavior of stresses 
discussed in that paper. Interested readers please refer to that 
paper (Sung and Lion, 1994). In the following, we will discuss 
only the case for cracks through the interface: 

Following Muskhelishvili (1953) and Erdogan and Birici- 
koglu (1973), the unknown functions in equation (8) may be 
expressed as 

b('°(t) = b(~)(t) 0 < Re(y)  < 1, oe = 1, 2 (38) 
t~(l~ - t) 1/2 ' 

near the irregular points (i.e., t = l~, a = 1, 2 and t = 0). 
Square root singular has been assumed at points, t = l,~, a = 
1, 2 in the above equation. With the results of Eq. (38), the 
terms with the Cauchy singularity in Eq. (8) may be expressed 
as 

1 fi"  b(~)(t) b(~)(0) 
_ _  7 . ~  dt ~ ~ cot (rey)(-r, 

( 0 < ~ < / ~ ,  a = 1,2)  (39) 

while the remaining terms in Eq. (8) may be expressed, with 
some manipulations, as 

17r f l  ~ K~(~ '  t)b(~)(t)dt 

~, [Qi'~(T)0 
o ] b(~(0) 

(4o) 
Q~(3') J sin (7ry)x/'~ 

where 
2 2 

QT~('y) = Z Z n~Z(Y)N~ p 
k=l  j=l 
2 2 

Qff(TT) = Y. ~ a ~ ( ' Y ) g ~  z (41) 
k=l  j=l 

and the functions of n~ p (77) and ff~(,y) are given in Appendix 
B. Substitute Eqs. (38) and (39) into (8), and multiply both 
sides by ~ e and let ~ ~ 0, one obtains the system of equations 

[COS(re77) + QI'i('y) 0 1 ' (1 ) (0 )  
0 cos Or'y) + Q2121(y) 

+ [ Q I ~ T )  0 ]b(2)(O) 
Q~(T)  ~.2 0 (42a) 

I QZI(T) 0 ] b( ')(0) 

0 Q~(~/) 

cos (Try) + Q2~(T) 0 ] 

+ 0 cos (re3') + Q~2(T) 

b(2)(o) 
× T =  o. (42b) 

f'(~) 0 Express the components ~, ( ) and b(2)(0) explicitly by 
b( ')(0) = [ b ~ ( 0 ) ,  b~y')(o)] T and b(2)(0) = [,5~z~(0), 
/,~y2)(0)]r, respectively, then the above equations can be re- 
arranged in the following form: 

cos (re3,) + QII(T) QI2(T) ] 
Q21('y) cos (rey) + Q22(T) 

Lb~2)(0) /~  f = 0 (43a) 

cos (roy) + Q~(T)  Q2J22(3, ) ] 
Q2~(7) cos (try) + Q22(y) 

× b~Z)(O)/ffz f = 0. (43b) 

It is noted that the deformation due to pressure loadings 1s 
totally decoupled from that due to shear loadings for the present 
problem, hence, Eq. (43a) will represent the singular behavior 
due to pressure loadings while Eq. (43b) is due to shear load- 
ings. For nontrivial solutions of Eqs. (43a) and (43b), one 
leads to the characteristic equations for 77 as follows: 

cos2 (re3') + (QII + Qz2) cos (reT) 

+ (Q[IQZ2 12 21 
- Q i 1 0 1 1 )  = 0 

(due to pressure loadings) (44a) 
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Fig. 2 
= 2.0) 

t ~ = 6 . 0 ( 1 / 6 )  
i,i - -  z ~ = 4 . 0 ( 1 / 4 )  j ,  

iii; I, / 

{ /  
0 . !  

- 0 . 1  , , , ,  , ,  , , , i  . . . . . .  , ,  , 

- I . 0  0.0 1.0 

Oft 

Dependence of the root 7 on ao for various A ( r o  = o, K (~1 = K (=1 

and 

cos 2 (zry) + ( Q ~  + 0222) cos (zry) 

+ (Q~tQ~ - Q~k2~) = o 
(due to shear loadings). (44b) 

Note that these two equations in the present forms are exactly 
the same because 

QII + Q~2 = Q~2 ~ + O ~  (45a) 

Q I ] Q ~ -  QI~Q~I = Q ~ Q ~  - Q ~ Q ~ .  (45b) 

Hence, only one of  them has to be considered for a crack going 
through the interface. One can verify that the characteristic 
equation shown in Eq. (44a)  (or (44b))  will give the same 
equation as that obtained by Erdogan and Biricikoglu (1973) 
if  the appropriate values of  Q~i ~ (or Q ~ )  for isotropic materials 
are substituted in. The characteristic Eq. (44a) has the property 
that 

T ( A )  = y ( A  1), (46) 

since the coefficients of the characteristic equation are both 
invariant when A is replaced by A -1, i.e., 

22 A 22 A - i  (Q~I + Q u ) (  ) = ( Q ~  + Q u ) (  ) (47a) 
11 2 2  1 2  2 1  I I  2 2  ( - ~  1 2 / 1 2 1  , t / ~ - I  ~ (Q l lQJ l  - Q . Q u ) (  A ) = - (47b) ( 0 1 1 0 1 1  ~ 1 1  ~ l l l t .  1. 

In the following, we will investigate the effect of some materi- 
al 's  parameters on the behavior of  the root. Before doing so, 
we note again that the possible values of Krenk's  parameters 
are - 1  < v (") < 1, K (~) > - 1 ,  E (~) > 0, and 6 (") > 0 if  strain 
energy is positive definite. Hence, if  one considers only the 
cases for u (") -- 0, then, 

- 1  < do < 1 (48) 

while/30 is related to a0 by 

l { ( 1 - v  (2) 1 - v(1)~ 
/30=~ ~9 ~ + ~9-~ ]~o 

(1-v (z) 1 --_u(l)) } 
+ w7  ) w~j> . (49) 

In the numerical investigations, we choose/30 = m a t  for sim- 
plicity where m is a constant. This choice of/3o in part implies 
not only u (~) --> 0 but also from Eq. (49) 

1 - p(2) 1 - u(l) 
~(+~---------------7-- - ~ )  (5o)  

is hold. Let 's  now consider the effect of the parameters A,  ~xo, 
and/30 in the following. Figures 2 to 4 are the results of  the 

, ~:6.0(1/6) 
~,, - - A = 4 . 0 ~ 1 / 4 )  

7 o.~ !:~:,!iii I /i 
' i 

O.t 

- 0 . 1  . . . .  , , , , , , i  , , , , , , ,  , 

- I . 0  O.l 

Fig. 3 Dependence of the roo t  I '  on  ao for various ~ (rio = 0, K ~) = 2.0, 
x Im = 5.0) 

roots 3' versus a0 for various values of  A with K (1) and K ( 2 )  

both being kept constants. The property of  3 ' (A)  = T ( A - 1 )  is 
reflected in the numerical results, consistent with our previous 
study. Furthermore, the symmetric property of y with respect 
to d0 is observed in Fig. 2, i.e., y (ao )  = y ( - a o ) ,  for the case 
of t¢ (1) = K (2) = 2.0. In fact, this property can be verified 
directly from the characteristic equation for any values of  K (l) 
and K (2), as long as K (~) = K (2) is hold. It is also observed from 
these figures that the effect of  A on the root y is in general 
small. It is also observed that for most values of  do, a root of  
3' in 0 < 3' < 1 can be found. This means that one singularity 
of the type r-V(0 < 3' < 1 ) usually occurs for cracks going 
through the interface. However,  more interesting thing is that 
we do find for some material combinations in which the singu- 
larity for stresses will disappear, i.e., no root is found in 0 < 
3' < 1, only 3' = 0 occurred for some material combinations. 
For instance, results plotted in Fig. 3 show that 3' = 0 occurs 
when a0 falls approximately in the range -0 .068  < a0 < 0.17 
for the case of/3o = 0.0 (K (1) = 2.0, K (2) = 5.0) while the 
range for ce0 is longer for the case of/30 = 0.25a0 (K (1) = 2.0, 
K (2) = 5.0) (see Fig. 4) comparing to that for fl0 = 0.0 (Fig. 
3). The fact that stresses will be finite for some material combi- 
nations has also been observed by Bogy (1970) in the study of 
isotropic bimaterial problems, where the region for the material 
combinations to give finite stresses is given explicitly in terms 
of Dundurs'  parameters. 

0,5 ?o=0.25cxo K ( 0 = 2 . 0  ~c (2) 5 . 0  

~:6.0(116) 
A = 4 0  1 / 4 )  

. . . . . . .  ~ = 2 0 I / 2 )  

" 7  0 . 3  

- O .  1 , , , , , , , , , , i , , , , , , , , 

- 1 . 0  O.f 

Fig, 4 Dependence of the root 1, on ae for various & (rio = 0.25c~o, K (1} 
= 2.0, K (2) = 5.0) 
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For the present problem, it seems that to investigate analyti- 
cally the regions of all possible material combinations in which 
the stresses will be finite is not so straightforward, since the 
characteristic equation contains many material parameters. 
Hence, we investigate numerically only the cases that are related 
to the results presented in Fig. 3 and Fig. 4. The results of the 
regions for which the material combinations to give the stress 
finite, i.e., y = 0, are shown, respectively, in Fig. 5 and Fig. 6. 
The shaded regions shown in Fig. 5 and Fig. 6 are both plotted 
with K ~) = 2.0 being kept constant. The difference in plotting 
these two figures is the choice of m (m = 0 for Fig. 5 while m 
= 0.25 for Fig. 6). It is worth to mention that in studying these 
shaded regions, numerical results tend to show that each shaded 
region plotted in Fig. 5 and Fig. 6 is independent of the parame- 
ter A. In fact this phenomenon has already been revealed in 
the results of Fig. 3 and Fig. 4, since it is seen that all curves 
corresponding to different values of A collapse to one point 
whenever 3' = 0. One more findings is that for orthotropic 
bimaterials with property 0/o = /3o = 0 will always fall in the 
shaded regions. 

Before ending this section, one final remark to be noted is 
that b~ l) (0) and b(~ 2) (0) (or b(y 1) (0) and b~ 2) (0)) are related 
to each other by Eq. (43a) (or Eq. (43b)) which should be 
incorporated, besides the auxiliary condition 

fi'L~l)-'b~')(t)dt= fi~L~2)-'b(Z)(t)dt, (51) 

into the solutions of the singular integral equations in order to 
have a unique solution for the problem. 

4 Some O b s e r v a t i o n s  

The singular integral equations obtained in Section 2 which 
are given in real forms are now employed to explore in this 
section some interesting phenomena for the stress intensity fac- 
tors for cases when crack faces are subjected to self-equilibrat- 
ing loadings. Crack (or cracks) may be embedded in one of 
the materials (case I) or may be embedded in both (case II). 
The results are described below. 

CASE I: (Only one vertical crack embedded in one of the 
materials (say material #2)). 

For convenient discussion, we will assume that the crack is 
embedded in material #2 while material #1 is crack-free. Under 
this assumption, one can drop the coupled terms in the singular 
integral equations shown in Eq. (8) and only one of the singular 
integral equations with kernel function K 22 has to be considered. 

l o fl°=O'Oc% tcO)=2'O 

0 8  

0 6  

0(0 
0.4 

0 0  

-0 .2  1 
0.4 

0 . 6  i iH  H IIIIIIIHIIITIH* HtUIIIHU ~ l l ; j l l l l l l l ' l l l l ' l l U  

1.0 2.0 3 0  4.0 50  6.0 7.0 
K(2) 

Fig. 5 Material combinations fallen in the shaded region will produce y 

= O(go = O, K (" = 2.0) 

flo=0.25c% toO)=2.0 
1.0 

0.8 

o 6  

0.0 ~ . i ' !  ~=!i :j i: 
.): . . . .  ,~:I  " : q!i] 7 

- 0 . 2  

--0.4 

- - 0 , ~  I I I I [ I N I I I I I I H I I ~ H H I I I I t ] I I I I I I I I I [ t l l I I I I I I ~ I I I H  

1.6 2 0  3.0 4.0 5.6 6.0 %0 
I¢(z) 

Fig. 6 Material combinations fallen in the shaded region will produce 1 
= O (go = 0.25ao,  K (1) = 2.0)  

In the following two special orthotropic bimaterial compositions 
are considered. 

(A) A = 6~u/6 ~2) = 1. Suppose that the stiffness ratio 
6 ~") of each orthotropic material has the same value, i.e., 6 ~) 
= 5 ~2~, then one can easily find that the previous defined four 
generalized Dundurs' constants are reduced to two only, i.e., 

0/I = 0/2 = 0/0 

,~, = /32 = /30. (52)  

With these special results, matrix defined in Eq. (36c) becomes 

[ N~ 2 N ~ ]  _ 1 [ c%+/302 /30(1+0/o)]  (53) 

Uz2~ N~z2J l flo 2 L/3o(1 + 0/0) 0/0 +/3g J 

and the coefficients defined in Eq. (34) will be 

C 8 = C8 ~ 

C9 = C9" 

Ci0 = C~O , 

which implies that diagonal terms of the kernel function K 22 
are exactly the same, so that one can conclude from this fact 
that the stress intensity factors due to pressure loadings would 
be the same as those due to shear loadings, as long as the 
magnitude of both loadings is the same. This phenomenon is 
plotted schematically in Fig. 7. 

Now suppose that the material alignments of both materials 
are rotated by 90 deg (see Fig. 3). Since the ratio of 6~1~/6 ~2) 
will remain the same value (i.e., equal to 1 ) and the kernel 
function K 22 is related to 6 ~) (0/ = 1, 2) only through the 
ratio of these two quantities so that the kernel function will be 
invariant under the rotations of 90 deg of both materials, so 
long as the condition 6 (~) = 6 (2) is satisfied for the orthotropic 
bimaterial compositions. Based on this fact, one can conclude 
that the stress intensity factors will be invariant as well, obvi- 
ously the tractions applied on the crack surface be kept the same 
magnitude under rotations. This fact is shown schematically in 
Fig. 8. 

Let's further investigate the features of the kernel functions. 
Suppose that the material #2 is degenerated, i.e., K (2) = 1 while 
the condition 6 ~1) = 6 ~2) is still held, then the kernel function 
K 2z will be reduced to that for isotropic bimaterial problems if 
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(a) (b) 
Fig. 7 If the compositions of dissimilar orthotropic materials are such that 8 (1) = 8 (2), 
then (Kj)A = (Kn)A*, (Ki)a = (K.)a* (under the same magnitude of the applied load, i.e., 
O" = 'T)  

(a) (b) 
Fig. 8 If the compositions of dissimilar orthotropic materials are such that 8 (~) = 8 (=) 
and if material axes of (b) are obtained by rotating 90 deg of material axes of (a), then 
(Ki)A,8 = (KI)a*,e*. (This conclusion also holds for shear Ioadings.) 

(a) (b) 
Fig. 9 If the compositions of dissimilar orthotropic materials are such that ~(1) = 6(2) 
and furthermore if K (2) = 1 and a0 = a, ./~0 = ~ (~, ,8: Dundurs' constants for isotropic 
bimaterials of (b); a0, ~0: generalized Dundurs' constants for orthotropic bimaterials 
of (a)), then (KI)A,B = (KI)A*,e*, (Kll)A,8 = (K.)A.,B*. (This is the feature of correspondence.) 

the orthotropic bimaterial compositions are chosen such that the 
following conditions are satisfied 

Ogo = OL 

/3o = P 

where a,/3 are Dundurs' constants for isotropic bimaterial prob- 
lems. This implies that stress intensity factors of Fig. 9(a)  can 
be obtained by the corresponding isotropic bimaterial problems 
as long as the conditions mentioned above are satisfied. This 

establishes the correspondence between dissimilar orthotropic 
materials and isotropic bimaterials, at least for the problem of 
a crack perpendicular to the interface. 

(B) W = 0. Suppose that the compositions of the dissimi- 
lar orrthotropic materials are chosen such that the matrix W 
defined in Eq. (28) vanishes, then the generalized Dundurs' 
constants of/3j and/32 vanish too. With the property of W = 
0, one can find that the stress intensity factors due to pressure 
loadings (Fig. 10(a)) will be the same as those due to shear 
loadings (~- = or) (Fig. 10(b)), if the material axes of Fig. 
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(a) (b) 
Fig. 10 If the material axes of (b) are obtained by rotating 90 deg of material axes of 
(a) and if the magnitude of the applied load is the same, i.e., ~r = ~, then (K~)A.e = 
(K . )A ' ,8"  

10(b) are obtained by rotating 90 deg of the material axes of 
Fig. 10(a) for both materials. This is apparent due to the fact 
that the following parameters' changes according to the follow- 
ing ways when material axes are rotated by 90 deg: 

~ ( 1 ) / ~ ( 2 )  ~ ~ ( 2 ) / ~ ( I )  

Of I ---~ O~ 2 

a2 ~ al .  (54) 

Substituting these new parameters into the kemel function K 22 
one would find that the new kemel function is the same as 
before, the only difference is that the position of the diagonal 
terms of the kernel function is interchanged. The above phenom- 
enon is plotted schematically in Fig. 10. 

In addition to the condition W = 0, let's further assume that 
the orthotropic bimaterial compositions have the properties, i.e., 
A = 6 ( ~ / 6  ¢2) = 1 and a~ = a2 = 0, then the stress intensity 
factors for dissimilar orthotropic materials (Fig. 11 (a)) would 
be the same as those for a homogeneous medium (Fig. 11 (b)).  
This means that the stress intensity factors of this special kind 
of dissimilar orthotropic materials would be independent of the 
material constants. The conclusion stated above can be verified 
by noting that the kernel function K 22 vanishes if the above 
conditions are satisfied. 

CASE II: (Two cracks each embedded in one of the mate- 
rials). 

For case II, the coupled singular integral Eqs. (8) have to be 
considered simultaneously. Hence, we will discuss only the 
phenomenon for A = 6 ( ~ / 6  (2) = 1. Suppose that both of the 
materials, whose compositions are such that c5 ~ = 6 (2~, are 

rotated by 90 deg, then the stress intensity factors will remain 
the same (Fig. 12). Let's further assume that K (~ = K (2> = 1, 
i.e., both orthotropic materials are degenerated, then one would 
find that the stress intensity factors for dissimilar orthotropic 
materials can be obtained from those for dissimilar isotropic 
materials if the dissimilar orthotropic materials are chosen such 
that the conditions of 

are satisfied, here c~, /3 are Dundurs' constants for isotropic 
bimaterial problems (Fig. 13) .  

5 Some Numerical  Results 
In this section, we will give some numerical results pertaining 

to the problem of an isotropic material (material #2) joined 
perfectly to an orthotropic material (material #1 ). The coupled 
singular integral equations developed in Section 3 are discret- 
ized according to the method suggested by Gerasoulis (1982). 
In the following, only the problem of one crack embedded in 
material #2 is investigated. For problems of cracks going 
through the interface, the numerical approach is essentially the 
same with the exception that if the singular behavior for stresses 
at the point of interface does exist, the singular behavior has to 
be taken care of in the numerical scheme. 

Before presenting the results for the problem described above, 
it is better to compare our results with those available for iso- 
tropic bimaterial problems in order to ensure the accuracy of the 
present numerical approach. Figures 14 and 15 are the results for 

(a) (b) 
Fig. 11 The stress intensity factors of (a) are independent of the dissimilar ortho- 
tropic materials' constants, if W = 0 and 6 (1) = 6(=) are satisfied 
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(a) (b) 
Fig. 12 If the compositions of dissimilar orthotropic materials are such that 8(1) = ~ m), 
then the stress intensity factors of (a) and (b) are the same 

(a) (b) 
Fig. 13 If the composit ions of dissimilar orthotropic materials are such that 8 (1) = 8 (=) 
and furthermore if K (1} = K (2) = 1 and do = ~,  /~0 = ,/~ (a,  ,fl: Dundurs' constants for 
isotropic bimaterials of (b);  d0, rio: generalized Dundurs' constants for orthotropic 
bimaterials of (a) ) ,  then the stress intensity factors of (a) can be obtained from (b).  
(This is the feature of correspondence.)  

2.0 
go=O228do ~0)=~(~)=] ~(0=~(2)=1 

1.7 

( K I ) A  

,/rrc 
1 . 4  

1 . 1  

0 . 8  

~ ~ ~ ~ N R D O G A N  

0 . 5  . . . . . . . . .  i . . . . . . . . .  

- 1 . 0  0.0 1.0 

0~0 

Fig. 14 Stress intensity factor at point A for dissimilar isotropic materi-  
als for various values of d / c  (o- = 1 ) 

2 .0  
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Fig. 15 Stress intensity factor at point B for dissimilar isotropic materi .  
als for various values of d / c  ( ~  = 1) 
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stress intensity factors for crack faces subjected to uniform 
pressure a. Both materials are taken to be isotropic, i.e., ~¢ ~) 
= K ~2) = 1, 6 o) = 6 ~2) = 1. The dissimilarity of  these materials 
is through the Dundurs' constants, a = ao and/3 = /30. Note 
that a0 =/30 = 0.0 corresponds to homogeneous medium. For 
the purpose of comparison, we select rn = 0.228. The results 
obtained by Erdogan and Biricikoglu (1973) who investigated 
only one material combination (material #1: Aluminum El = 
107 psi, U~ = 0.3 and material #2: Epoxy E 2 = 4.45 × 10 ~ psi, 
uz = 0.35) are also plotted in Figs. 14 and 15. Good agreement 
can be observed. Although results plotted in Figs. 14 and 15 
are under uniform pressure loading only, we have to emphasize 
that these results apply also to the problem that is under uniform 
shear loading ( r  = 1 ). This is because the choice of A = 6 o) /  
6 (2) in plotting Fig. 14 and Fig. 15 is equal to one, hence, 
according to the observations of  previous sections (please see 
Fig. 7) ,  the aforementioned substitution of results of  normal 
loading to shear loadings should be applied. Moreover, results 
of Figures 14 and 15 can also be applied to many other ortho- 
tropic bimaterial problems as long as A = 1. For instance, let 's 
take 6 °)  = 6 (2) = 2, or 6 (~) = 6 {2) = 3, etc., all these kinds 
of  orthotropic bimaterial problems should the response of the 
stress intensity factors be exactly the same as those presented 
in Figs. 14 and 15. 

Next, we present numerical results for the problem that mate- 
rial #2 being isotropic (i.e., K (2) = 1, 6 (2} = 1) while material 
#1 being orthotropic. For simplicity, we present only the results 
for/3o = 0.0 and d/c = 1.1. It is seen that the parameter 6 ~) 
has significant effect on the stress intensity factors for most 
values of ao, as shown in Figs. 16 and 17. Note that there are 
two extreme values of ao (i.e., a0 = - 1  and a0 = 1) that the 
effects of 6 (~) on the stress intensity factors disappear. This is 
due to the fact that as a0 --' - 1 ,  we have a ,  = a~ = 1 (see Eq. 
(29)) ,  and from Eq. (36c) ,  

N2~ =U2~ = - 1  

U ~  = U 22 = 0. 

Hence, the kernel functions are reduced to the problem for a 
half-plane solid with traction-free boundary as ao ~ - 1. There- 

2.0 

(Ki)  

f i o = O  ~(Z)=l.O 6 ( ~ ) = 1 . 0  d / c = l . 1  
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' ,  \ 

,,, \ \ 

\ ,  \ 

1.0 
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Fig. 16 Stress intensity factor at point A for dissimilar isotropic materi- 
als for various values of 6m (~r = 1 ) 
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Fig. 17 Stress intensity factor at point A for dissimilar isotropic materi- 
als for various values of 8 m ( r  = t )  

fore results will be independed of 6 (J). As to the case of a0 --' 
1, the generalized Dundurs' constants become 

OLi ~ OL2 ~ 1 

1 - -  //] (2 )  

6 (2) '31 = 6~2)32 = 
2 w ?  ) 

N i l ,  N2=, N12, and and with these values the expressions for 22 22 22 
N~ 2 will be given by Eq. (37).  Hence, the kernel functions will 
this time correspond to the problem for a half-plane solid with 
clamped boundary as ao --+ 1 and results are again independent 
of  6 {1}. It should be noted that the choice of/3o = 0 in plotting 
Figs. 16 and 17 implies that W = 0. Hence, according to the 
observations that have been discussed in previous section 
(please see Fig. 10), those results presented in Figs. 16 and 17 
are actually related to each other by 

(K/)A (for 6 (') = 2.0) = (Ku)a (for 6 {') = 1/2)  

(K,)A (for 6 ~1) = 1/2)  = (Kn)A (for 6 ~') = 2.0). 

One last thing to be mentioned is that results of  Figs. 16 and 
17 that correspond to the case for 6 o) = 1.0 = 6 (2) apply also 
to other orthotropic bimaterial problems as long as the material 
parameter A = 6 ° ) / 6  ~2) = 1. 
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A Finite Element Analysis of 
Mode III Quasi-Static Crack 
Growth at a Ductile-Brittle 
Interface 
Steady-state quasi-static crack growth along a bimaterial interface is analyzed under 
Mode III, small-scale yielding conditions using a finite element procedure. The inter- 
face is formed by an elastic-plastic material and an elastic substrate. The top elastic- 
plastic material is assumed to obey the J2 incremental theory of plasticity. It under- 
goes isotropic hardening with either a bilinear uniaxial response or a power-law 
response. The results obtained from the full-fieM numerical analysis compare very 
well with the analytical asymptotic results obtained by Casta~eda and Mataga 
(1991), which forms one of the first studies on this subject. The validity of the 
separable form for the asymptotic solution assumed in their analysis is investigated. 
The range of dominance of the asymptotic fields is examined. Field variations are 
obtained for a power-law hardening elastic-plastic material. It is seen that the stresses 
are lower for a stiffer substrate. The potential of the bimaterial system to sustain 
slow stable crack growth along the interface is studied. It is found that the above 
potential is larger if the elastic substrate is more rigid with respect to the elastic- 
plastic material. 

1 Introduction 

Ductile-brittle interfaces occur in a variety of advanced engi- 
neering materials like composites, cermets, polycrystalline in- 
termetallic alloys, etc. Interface failure in these materials is a 
common occurence caused due to the propagation and coales- 
cence of pre-existing or nucleated cracks along the interface. 
Hence an understanding of the mechanics of interface failure 
is essential to gauge the efficiency and reliability of such compo- 
nents. In this work, the interface is assumed to be weaker than 
both the materials and hence the crack is expected to propagate 
along it. 

The understanding of interfacial crack propagation is at a 
preliminary stage of development and thus the bulk of the work 
reported till now deal with stationary cracks in linear-elastic 
materials. Rice (1988) and Shih (1991) have reviewed the 
progress made on the mechanics of interface fracture. Some 
important contributions dealing with material nonlinearities in 
the context of a stationary crack at a bimaterial interface include 
those of Shih and Asaro (1988, 1989) and Zywicz and Parks 
(1989), on power-law hardening and perfectly plastic behavior, 
respectively. 

In elastic-plastic materials, a slow, stable crack extension 
phase under monotonically increasing load or displacement con- 
ditions is often observed prior to catastrophic failure. An elastic- 
plastic material offers much more resistance to nonproportional 
straining (which occurs near the tip of a propagating crack) 
than to proportional ones, and this is the main source of stable 
crack growth. Several investigators (Chitaley and McClintock, 
1971; Drugan et al., 1982, and Castafieda, 1987) have studied, 
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using analytical methods, the asymptotic fields near the tip of 
a growing crack in homogeneous elastic-plastic materials. Nu- 
merical studies of quasi-static crack growth in homogeneous 
elastic-plastic materials have also been carried out by many 
researchers (Dean and Hutchinson, 1980; Narasimhan et al., 
1987). 

By contrast, very few contributions have been made till now 
on crack propagation along the interface between two dissimilar 
elastic-plastic materials. The work by Castafieda and Mataga 
( 1991 ) is one of the first studies on this subject. They performed 
an asymptotic analysis and obtained the near-tip stress and ve- 
locity fields of a crack propagating steadily and quasi-statically 
along the interface between a strain-hardening ductile material 
and a brittle material. The ductile material is characterized by 
a J2-flow theory with either linear hardening or perfect plastic- 
ity. Both the cases of antiplane shear and Mode I plane strain 
were considered. Drugan (1991) also derived the stress and 
deformation fields near the tip of a crack that is propagating 
quasi-statically along the interface formed by a rigid material 
on one side and an elastic-ideally plastic material on the other. 

It is the objective of this work to perform a full-field finite 
element analysis of steady quasi-static crack propagation under 
Mode III, small-scale yielding conditions along a bi-material 
interface. The interface (see Fig. 1 ) is formed by an elastic 
material (material #2) and an elastic-plastic material (material 
#1 ). The latter is assumed to exhibit either linear isotropic 
hardening or power-law hardening. 

The organization of the paper is as follows. In Sec. 2, the 
constitutive model that is used is presented. In Sec. 3, the finite 
element procedure employed to simulate steady-state crack 
growth along the interface is briefly described. In Sec. 4, the 
results obtained from the analyses are discussed. The finite ele- 
ment mesh used in this work is well refined near the crack tip 
so that an accurate modeling of the near-tip fields is achieved. 
This is confirmed by a good comparison between the present 
numerical results and the analytical (asymptotic) solution of 
Castafieda and Mataga (1991) for the case when material #1 
displays linear isotropic hardening (see Sec. 4.1 ). 
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Fig. 1 Schematic 
crack 

representation of the bimaterial with an interface 

The validity of the separable solution assumed in the above 
analytical work for the asymptotic fields is examined. The range 
of dominance of these fields is also investigated. The effect of 
the mismatch in the elastic shear modulus between the two 
materials on the stresses and deformations near the propagating 
crack tip is studied. With a view to examine the potential of 
the bimaterial system to sustain slow stable crack growth along 
the interface, the ratio of far-field J integral for steady-state 
crack growth to its value at initiation J~.,IJ~ is estimated using 
a critical crack-tip opening displacement criterion (ductile frac- 
ture criterion). The effect of the ratio of the elastic shear modu- 
lus of the two materials on the J,s/Jc ratio is investigated. 

2 Constitutive Model 
In this paper, a small-strain, incremental plasticity theory is 

employed along with the Huber-Von Mises yield condition and 
the associated flow rule to describe the constitutive behavior of 
the elastic-plastic material #1 (see Fig. 1). The material #2 
which forms the other side of the interface is taken as isotropic- 
elastic with shear modulus G2. 

The Huber-Von Mises yield condition for isotropic hardening 
under antiplane shear takes the form, 

0(¢, ~7 ~') = r~'rp - y:(~r,) = O. (1) 

Here, r~ = ~r31 and r2 = cr32 are the shear stress components, 
and TP = f ~/ ~q~ + ~ " dt is the accumulated equivalent plastic 
strain. The notations y~ = 2e3, and Y2 = 2£32 will be used for 
the engineering shear strains. For a linear hardening elastic- 
plastic material G] is the tangent modulus under simple shear 
(which is a constant), and G, is the elastic shear modulus. For 
a power-law hardening material, the strain-hardening function 
~(~7 p) is defined by the relation, 

= 

Here, n is the strain-hardening exponent, Tot is the initial yield 
stress, and Ym = TIn~G, is the initial yield strain of the material 
under simple shear. It should be noted that n = 1 corresponds 
to the case of a purely elastic material and n ~ o0 pertains to 
the elastic-perfectly plastic limit. 

The constitutive law for material #1 when it is currently 
experiencing elastic-plastic deformation can be expressed as 

Gi 'r~-~ ] . 
Ca=G, 6~ G, + H V ]Y'" (3) 

In the above equation, H is the plastic modulus which is defined 
as 

d e  
H - (4) 

d~ p 

3 Numerical Procedure 
In this paper, steady-state crack growth along the interface 

is simulated under Mode III using the finite element procedure 

based on moving crack-tip coordinates devised by Dean and 
Hutchinson (1980). Herein, a semi-infinite crack which has 
been propagating in a quasi-static manner with velocity V under 
Mode III small-scale yielding conditions at a bi-material inter- 
face is considered. It is assumed that the zone of inelastic defor- 
mation is contained in a small region near the crack tip in 
material #1 and the elastic K-field holds good at points far away 
from the tip. A brief description of the numerical procedure is 
given below. 

The crack tip coordinates (X1, X2) and the field quantities 
are normalized as 

g~ = XJ(Kh-°l)2' 1 

t~3 = u3/(KZ/GI~-°l)' t (5) 
~a = TJTOl ,  

% = Y~/Yol. 

Here, K is the remote Mode III stress intensity factor. Further, 
the crack is assumed to propagate steadily in the X, direction 
with velocity V, so that the time rate of change of any field 
quantity at a fixed material point can be expressed as 

d • _ V __0_ 
d~ ( ) = (  ) =  OX ( ) .  (6) 

By applying the principle of virtual work, and making use of 
the normalizations given in (5),  and the steady-state condition 
(6),  the (nonlinear) finite element equilibrium equations can 
be derived (see Dean and Hutchinson, 1980). 

An iterative procedure (see Dean and Hutchinson, 1980) is 
used to solve these nonlinear equilibrium equations. In the pres- 
ent formulation, the stresses and plastic strains have been up- 
dated using an explicit stress update algorithm (with subincre- 
mentation), by integrating along the negative X~-direction 
(holding Xz fixed), as suggested by the steady-state equation 
(6) subject to the initial state of the material point outside the 
elastic-plastic boundary. 

To simulate steady-state crack growth along the interface, a 
large rectangular domain representing both the materials form- 
ing the interface is modelled with four-node rectangular finite 
elements with bilinear shape functions placed parallel to the 
interface line (X2 = 0). The crack line is located along the 
negative ~7,-axis. The mesh contains a total of 1286 nodal points 
and 1200 four noded rectangular elements. The size of the 
smallest element near the crack tip is designed to be less than 
1/6000 of the expected size of the plastic zone. Also, the mesh 
is graded in a manner such that a majority of elements are 
within the expected boundary of the plastic zone and relatively 
large size elements are employed in the far-field elastic region. 
The above mesh design is expected to resolve the fields inside 
the plastic zone and particularly near the crack tip accurately. 
This will be confirmed when comparisons with available analyt- 
ical solutions are made in Sec. 4. Displacement boundary condi- 
tion based on the elastic K-field is prescribed along the top and 
bottom boundaries of the mesh, while traction (from the K- 
field ) is specified on the upstream (right) and downstream (left) 
boundaries of the mesh. 

4 Results and Discussion 
Attention is focussed on two sets of bimaterials. One set of 

bimaterials has both the elastic-plastic top and the elastic sub- 
strate of the same stiffness (same value of the shear modulus, 
i.e., Gi = G2 or/~ = Gz/G1 = 1). The other combination has 
the substrate considerably stiffer (~ = G2/Gi = 10). 

4.1 Linear Hardening Elastic-Plastic Material and Elas- 
tic Substrate. In this section, the results obtained from the 
finite element analysis for the case where material #1 exhibits 
isotropic linear strain hardening with a tangent modulus G~ are 
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discussed. As mentioned in the Introduction, Castafieda and 
Mataga (1991) have recently derived an asymptotic analytical 
solution for this case under the conditions of both Mode III as 
well as Mode I plane strain. Their work involved two important 
assumptions. First, it was assumed that the dominant term for 
the stress and velocity fields near the crack tip is separable in 
polar coordinates r and 0 (see Fig. 1). Secondly, the radial 
variation of the dominant term was taken to be in the form r ~, 
where s is the strength of singularity of the field quantifies near 
the crack tip. Thus, on using the normalizations introduced in 
Eq. (5), the structure of the near-tip variation for the polar 
stress components proposed by Castafieda and Mataga (1991) 
can be written as 

?~ = AP~yl(O),; 

9o Af'y2(O),J (7) 

as P ~ 0. Here, A is an amplitude parameter which is undeter- 
mined by the asymptotic analysis. Further, y~ (0) and Y2 (0) are 
dimensionless angular functions which are normalized such that 
y2(0) = 1. Castafieda and Mataga (1991) solved the governing 
differential equations numerically and obtained the exponent s 
and the angular functions y~ (0) for/3 = 1 and/3 ~ o~ for several 
values of a = G]/G~. 

4.1.1 Validity of the Asymptotic Solution. The validity of 
the asymptotic analytical solution of Castafieda and Mataga 
(1991) is checked by comparing their solution with the results 
obtained from the present full-field finite element analysis. First, 
the radial dependence assumed in this near-tip stress field is 
examined. To this end, the variation of log~ (~'2) with loge (X1) 
where X i is normalized distance ahead of the propagating crack 
tip is shown in Fig. 2, for a = G]/G~ = 0.2. The numerically 
obtained results are presented in this figure corresponding to/3 
= 1 and 10. Also displayed in this figure are the best fit straight 
lines (by least squares method) to the six nearest points to the 
crack tip. 

The strength of the singularity s was obtained directly by 
measuring the slope of the aforementioned best fit straight lines 
like those shown in Fig. 2. The s values thus obtained from the 
present finite element results are compared with those deter- 
mined from the asymptotic analysis by Castafieda and Mataga 
(1991), in Table 1. It can be seen from this table that the s 
values computed from the finite element results match very 
closely with those given by Castafieda and Mataga (1991) for 
a = 0.2. The computed value of s differs more from the asymp- 
totic results with decreasing value of a. Further, it must be noted 
from Table 1 (see also Fig. 2) that the strength of singularity, for 
any particular value of a, is lower if the substrate is more rigid. 

1- 

0 

i i , , I , , , , i I I , i I , 

===== ~/@, = 1 
. . . . .  G~/G; - 10  

, , , , , , '~ 

-8 Lob(i f '  -2 

Fig. 2 Logarithmic plot of the radial stress variation for ~ = 0.2 and fl 
= 1, 1 0  

Table 1 Strength of singularity s 

Asymptotic 
(~ = 1) 

8 

0.2 -0.343 
0.I -0.270 

0.05 -0.204 

Numerical Asymptotic Numerical 
(~ = I) (t~ = ~o) (~ = 10) 

8 8 8 
-0.340 -0.277 -0.280 
-0.266 -0.207 -0.205 

-0.192 -0.153 -0.146 

It is important to ascertain the range of dominance of the 
asymptotic solution of Castafieda and Mataga (1991). To this 
end, straight line fits having the exact slope s given in their 
paper were again made to the numerically obtained results of 
1Oge (92) versus loge (371) corresponding to the first few points 
ahead of the tip. The amplitude parameter A in Eq. (7) was 
determined from these straight line fits. The distance ahead of 
the crack tip where the difference between the points obtained 
from the numerical solution and the above best fit straight lines 
becomes significant (say, by about five percent) is a measure 
of the range of dominance of the asymptotic singular solution 
of Castafieda and Mataga ( 1991 ). 

This range of dominance along with the amplitude parameter 
A is shown in Table 2 for various values of a and for/3 = 1 
and 10. In interpreting the results of Table 2, it must be noted 
that the maximum plastic zone size which occurs ahead of the 
crack tip in material #1 is between 0.2 to 0.3 (K/ro~)2. It can 
be seen from this table that the range of dominance depends on 
the hardening parameter a. As a decreases (diminishing strain 
hardening) it can be observed that the range of dominance 
falls, allowing the actual fields to deviate from the asymptotic 
solution at a smaller distance ahead of the crack tip. For a < 
0.005, the range of dominance of the asymptotic stress variation 
given by Castafieda and Mataga (1991) becomes extremely 
small (less than 0.5 percent of the maximum plastic zone size). 

Secondly, it is examined whether the variable-separable form 
which was assumed for the near-tip fields in the analytical as- 
ymptotic analysis, is corroborated by the finite element solution. 
For the variable-separable solution (Eq. (7)) to be valid, the 
angular distribution of "~i (r, O)/(A? ~) should be the same for 
any near-tip contour surrounding the crack tip. Here it is most 
desirable to consider circular contours surrounding the crack 
tip since all the points on the contour will be equidistant from 
the crack tip. However, this is not directly possible since the 
present numerical procedure employs rectangular elements par- 
allel to the crack line (see See. 3). Hence, the stresses obtained 
from the finite element analysis (corresponding to material #1 ) 
were first smoothed using a post-processing technique and angu- 
lar variations along near-tip semi-circular contours were ex- 
tracted from the smoothed results. 

The case a = 0.1 and/3 = 1 is considered here for discussion. 
The value of A was determined following the procedure dis- 
cussed above (see Table 2). The angular variation of the func- 
tions y~(O) = 9r(f, O)/AU and y2(O) = 9o(~, O)/A?' obtained 
from the finite element results, are plotted along two semi- 
circular contours with different normalized radial distance 
from the crack tip in the upper half of the bi-material in Fig. 

Table 2 Range of dominance of the asymptotic field and the amplitude 
parameter A under small-scale yielding 

' Range of Dominance 
a B =1  .0=10 

0.2 0.026 0.030 
0.1 0.016 0.017 

0.05 0.007 0.008 
0.01 0.0017 0.0013 

0.005 0.0010 0.0008 

Amplitude Parameter A 
~o=1 o=1o 
0.527 0.583 
0.568 0.632 
0.604 0.673 
0.681 0.746 
0.718 0.770 
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3. It should be noted that both these contours are well inside 
the plastic zone in material #1. It can be seen that there is a 
good agreement between the distribution of the angular func- 
tions along the two contours. This suggests that the separable 
form considered by Castafieda and Mataga (1991) is a reason- 
able assumption for the Mode III case. 

4.1.2 Angular Variation of the Velocity Field. The angular 
variation of the normalized velocity field, ~,~ = -d3/(V~0~) in 
the top half of the bi-material is shown in Figs. 4 and 5. The 
centroidal values of ~'1 in the elements located along the rectan- 
gular contour shown in the inset of Fig. 4 have been used to 
construct these plots. In Fig. 4, the angular variation of velocity 
is compared for c~ = 0.001, 0.05 corresponding to the case/3 
= 1. In Fig. 5, they are compared for the same values of 
pertaining to/3 = 10. 

The angular variation for a = 0.001 in Figs. 4 and 5 is similar 
to the analytical results given by Castafieda and Mataga ( 1991 ). 
It is observed from these figures that the distributions for c~ = 
0.001 and 0.05 crossover at approximately 0 = 55 deg. In both 
these figures it can be seen that the magnitude of the velocity 
is same for o~ = 0.001 and 0.05 at 0 = O. From the fact that 
the magnitude of velocity is larger for the case of higher strain 
hardening (larger a )  over a substantial angular range (55 deg 
< 0 < 180 deg),  it is expected that the crack profile will also 
be larger for this case irrespective of the value of/3. On compar- 
ing Figs. 4 and 5 it is noticed that the magnitude of the velocity 
is lower for a stiffer substrate indicating that the crack profile 
for material #1 will be lesser if fl is higher. 

Finally, it is worth mentioning, that the velocity d3 at the 
interface line (0 = 0) is smaller for a larger value of/3 and is 

expected to vanish for fl ~ ~ in accordance with the rigid nature 
of the substrate for this case. 

4.2 Power-Hardenlng Elastic-Plastic Material and Elas- 
tic Substrate. In this section, the results obtained from the 
finite element analysis for the case where material #1 exhibits 
power-law hardening with a hardening exponent n are dis- 
cussed. No asymptotic solutions are available for crack growth 
at a bimaterial interface when one of the materials exhibits 
power-law hardening. Hence, no direct comparison is possible 
between the present finite element results and an analytical 
solution for this case. 

4.2.1 Near-Tip Stress Distribution. The normalized stress 
92 is plotted with respect to normalized distance 2~, ahead of 
the propagating crack tip in Fig. 6 for two different values of 
the hardening exponent, n = 10 and n = 5. The cases of fl = 
1 and 10 are considered. It should be noted that the length scale 
over which the plots are shown in Fig. 6 is well inside the 
plastic zone in material #1. 

It can be readily seen from the above figure that the stress 
becomes unbounded as the crack tip is approached. Also, the 
stress '~2 for the bimaterial with a stiffer substrate (larger fl) is 
significantly lower for a given value of n. As in the linear 
hardening case, it is found on comparing the curves correspond- 
ing to n = 10 and n = 5 in Fig. 6 that the stress at a certain 
normalized distance ahead of the crack tip decreases with dimin- 
ishing strain hardening (larger values of hardening exponent 
n) .  As the level of hardening decreases the stress singularity 
falls and, in the case of a homogeneous material, the T2 stress 
ahead of the crack tip in the limit n ~ ~ approaches a constant 
value of To except, perhaps, very close to the crack tip. 
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Fig. 4 Angular variation of the velocity field for (~ = 0.05, 0.001 and 
f l = l  
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Fig. 6 Radial stress variation ahead of the crack tip for n = 5, 10 and/3 
= 1, 10  
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The near-tip angular variation of ~ and 7-o in material #1 is 
similar to the linear hardening case (see angular functions 
shown in Fig. 3). It was found that a larger value of/3 reduces 
the magnitude of the stresses around the crack tip. Also, increas- 
ing n (for a fixed/3) produces a significant decrease in the near- 
tip stress held. It is of interest to compare the near-tip angular 
stress variations obtained in this work corresponding to very 
low strain hardening (of material #1 ) with the asymptotic solu- 
tion given by Drugan ( 1991 ). It was found from the present full- 
field numerical results under small-scale yielding conditions that 
for the case of/3 = 10 and low strain hardening, ~-l (r ,  0 = 
0 +) = 0 near the crack tip. Drugan's asymptotic solution for 
the stress field reduces to that given by Chitaley and McClintock 
(1971) for a homogeneous elastic-perfectly plastic material un- 
der the above condition. In Fig. 7, this asymptotic solution is 
compared with the near-tip angular variation of r~, ro and 
the equivalent stress r~ = vrr, 2. + r02, obtained from the present 
numerical work for n = 25 (power hardening) and c~ = 0.001 
(linear hardening) and corresponding to/3 = 10. The numerical 
results are taken along the same near-tip rectangular contour 
shown in the inset of Fig. 4. Further, the stresses are normalized 
in a manner so that % = 1 at 0 = 0 to facilitate a comparison 
with the perfectly plastic asymptotic results. It can be seen from 
Fig. 7 that the near-tip angular stress variation obtained from 
the present work for very low strain hardening in material #1 
along with a stiff substrate, follow quite well the analytical 
results given by Drugan (1991). It should be noted from Fig. 
7 that there is a sharp upward turn in r~ as 0 ~ 180 deg. 
The numerical results for the cases indicated in Fig. 7 showed 
secondary plastic reloading very near the crack flank which 
conforms to the analytical solution of Drugan (1991). 

4.2.2 Crack Profiles. The crack profiles in the two halves 
of the bi-material are shown in Fig. 8 for a hardening exponent 
of n = 10. Title crack displacement u3 normalized by K2/G~-ot 
is plotted against normalized distance along the crack flanks. 
The cases of/3 = 1 and/3 = 10 are considered. The zero datum 
in this figure corresponds to the original interface line. 

It is found that the crack profile is almost symmetric with 
respect to the crack line for the case of/3 = 1. For a stiffer 
substrate, the crack profile is lesser both in the top and bottom 
halves. The crack displacement in material #2 decreases dramat- 
ically as/3 increases, whereas in material #1 the reduction is 
quite small. In the limiting case of a perfectly rigid substrate, 
the crack flank should displace only in the top half, and this 
profile for the Mode III condition considered in this paper 
should coincide with that in a homogeneous elastic-plastic mate- 
rial. It was found that the crack displacement is more if material 
#l  possesses larger strain hardening (smaller n). 
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4.2.3 Potential for Stable Crack Growth. It is important 
to compare the potential of bi-material systems with different 
amounts of mismatch in elastic modulii, to sustain stable crack 
growth at the interface. For this purpose, the ratio of the far- 
field J-integral for steady-state crack growth to its value at 
initiation, (J,s/Jc) has been estimated using a critical crack-tip 
opening displacement criterion which applies for ductile frac- 
ture. Failure adjacent to or along an interface can be caused 
by a ductile failure mechanism (like microvoid growth and 
coalescence) or by a brittle failure mechanism (like microcrack- 
ing) or by interface debonding. The dominance of a particular 
failure mechanism at the interface depends on the material prop- 
erties, geometry of the system and the nature of applied loading. 
In fracture experiments using alumina bonded with pure alumin- 
ium, Dalgleish et al. (1989) observed ductile rupture in the 
aluminium side adjacent to the interface. On the other hand, a 
bimaterial combination involving alumina and an aluminium- 
magnesium alloy, failed by brittle fracture in the alumina side 
adjacent to the interface. These experiments did not show any 
evidence of interface dehonding. 

According to the critical crack-tip opening displacement cri- 
teflon, crack growth will occur if the opening displacement 6 
at a small micro-structural distance rc behind the tip attains a 
critical value 6c. The crack profiles for steady-state crack growth 
shown in Fig. 8 in the upper half of the bi-material were com- 
bined with corresponding crack profiles for the stationary crack 
to estimate the ratio JJJc (see, for example, Dean and Hutchin- 
son, 1980). For this purpose, the solution for a stationary crack 
at a bimaterial interface under Mode III small-scale yielding 
conditions was obtained using a separate finite element proce- 
dure. 

In Fig. 9, the variation of the J, slJc ratio with the microstruc- 
tural parameter 6c/yolrc, estimated using the critical crack-tip 
opening displacement criterion is shown for hardening exponent 
n = 10. A comparison is made of the JJJc ratio for two bimater- 
ials with/3 = l and/3 = 10. The figure clearly shows that for 
a certain value of the microstructural parameter, the ratio J J  
Jc for a bi-material with/3 = 10 is higher than that for/3 = 1. 
This indicates that a bimaterial with a stiffer substrate has a far 
greater potential to sustain stable crack growth due to ductile 
rupture adjacent to the interface than a bimaterial with the same 
elastic modulii on either side. Further, it can be seen from Fig. 
9 that as 6~/3'01r~ increases the potential of the bimaterial system 
to sustain stable crack growth at the interface increases. It was 
found that the application of a critical stress criterion (which 
pertains to brittle failure) showed results which were qualita- 
tively similar to Fig. 9. 

5 Conclusions 
A finite element analysis of steady quasi-static crack growth 

under Mode III conditions at a ductile-brittle interface has been 
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conducted. The ductile material is assumed to exhibit either 
linear isotropic hardening or power-law hardening. The follow- 
ing are the most important conclusions of this work. 

1 The dominant term representing the asymptotic fields is 
found to exhibit a radial dependence of the form r ' ,  when the 
ductile material displays linear hardening. Further, the present 
numerical results suggest that variable-separable solution as- 
sumed for the asymptotic fields in the work of Castafieda and 
Mataga ( 1991 ) is reasonable for Mode III. The results obtained 
for the singularity order s match quite closely with those re- 
ported in their work. 

2 The range of dominance of the analytical near-tip fields 
of Castafieda and Mataga (1991) is found to be a function of 
the hardening parameter a. It decreases with diminishing strain 
hardening. 

3 From the analysis of results for the power-law hardening 
ductile material, it is observed that for a given value of the 
hardening exponent n, the stresses around the crack tip are 
lower for a bimaterial with a stiffer substrate. 

4 The crack displacement in the ductile material is less 
when the substrate is stiffer. For a given ratio of/3 = G2/G1, 
the crack displacement (for steady-state crack growth) in the 
ductile material reduces with decreasing strain hardening. 

5 A bimaterial system with a stiffer substrate exhibits a 
greater potential to sustain slow stable crack growth along the 
interface. This is true both when failure occurs by ductile rup- 
ture or brittle cracking adjacent to the interface. 

References 
Castafieda, P. P., 1987, "Asymptotic Fields in Steady Crack Growth with 

Linear Strain Hardening," Journal of Mechanics and Physics of Solids, Vol. 35, 
pp. 227-268. 

Castafieda, P. P., and Mataga, P. A., 1991, "Stable Crack Growth along a 
Brittle/Ductile Interface--l. Near-tip Fields," International Journal of Solids 
and Structures, Vol. 27, No. l, pp. 105-133. 

Chitaley, A. D., and McClintock, F. A., 1971, "Elastic-Plastic Mechanics of 
Steady Crack Growth under Anti-plane Shear," Journal of Mechanics and Physics 
of Solids, Vol. 19, pp. 147-163. 

Dalgleish, B. J., Trumble, K. P., and Evans, A. G., 1989, "The Strength and 
Fracture of Alumina Bonded with Aluminium Alloys," Acta MetaUurgica, Vol. 
37, pp. 1923-1931. 

Dean, R. H., and Hutchinson, I. W., 1980, "Quasi-static Steady State Crack 
Growth in Small-Scale Yielding," in Fracture Mechanics: Twelfth Conference, 
ASTM-STP-700, pp. 383-405. 

Drugan, W. J., 1991, "Near-tip fields for Quasi-static Crack Growth along a 
Ductile-Brittle Interface," ASME JOURNAL OF APPLIED MECHANICS, Vol. 58, pp. 
111-119. 

Drugan, W. J., Rice, J. R., and Sham, T. L., 1982, "Asymptotic Analysis of 
Growing Plane Strain Tensile Cracks in Elastic-Ideally Plastic Solids," Journal 
of Mechanics and Physics of Solids, Vol. 30, pp. 447-473. 

Narasimhan, R., Rosakis, A. J., and Hall, J. F., 1987, "A Finite Element Study 
of Stable Crack Growth under Plane Stress Conditions: Part II--Influence of 
Hardening," ASME JOURNAL OF APPLIED MECHANICS, Vol. 54, pp. 846-853. 

Rice, J. R., 1988, "Elastic Fracture Mechanics Concepts for Interracial 
Cracks," ASME JOURNAL OF APPLIED MECHANICS, Vol. 55, pp. 98-103. 

Shih, C. F., 1991, "Cracks on Bimaterial Interfaces: Elasticity and Plasticity 
Aspects," Materials Science and Engineering, Vol. A143, pp. 77-90. 

Shih, C. F., and Asaro, G. C., 1988, "Elastic-Plastic Analysis of Cracks on 
Bimaterial Interfaces, Part I: Small-Scale Yielding," ASME JOURNAL OF APPLIED 
MECHANICS, Vol. 55, pp. 299-316. 

Shih, C. F., and Asaro, G. C., 1989, "Elastic-Plastic Analysis of Cracks on 
Bimaterial Interfaces, Part II: Structure of Small Scale Yielding Fields," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 763-779. 

Zywicz, E., and Parks, D. M., 1989, "Elastic Yield Zone Around an Interracial 
Crack Tip," ASME JOURNAL OF APPLIED MECHANICS, Vol. 56, pp. 577-584. 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 209 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. P. Tandon 
AdTech Systems Research, Inc, 

1342 North Fairfield Road, 
Dayton, OH 45432 

N. J. Pagano 
WL/MLBM, 

Wright Patterson AFB, 
Dayton, OH 45433 

Effective Thermoelastic Moduli 
of a Unidirectional Fiber 
Composite Containing Interracial 
Arc Microcracks 
In this work, we have employed a variational model to examine the effect of  fiber- 
matrix debonding on the thermoelastic response of  a unidirectional composite. The 
model is designed to represent the concentric cylinder model of  a composite represen- 
tative volume element and it contains the capability to enhance the accuracy of a 
given numerical solution. The effect of  the extent of  debonding as well as fiber volume 
fraction on all the effective moduli of  the unidirectional composite has been examined. 
Numerical results reported in the literature are compared with the results of  the 
model developed in the present study to examine the quality of  the model. 

Introduct ion 

The effect of debonding on the thermomechanical behavior 
of the composite can be studied by introducing models that 
simulate failure at the constituent interfaces. One such model 
hypothesizes that various interfacial conditions corresponding 
to an imperfect interface can be theoretically simulated by as- 
signing different property values to an imaginary layer (or in- 
terphase region) (Agarwal and Bansal, 1979; Tandon and Pa- 
gano, 1988; Jasiuk and Tong, 1989). The debonding phengme- 
non has also been simulated by perfectly smooth interfaces 
(Benveniste and Aboudi, 1984; Mura et al, 1985; Pagano and 
Tandon, 1990) by imposing the continuity of normal displace- 
ments and tractions at the interfaces while allowing the shear 
traction to vanish there. Several authors (Lene and Leguillon, 
1982; Benveniste, 1985; Aboudi, 1987; Steif and Hoysan, 1987; 
Jasiuk and Tong, 1989; Hashin, 1990) have developed models 
for interracial sliding based on the approximation that interface 
tractions are directly proportional to the corresponding jumps 
in displacement. On the other hand, a fiber completely separated 
from the matrix can be simulated by applying zero traction 
boundary conditions on the interface or as a cylindrical void in 
the matrix material (Pagano and Tandon, 1990). Alternately, a 
debonded fiber can be imagined to be replaced by one bonded 
to the matrix but having a modified constitutive equation to 
simulate a material capable of carrying compression only (Taka- 
hashi and Chou, 1988). All the models discussed so far are 
mathematical representations of a fiber that has fully debonded 
from the matrix of the composite, i.e., all these approaches 
have implicitly assumed that the entire fiber-matrix interface 
has debonded. However, the actual interface may exhibit a be- 
havior that represents partial debonding, i.e., there may exist a 
region of the interface where failure has taken place and the 
rest of the interface remains intact. 

The problem of partial debonding has been addressed in the 
literature by use of finite element methods, where a series of 
coincidental node pairs are generated along the interface to 
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model the discontinuous displacement behavior of the fiber and 
matrix (Shimansky et al., 1990; Sullivan et al., 1990; Nimmer 
et al., 1991; Robertson and Mall, 1992; Yuan, 1992). Other 
treatments include the use of the boundary element method 
employing the basic cell of a rectangular array (Achenbach and 
Zhu, 1989) and a hexagonal array (Achenbach and Zhu, 1990) 
and solving of singular integral equations using numerical meth- 
ods (Selvadurai et al, 1989; Teng, 1992). A damage model for 
uniaxially reinforced composites weakened by an ensemble of 
microcracks assumed to be entirely open and confined to the 
fiber/matrix interface has been presented by Ju (1991). Re- 
cently, employing complex variable methods, Chao and Laws 
(1992) have given a proper solution for partial crack closure 
due to load orientation. 

There are various aspects to the problem of interfacial de- 
bonding, such as the prediction of initiation, growth, and extent 
of debonding, and the effect of debonding on composite re- 
sponse, say, effective composite moduli. In the present work, 
we restrict our attention to the latter problem, i.e., we consider 
the effect of the extent of debonding as well as constituent 
material properties and volume fraction, on composite moduli. 
Our approach is to appeal to the Reissner (1950) variational 
theorem, which has been successfully employed to study the 
elastic stress fields in flat laminates (Pagano, 1978) as well as 
involute bodies of revolution (Pagano, 1986) and concentric 
cylinder assemblages (Pagano, 1991; Pagano and Brown, 1993; 
Pagano and Tandon, 1994). It has already been demonstrated 
that such models provide accurate descriptions for stress fields 
in the vicinity of a stress riser, even though no singularity is 
present owing to the solution scheme employed, so that they 
are appropriate for use in conjunction with an average stress 
failure theory, while accurate predictions of energy release rates 
have also been demonstrated. In order to examine the quality 
of the model, we will compare the results for the debonding 
problem treated by Yuan (1992), Teng (1992), and Sullivan 
et al. (1990). The variational analysis can also be easily em- 
ployed to examine the internal stress field and energy release 
rate in the presence of interfacial debond. This would be useful 
in analyzing a progressive crack under changing overall loads. 
This work is currently in progress and will be presented else- 
where (Tandon and Pagano, 1994). 

Variational  Model  

The medium considered is a concentric cylindrical body as 
shown in Fig. 1. The innermost cylinder is the fiber, the next 
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Fig. 1 Cross section of composite cylinder for analysis 

r ing(s)  can be considered as coating(s)  or interphase region(s)  
while the outermost ring can represent the matrix material or a 
material with effective composite properties. Cylindrical coordi- 
nates r, 0, z are introduced and each material is assumed to be 
thermoelastically cylindrically orthotropic. 

The methodology that was developed by Pagano and Tandon 
(1994) was based on dividing the cylindrical domain in the - r  
and - 0 directions as shown in Fig. 1. The number of  subdivi- 
sions was dictated by the nature of damage present, required 
solution accuracy and the choice of boundary conditions. A 
typical region bounded by the " e d g e s "  defined by 0 = 0t and 
02 is referred to as a sector. Each sector, in turn, is composed 
of a cylindrical core surrounded by a number of concentric 
cylindrical wedges. In subsequent discussion, any arbitrary re- 
gion bounded by inner and outer radii, denoted by rt and r2, 
respectively, will be referred to as a layer. It will be convenient 
to define an index k (k = 0, 1 , - - N )  to represent the various 
layers, where k = 0 refers to the core and there are N concentric 
cylindrical layers in the model. 

The stress field is assumed such that az, 0-0 and 0-zo are linear 
in the radial direction, r, within the layer, while the form of the 
remaining stress components are then derived from the elasticity 
equations of equilibrium (with no z-dependence). Letting ~r,, 
0-2, 0-3, 0"4, 0"5, 0"6~ represent o"z, 0"0, 0", o"tO, 0",~, 0"ze, respec- 
tively, we arrive at the relations in the layer r~ -< r <- r2 

0"~ = p u f 5  ° (i = 1 ,2  . . . .  6; J = 1 ,2  . . . .  4) (1) 

where Pig are functions of  0 only defined such that 

pi,~(O) = 0-i(r,~,O) ( i =  1 ,2  . . . .  6 ; a  = 1 ,2 )  (2) 

and f j"  are known shape functions of r defined by 

,t' ~1) = f {2) z f ~3) = Jl'¢' (4) = f  {5) = J l ~  (6) _ r2 - -  r 
r2 - -  r l  

f~ , )  = f~2}  = f 2 ( 3 ) =  f 2~4, = f  2~s, = f 2 ( 6 )  __ r -  r, 
F2 --  r I 

3 ~ - - - - } - - - -  
r l  

r ~ ) ( r 2 - - r l ) - I  + 1 ( r l _ ~ O ) -  
r I r 

= - __-5 + 25 - (r2 - rl) -1 + (rl :z 0) (3) 
rl rl  

with 

pu = f ~ i )  = 0(r~ = 0; i = 1, 2 . . . .  6 and J = 3, 4) 

Pis = f au) = 0(r~ #: 0; i = 1, 2, 6 and J = 3, 4 or 

i =  4 , 5  and J = 4).  (4) 

In other words, the functions f ~i) and the corresponding l)iJ not 
displayed in (3) all vanish. Thus, the p functions are equal to 
actual stresses at r = r~, r2 and the stresses are functions of r 
and 0 alone. In problems which do not involve elastic singulari- 
ties, the assumed variation of the stress field is limited only by 
the thickness of the layer. Therefore, to improve the accuracy 
of the model, each one of the wedges or the cylindrical core 
can be additionally subdivided in the radial direction. 

The r, 0, z components of displacement are designated as u,, 
Uo, and u~, respectively. The general form of the displacement 
field consistent with stresses that only depend on r and 0 is 
given by 

ur= u ( r , O )  + z ( c s i n O  + d c o s 0 )  

uo = v(r ,  O) + z (c cos O - d sin O) 

u z = w ( r , O ) -  r ( c s i n O + d c o s O )  + ez (5) 

where c and d measure rigid-body displacements and e is a 
constant. In the subsequent derivation of the governing equa- 
tions, the integrations will give rise to weighted average dis- 
placements and displacements on the surfaces r = r~, 1"2. There- 
fore, we make the definitions 

fr' (q,  ~, g, q*, ~,) = q ( r  -2, r -a, 1, r, r2)dr; q = u, v, w 
I 

(6) 

although every weighted integral is not defined for each dis- 
placement function. We also let 

q,,(O) = q ( r , ,  0) (oe = 1, 2) (7) 

with the same interpretation of  q. 
Reissner (1950) has shown that the governing equations of 

elasticity can be obtained as a consequence of the variational 
equation 

6J = 0 (8) 

J =  £ F d V -  fs ,  TiUidS (9) 

X2 

Fig. 2 Schematic of partial debonding at fiber/matrix interface (given 
by 0 = _+0", ~ _+ 0") 
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and 

F = ½%i(U/j + U).i) - W ( r  U, eij). (10) 

In these equations W is the complementary energy; r q and Ui 
are the stress and displacement components, respectively, in 
Cartesian coordinates; e U are the mathematical free expansional 
or nonmechanical strains; V is the volume enclosed by S; S '  is 
the part of  S on which one or more traction components are 
prescribed; i?~ are the Cartesian components of the prescribed 
tractions; and body forces have been neglected. 

The variational equation is equivalent to the field equations 
and boundary conditions of  linear elasticity theory provided 
both stresses and displacements are subject to variation in the 
application of  (8).  For a body consisting of  a core region plus 
N cylindrical layers, the formulation leads to a system of 24 N 
+ 19 algebraic and ordinary differential equations in 0 for a 
like number of  unknowns, which are pl l ,  el2, p21, p22, P31, p32, 
P33, P34, P41, P42, P43, P51, P52, P53, P61, P62, if, U*, /d, ~', V*, 1,17, 
W*, and e, within each annulus; and Pll,  P12, P21, P22, Pal, P32, 
P41, P42, P5l, P52, P61, P62, if, U *, ~, O *, I,V, W * and e, in the core, 
while 7 N + 6 boundary conditions are required at each " e d g e "  
0 = 01, 02. Note that the inteffacial displacements u~, vl and wl 
(i = 1, 2) only appear in the governing equations if they are 
prescribed, hence they are not treated as dependent variables 
in the model. 

On planes r = constant, the appropriate prescribed functions 
consist of  one member of each of the following products 

patul, P41Vl, pslwl (11)  

on surfaces r = rt ~ 0 and 

P32t/2, P42U2, P52W2 (12) 

on surfaces r = r2, while for the core region (12) alone is 
applicable. Furthermore, continuity conditions can be written 
for the surfaces r = constant which are internal to the medium. 
The boundary conditions on 0 = 01, 02, or " e d g e "  conditions, 
can be expressed by prescribing one term from each of  the 
following products (although this decomposition is not unique) 

H~ffk, H~uk*, H]Vk, H~vk*, H6k#k, H~W~*, 

(k = 0, 1 , - - N )  (13) 

while if  k * 0 we have, in addition, the product 

H~& (k = 1, 2, - - N )  (14) 

wherz for k :~ 0, 

r2 4 r 42+(r  --  -- P43 

H1 = 
r2 - rl 

//2 = ; H3 = P43 (15) 
r2 - rl 

and for k = 0, 

H, = P41; H2 = (P42 - p41)-/r2; /-/3 = 0, (16) 

while 

94 = r2P21 -- rip22 ; H5 - P22 --P21 

r2 -- rl r2 - rl 

r2P61 -- riP62; //7 = P62 --P61 
H6 

r 2  - -  r l  r 2 - -  r l  

(17) 

hold for any value of  k (recall that k = 0 represents the core 
material). In the event that the body is subdivided into sections 

Table 1 Effective stiffness coefficients from present model for Nicalon/ 
1723 glass composite (vf = 0.4; O* = debond angle as shown in Fig. 2) 

Stiffness(GPa) 0* = 0 ° 

Cll 157.868 

C22 141.484 

C33 141.484 

Ci2 48.302 

C21 48.302 

Cl3 48.302 

C3t 48.302 

C23 45.837 

C32 45.837 

(244 47.824 

C55 48.226 

C66 48.226 

0 '=  300 0 '=  450 0"= 60 o 0"= 90 o 
151.114 147.245 143.933 137.270 

133.426 122.380 104.706 36.665 

88.244 62 .529  46 .103  36.665 

41.838 36 .626  30 .307  10.043 

41.838 36 .626  30 .307  10.043 

29.675 20.515 14.532 10.043 

29.675 20.515 14.532 10.043 

29.885 21.570 15.770 8.534 

29.885 21.570 15.770 8.534 

37.592 29 .197  21 .038  14.065 

36.389 27 .766  20 .786  15.426 

47.685 45 .874  41 .859  15.426 

by planes 0 = const, such as in the case where internal cracks 
in these planes are present, the appropriate interface conditions 
follow directly from (13) and (14).  For example, one member 
of  each term can be specified for prescribed tractions and/or  
displacements while continuity is implied when each member 
of (13) and (14) is continuous. The solution to the boundary 
value problem is exact (in the present formulation) if  the edge 
traction boundary conditions are consistent with the assumed 
r-dependence. Otherwise, further subdivision of  the layer will 
have to be done to approximate the prescribed edge traction 
boundary condition. 

In the longitudinal direction, we either prescribe e or Nz given 
by 

Nz _ f ] 2 I ( r ~ + r ,  r 2 - 2 r Z l )  
(Z2 -- Zl) Pll 6 

I 

(2 r 2 - rlr2 - r21) ] dO" 
+ P~2 6 J 18) 

However,  the various e or N. may or may not be arbitrarily 
selected as this choice is affected by the boundary conditions 
across both interfaces of a layer (Pagano and Tandon, 1994). 
Also note that freedom to prescribe arbitrary sets of traction 
boundary conditions in boundary value problems is restricted 
owing to the need to constrain rigid-body displacement. 

Since the field equations within each material are linear dif- 
ferential equations with constant coefficients, the general form 
of the solution for any of the dependent variables P(O) is ex- 
pressed by 

P(O) = ~ A i  e xd + Pp(O) (19) 
i 

within each layer where Ai are constants, hi are eigenvalues of  
a determinant, and Pv(O) is a particular solution. In case of  
multiple roots, the homogeneous solution can be obtained by 
the method of reduction of order. For the class of boundary 
value problems treated in this work (see (21) and (27)) ,  the 
general form of the particular solution is given by 

2 

Pp(O) = Y. KiO i + Y. (L~ cos too + M~ sin w0) (20) 
i w = l  

where each term of the particular solution is further multiplied 
by 0 m if the right-hand side of the nonhomogeneous linear equa- 
tion happens to be the solution of the corresponding homoge- 
neous equation (m is the multiplicity of the root of the character- 
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Fig. 3 The variation of effective Young's moduli, namely, El l  , E22 , and E~ of 
Nicalon/1723 glass composite with angle of debonding {FEM data from Yuan, 
1992) 
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Fig. 4 The variation of effective shear moduli, namely, Gi=, G~a, and G .  of 
Nicalon/1723 glass composite with angle of debonding (FEM data from Yuan, 
1992) 

istic equation of the homogeneous equation). This completes 
the boundary value problem formulation with the present model. 

E f f e c t i v e  M o d u l i  

To define the effective thermoelastic properties of a compos- 
ite, the RVE is subjected to linear surface displacement condi- 
tions 

U~(S) = e°x j (S )  ( i , j  = 1 , 2 , 3 )  (21) 

where xj are the Cartesian coordinates of the outer surface S of 
the concentric cylinder and e ° are constants (In the case of a 
homogeneous material under boundary conditions (21), the 
strain field would be given by e°). The stress-strain relation for 
the composite can then be written as 

rl  e)= C~f )(e} " ) -  eJ ")) ( i , j =  1 , 2 . . . 6 )  (22) 

where C~f ) is the effective stiffness and ~jp!c) is the effective 

expansional (nonmechanical) strain of the composite, while 
7~ c) and e} c) are the composite stress and strain components, 
respectively. The displacement formulation leads to a direct 
calculation of the composite stiffness, r~ ~) On the other hand, vq . 
the RVE can be subjected to traction boundary conditions 

T~(S) = ~-~nj ( i , j  = 1, 2, 3) (23) 

where nj are the components of the unit outward normal vector 
0 and 7- ij are constants. The traction formulation leads to the calcu- 

lation of effective compliance, Slf ), through the relation 

el c ) = S l f  )r}  ° + e l  ~) ( i , j  = 1 , 2 . . . 6 )  (24) 

(,(c) In Eqs. (22) where -0¢(c) is not necessarily the inverse of vq . 
and (24), standard contracted notation is used such that r , ,  r2, 
r3, r4, rs, r6 stand for 7-,,, 7-22, 7-33, 7-23, 7-,3, 7-12, respectively, 
and e~ (i = 1, 2 . . .  6) are the respective engineering strains. 
Further, recalling the issues discussed earlier (Pagano and Tan- 
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Fig. 5 The variation of effective Poiaaon's ratios~ namely, v~, vat, and vat of 
Nicalon/1723 glass composite with angle of debonding (FEM data from Yuan, 
1992) 

don, 1990), the composite stress is obtained by volume averag- 
ing the stress tensor while the composite strains are given by 
constants which are their surface values at certain points on the 
outer boundary of the composite cylinder (these are the same 
as the body average strains defined by Benveniste, 1985). 

Under perfec t  bonding, with the fibers aligned unidirection- 
ally along Xl, use of displacement (21 ) and traction (23) bound- 
ary conditions on the external surface of the RVE leads to upper 
and lower bound estimates of the elastic stiffnesses, respec- 
tively. For the composite cylinder model, upper and lower 
bounds for four of the five elastic moduli, namely, longitudinal 
Young's modulus, EH; major Poisson's ratio, Vl3; longitudinal 
shear modulus, G13; and plane-strain bulk modulus, K23 coin- 
cide, whereas, bounding solutions for the transverse Young's 
modulus, E33, are obtained. Hashin et al. (1985) have compared 
the analytical predictions employing CCM with numerical re- 
suits using hexagonal array and have shown that the agreement 
between the two solutions is extremely good for all elastic 
properties considered. Hashin et al. (1985) further observed 
that the upper bound results for composite transverse Young's 
modulus using CCM correlated very well with experimental 
measurements of composite moduli for a wide range of elastic 
moduli and fiber volume fraction. Further comparisons of the 
effective elastic moduli and constituent microstresses em- 
ploying CCM with existing numerical solutions are given in 
Tandon (1995). The results clearly demonstrate that CCM can 
provide a good simulation for the RVE provided the displace- 
ments are prescribed on the external surfaces. For this study, 
we will therefore make use of displacement boundary conditions 
to define the composite properties. 

To evaluate the effective elastic moduli, we set the expan- 
sional strain components identically equal to zero in (22). By 
setting each strain component, e} ~), equal to one individually, 
while all others are zero, we will, respectively, obtain the j th  
column of the r'!~) matrix. The effective engineering constants ~ q  
can now be defined by the following generalized relations be- 
tween the stiffness coefficients where the symmetry of the coef- 
ficients is not assumed 

G : ( G ~ G 3  - G1G3) 
Ell = Cn + 

(C22C33-  C23C32) 

C2K G3C32 - C12C33) 
E22 = C2~ + 

(CllC33 -- Ci3C31 ) 

G 3 (  C32C~1 - G i G : )  + 
(C22C33 - C23C32 ) 

C 2 3 ( C 1 2 C 3 1  - C11C32) + 
( C ,  C33 - C13C31) 

C 3 1 ( C 1 2 C 2 3  - C13C22 ) C 3 2 ( C 1 3 C 2 1  - C11C23 ) 
E33 = C 3 3 +  q- 

(C .C22  - G2C21) ( C l l C 2 2 -  C12C21) 

(C12C33 - C13Q2) 
1221 = ; GI2 "~ C66 

(C11C33 -- C13C31 ) 

(C13C22 - C12C23) 
/J31 = ; GI3 = C55 

( C,C~2 - Ci2C2i) 

( C.C~3 - C13C21) 
//32 = ; G23 = C44. (25) 

( C ,  C22 - C12C21) 

Note that in Eqs. (25) the superscript (c) on the composite 
stiffness coefficients has been omitted for brevity, and in subse- 
quent discussion will also be frequently omitted unless needed 
for clarity. Next, setting the composite strain components e} c) 
all to zero leads to the calculation of the expansional strain 
through 

el ") = -~!~)~ -r} c) (with e} c) = 0) (26) 

where the elastic compliance Sly c) has already been determined 
and the composite stress r} c) can be computed as explained 
earlier. 

Partial Debonding Problem 
We will now treat the case where debonding may occur over 

a portion of the interface given by 0 = _+0% 7r _+ 0* for all 
values of z (0 is measured from xa-axis as shown in Fig. 2). A 
fiber completely separated from the matrix can be simulated 
by applying zero traction boundary conditions on the interface 
(Pagano and Tandon, 1990) provided the displacements are 
consistent with opening 1 . On the other hand, continuity of all 
traction and displacement components exist in the bonded re- 
gion. The interface boundary conditions treated in this problem 
thus consist of 

~r = err0 = ~zr~ = 0, in debonded region 

O'r, arO, O'rz, Ur, UO, Uz continuous; in "bonded" region. 

(27) 

~The linear elasticity solution provided here does not consider the nonlinear 
contact problem. 
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These are the theory of elasticity boundary conditions which 
are transformed by (2) and (7) for the present model. Addition- 
ally, we prescribe e and set the fiber and matrix displacement 
to be the same in the longitudinal direction for the case of 
complete debonding. For the type of boundary value problems 
treated in this work (see (21) and (27)), we have continuity 
along the radial lines at 0 = +0", 7r _+ 0 ' .  However, when 0* 
= 90 deg corresponding to complete debonding, rigid-body 
displacements have to be constrained within the fiber region. 

Numerical Results 
We consider a unidirectional composite aligned along x~ for 

the analysis. The material properties used in the calculations, 
representative of Nicalon fiber and 1723 Glass matrix, both 
assumed to be isotropic, are listed as follows: 

Material E(GPa) G(GPa) a ( ×  10-6/°C) 

Nicalon 200.0 77.0 3.2 

1723 Glass 88.0 36.0 5.2 

Two different solutions based on the present model are con- 
structed for this study. In the first solution where N = 3, the 
matrix is modeled as two cylindrical layers which have their 
common interface at r = (rm + r:) /2,  while the fiber is subdi- 
vided into a core and layer with their interface being located at 
r:/2. In the second solution, we set N = 5 such that in the fiber 
region we have a core and two annular regions whereas the 
matrix was subdivided into three layers. The core and subse- 
quent layer outer radii for N = 5 were given by r:/3, 2r:/3,  r:, 
(2 rf + r, , ) /3,  (r:  + 2 r,,,)/3 and rm, respectively. 

For v: = 0.4, and N = 3, the nonzero components of the 
effective stiffness matrix are listed in Table 1 as a function of 
the angle of debonding. For both 0* = 0 deg and 90 deg, 
corresponding to perfect bonding and complete debonding of 
the interface, respectively, the composite is transversely iso- 
tropic, and there exist five independent components of C o , 
which may be taken as Cll, C22, C~2, Cz3, and C66. However, 
for partial debonding of the interface, isotropy in the transverse 
2-3 plane is lost. For all other values of 0* (different from 0 
deg and 90 deg) the number of independent C o is found to be 
nine corresponding to an orthotropic material. The additional 
stiffness components can be taken to be C33 , C13 , C44 , and C55. 
The concentric cylinder had also been discretized and analyzed 
by Yuan (1992) using finite elements. The results from his 
analysis are found to be in reasonable agreement with our values 
listed in Table 1. 

Using (25), the effective engineering constants can now be 
calculated. Figures 3-5 illustrate the behavior of the effective 
engineering constants with angle of debonding for v: = 0.4 and 
N = 3 and 5 along with the values reported by Yuan (1992). 
The results of the present study have been shown (Pagano and 
Tandon, 1994) to be in excellent agreement with the elasticity 
solution (Pagano and Tandon, 1990) for 0* = 0 deg and 90 
deg. As seen from Fig. 3, debonding at the interface is seen to 
have negligible effect on the longitudinal Young's modulus, 
Ej~. Also, E33 seems to decrease gradually with increasing 0* 
whereas E22 remains almost insensitive to debonding at small 
values of 0". At a debond angle of say 45 degrees, E33 reduces 
by approximately 44 percent of its value at 0* = 0 deg, whereas 
the reduction in E22 is only about 7 percent. Even at a debond 
angle of 75 deg, the reduction in E22 is only about 30 percent. 
With further increase of 0", E22 drops rapidly to its completely 
unbonded value. Increasing the number of rings N from 3 to 5 
results in a slight increase in the effective stiffness but the 
improvement is small. The FEM solution obtained by Yuan 
(1992) seems to predict a slightly stiffer composite in the trans- 
verse plane. However, agreement between the results from the 
variational model and FEM solution is quite reasonable for the 
entire range of debonding. 

5.75 

5.35 .:.  
.,-,. ¢x33 (N ~ 3 )  .., 

, ~ , ,  , : : J  a22 (N y 3) / 
4.95 ~ ~ / ~ / .  ./.....: a22 (N = " 
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Fig. 6 The variation of effective coefficient of thermal expansion, 
namely, ~t~, a==, and ~a3 of Nica lon/1723 glass composite with angle of 
debonding 

The behavior of the longitudinal shear modulus, G12,  is simi- 
lar to that of E22, whereas, the transverse shear modulus, G23 
and longitudinal shear modulus, G~3 behave in a manner similar 
to that of E33, as shown in Fig. 4. The FEM solution (Yuan, 
1992) again seems to predict a stiffer composite over most of 
the range of 0". The effective Poisson's ratios satisfy the relation 

uoE:j = uiiEii; i ~: j ;  no i, j summation, (28) 

thereby establishing symmetry of the effective stiffness matrix. 
Their variation with the angle of debonding is illustrated in Fig. 
5. What is interesting to note is that the transverse Poisson's 
ratio, u32, passes through a minimum as 0* is varied from 0 to 
90 deg. 

In Fig. 6, we have illustrated the behavior of the effective 
coefficients of thermal expansion (CTE) with angle of debond- 
ing for v: = 0.4 and N = 3 and 5. The results of the present 
analysis are seen to be in very good agreement with the elasticity 
solution of a concentric cylinder for the two extremes of perfect 
bonding (0" = 0 deg) and complete debonding (0" = 90 deg). 
Similar to E~, debonding at the interface is seen to have negligi- 
ble effect on the longitudinal CTE, a , .  It is also interesting to 
note that a33 seems to increase gradually with increasing 0", 
with a maximum occurring close to complete separation, 
whereas o/22 remains almost insensitive to debonding at small 
values of 0". 

The composite cylinder model has also been employed by 
Tang (1992) to evaluate the stiffness reduction of a unidirec- 
tional fiber composite containing interfacial cracks under longi- 
tudinal shear loading. The resulting mixed boundary value prob- 
lem lead to systems of dual series equations, which were then 
reduced to Fredholm integral equations of the first kind with a 
logarithmically singular kernel, and solved numerically. In Fig. 
7 we have compared the effective longitudinal shear moduli 
obtained from Teng's (1992) analysis with the results from the 
present formulation with N = 3. The fiber volume fraction was 
kept at 0.4 while two different ratios of fiber to matrix shear 
moduli, namely, Gi/Gm = 5 and 20, were considered. As seen 
in Fig. 7, the results from our approximate model agree very 
well with the exact solutions over the entire range of debonding 
for both moduli ratios employing relatively small number of 
layers. 

Finally, Sullivan, Cassin and Rosen (1990) have employed 
finite element analysis to model the effects of fiber/matrix de- 
bonding on the resulting transverse moduli of unidirectional 
composites using the repeating element of a hexagonal array. 
The results from the present formulation (employing a concen- 
tric cylinder RVE) are compared with their model representative 
of six disbonds around the fiber, with the centers of each disbond 
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Fig. 7 Comparison of normalized effective longitudinal shear moduli from Teng's 
(1992) analysis with present formulation 

segment positioned 60 deg apart. The fiber and material proper- 
ties taken from the work of Sullivan et al. (1990) are listed as 
follows: 

ET EA GA 
Material (GPa) (GPa) Ur UA (GPa) 

Fiber 9.9 397.2 0.45 0.41 19.9 
Matrix 9.1 9.1 0.11 0.11 4.1 

where subscripts T and A refer to the stated property in trans- 
verse and axial direction, respectively. 

The composite transverse Young's modulus, E33, and shear 
modulus, G23, have been plotted in Fig. 8. Two fiber volume 
fractions were investigated, namely, 0.4 and 0.6. The results 
from our approximate model (with N = 3) are seen to agree 
reasonably with finite element solutions for the range of debond- 

ing considered. The degradation of the effective transverse prop- 
erties is seen to increase as the angle of debond grows and is 
more severe for the higher fiber volume fraction composite, i.e., 
at larger debond angles, lower fiber volume fraction results in 
a stiffer composite. We have further observed that the variation 
of E22, G12, G13, ~21, and u3~, with vy, is similar to that of E33, 
whereas EH increases linearly with increase in vj-. 

Concluding Remarks 
In this study, a variational model of a concentric cylinder has 

been utilized to examine the effect of the extent of debonding 
as well as fiber volume fraction, on the composite moduli of a 
typical glass-ceramic composite material. For a symmetrically 
partially debonded interface, the composite behaves as an ortho- 
tropic material. Interface debonding is seen to have negligible 
effect o n  E l l  and a n ,  whereas, E22, G~z,/J21, and ot22 are almost 

10 

8 
O 

• g 6 
O 

4 
O 

2 

0 

sis) 

O23 (Present analysis) 

G23 (Sullivan et al) 

0 7.5 15 22.5 30 37.5 45 

Debond Angle (in degrees) 
Fig. 8 Comparison of effective transverse Young's modulus, E~, and transverse 
shear modulus, G=3, from the analysis of Sullivan et al. (1990) with present formula- 
tion 
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insensitive to debonding at small values of/9*. Further, for small 
debond angles, transverse Young's modulus is seen to increase 
with increasing fiber volume fraction, whereas, at larger debond 
angles, lower fiber volume fraction results in a stiffer composite. 
It has been clearly demonstrated that the agreement between 
the results from the approximate model (employing relatively 
small number of layers) and existing numerical solutions 
(Yuan, 1992; Teng, 1992; Sullivan et al., 1990) is quite reason- 
able for the entire range of debonding considered. Comparison 
of experimental measurements of composite moduli with the 
results such as those presented in this study can be instrumental 
in the analysis of failure modes in the constituent materials of 
brittle matrix composites. 

As mentioned earlier, the number of regions in the r-direction 
can be increased in order to improve the solution accuracy in 
the variational method. Another way to enhance correctness 
is to adjust the relative thickness of the subdivisions without 
increasing their number. Thus, it is the linear dimension in 
the radial direction which is the single variable controlling the 
accuracy of the solution in the variational method. On the other 
hand, in most of the numerical approaches, such as 2-D finite 
element or finite difference, it's the finite size of the element, 
or node point spacings in both r- and 0- directions, which 
control the accuracy of the solution. In that respect, the varia- 
tional method facilitates easier control over numerical accuracy. 

Finally, in this work, the variational method has been used 
to define the response of a composite that behaves in accordance 
with the concentric cylinder representative volume element. Al- 
ternately, the variational method can be coupled with a four (or 
more) phase model (Pagano and Brown, 1993) to look at first 
damage in a composite or to examine the effect of nonuniform 
fiber spacing, rather than using this as an RVE. 

References  
Aboudi, J., 1987, "Damage in Composites--Modeling of Imperfect Bonding," 

Composites Science and Technology, Vol. 28, pp. 103-128. 
Achenbach, J. D., and Zhu, H., 1989, "Effect of Interfacial Zone on Mechanical 

Behavior and Failure of Fiber Reinforced Composites," Journal of Mechanics 
and Physics of Solids, Vol. 37, pp. 381-393. 

Achenbach, J. D., and Zhu, H., 1990, "Effect of Interphases on Micro and 
Macromechanical Behavior of Hexagonal-Array Fiber Composites," ASME 
JOURNAL OF APPLIED MECHANICS, Vol. 57, pp. 956-963. 

Agarwal, B. D., and Bansal, R. K., 1979, "Effects of an Interfacial Layer on 
the Properties of Fibrous Composites: A Theoretical Analysis," Fibre Science 
and Technology, Vol. 12, pp. 149-158. 

Benveniste, Y., and Aboudi, J., 1984, "A Continuum Model for Fiber Rein- 
forced Materials with Debonding," International Journal of Solids and Structures, 
Vol. 20, pp. 935-951. 

Benveniste, Y., 1985, "The Effective Mechanical Behaviour of Composite 
Materials with Imperfect Contact Between the Constituents," Mechanics of Mate- 
rials, Vol. 4, pp. 197-208. 

Chao, R., and Laws, N., 1992, "Closure of an Arc Crack in an Isotropic 
Homogeneous Material due to Uniaxial Loading," Quarterly Journal of Mechan- 
ics and Applied Mathematics, VoL 45, pp. 629-640. 

Hashin, Z., Rosen, B. W., and Humphreys, E. A., 1985, "Fiber Composite 
Analysis and Design," Report DOT/FAA/CT-85/6, Vol. 1, pp. 2-24-2-37. 

Hashin, Z., 1990, "Thermoelastic Properties of Fiber Composites With Imper- 
fect Interface," Mechanics of Materials, Vol. 8, pp. 333-348. 

Jasiuk, I., and Tong, Y., 1989, "The Effect of Interface on the Elastic Stiffness 
of Composites," Mechanics of Composite Materials and Structures, J. N. Reddy 
et al., eds, ASME AMD-Vol. 100, pp. 49-54. 

Ju, J. W., 1991, "A Micromechanical Damage Model for Uniaxially Reinforced 
Composites Weakened By Interfacial Arc Microcracks," ASME JOURNAL OF 
APPLIED MECHANICS, Vol. 58, pp. 923-930. 

Lene, F., and Leguillon, D., 1982, "Homogenized Constitutive Law for a 
Partially Cohesive Composite Material," International Journal of Solids and 
Structures, Vol. 18, pp. 443-458. 

Mura, T., Jasiuk, I., and Tsuchida, B., 1985, "The Stress Field of a Sliding 
Inclusion," International Journal of Solids" and Structures, Vol. 21, pp. 1165- 
1179. 

Nimmer, R. P., Bankert, R. J., Russell, E. S., Smith, G. A., and Wright, P. K., 
1991, "Micromechanical Modeling of Fiber/Matrix Interface Effects in Trans- 
versely Loaded SiC/Ti-6-4 Metal Matrix Composites," Journal of Composites 
Technology and Research, Vol. 13, No. 1, pp. 3-13. 

Pagano, N. J., 1978, "Stress Fields in Composite Laminates," International 
Journal of Solids and Structures, Vol. 14, pp. 385-400. 

Pagano, N. J., 1986, "Axisymmetric Stress Fields in Involute Bodies of Revolu- 
tion," Journal Spacecraft and Rockets, Vol. 23, No. 2, pp. 165-170. 

Pagano, N. J., and Tandon, G. P., 1990, "Modeling of Imperfect Bonding in 
Fiber Reinforced Brittle Matrix Composites," Mechanics of Materials, Vol. 9, 
pp. 49-64. 

Pagano, N. J., 1991, "Axisymmetric Micromechanical Stress Fields in Compos- 
ites," Proceedings 1991 IUTAM Symposium on Local Mechanics Concepts fi~r 
Composite Materials Systems, Springer-Verlag, New York, p. 1. 

Pagano, N. J., and Brown, III, H. W., 1993, "The Full-Cell Cracking Mode in 
Unidirectional Brittle Matrix Composites," Composites, Vol. 24, pp. 69-83. 

Pagano, N. J., and Tandon, G. P., 1994, "2-D Damage Modes in Unidirectional 
Composites under Transverse Tension and/or Shear," Mechanics of Composite 
Materials and Structures, Vol. 1, No. 2, pp. 119-155. 

Reissner, E., 1950, "On a Variational Theorem in Elasticity," Journal of 
Mathematical Physics, Vol. 29, p. 90. 

Robertson, D. D., and Mall, S., 1992, "Fiber-Matrix Interphase Effects Upon 
Transverse Behavior in Metal-Matrix Composites," Journal of Composites Tech- 
nology and Research, Vol. 14, No. 1, pp. 3-11. 

Selvadurai, A. P. S., Singh, B. M., and Au, M. C., 1989, "Axial Loading of a 
Rigid Disc Inclusion with a Debonded Region," International Journal of Solids 
and Structures, Vol. 25, pp. 783-795. 

Shimansky, R. A., Hahn, H. T., and Salamon, N. J., 1990, "The Effect of Weak 
Interface on Transverse Properties of a Ceramic Matrix Composite," Materials 
Research Society Symposium Proceedings, Vol. 170, pp. 193-204. 

Steif, P., and Hoysan, S. F., 1987, "An Energy Method for Calculating the 
Stiffness of Aligned Short-Fiber Composites," Mechanics of Materials, Vol. 6, 
pp. 197-210. 

Sullivan, B. J., Cassin, T. G., and Rosen, B. W., 1990, "Micromechanical 
Analysis of Unidirectional Composites with Unique Fiber Geometries and Fiber/ 
Matrix Interface Conditions," Proceedings of American Society for Composites, 
Fifth Technical Conference, Technomic, Lancaster, PA, pp. 144-153. 

Takahashi, K., and Chou, T. W., 1988, "Transverse Elastic Moduli of Unidirec- 
tional Fiber Composites with Interfacial Debonding," Metallurgical Transactions 
A, Vol. 19A, pp. 129-135. 

Tandon, G. P., and Pagano, N. J., 1988, "A Study of Fiber-Matrix Interfacial 
Modeling," Proceedings 4th Japan-US Conference on Composite Materials, 
Technomic, Lancaster, PA, pp. 191-200. 

Tandon, G. P., 1995, "Use of Composite Cylinder Model as Representative 
Volume Element for Unidirectional Fiber Composites," to appear in Journal of 
Composite Materials, Vol. 29, No. 3, pp. 388-409. 

Tandon, G. P., and Pagano, N. J., 1994, "Damage Modeling of Brittle Matrix 
Composites Under Thermal and Transverse Loading," Damage Mechanics in 
Composites, AMD-Vol. 185, D. H. Allen and J. W. Ju, eds., ASME, New York, 
pp. 129-141. 

Teng, H., 1992, "On Stiffness Reduction of a Fiber-Reinforced Composite 
Containing Interfacial Cracks Under Longitudinal Shear," Mechanics of Materi- 
als, Vol. 13, pp. 175-183. 

Yuan, F. G., 1992, "Elastic Moduli of Fiber Reinforced Brittle Matrix Compos- 
ites with Interracial Debonding," Contract F33615-90-C-5944, Wright Labora- 
tory, Materials Directorate, Wright Patterson AFB. 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 217 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Sung Yi 2 

H. H. Hilton 3 

M. F. Ahmad 4 

Aeronautical and Astronautical 
Engineering Department, 

National Center for Supercomputing 
Applications 

and Theoretical and Applied 
Mechanics Department, 

University of Illinois at Urbana-Champaign, 
Urbana, IL 61801-2935 

Nonlinear Thermo-Viscoelastic 
Analysis of Interlaminar 
Stresses Laminated 
Composites 
A finite element formulation for analyzing interlaminar stress fields in nonlinear 
anisotropic viscoelastic laminated composites is presented including a hygrothermal 
formulation. Schapery's single integral formulation is extended to account for visco- 
elastic anisotropy and multiaxial stress states. Numerical results obtained from the 
present formulation are compared against experimental data and excellent agreement 
is obtained between these results. As illustrative examples, inplane and interlaminar 
stresses for (45/-45)s  T300/5208 laminate are also presented. 

When polymeric composites are exposed to elevated tempera- 
tures and moisture environments, mechanical behaviors of poly- 
mer matrix composites are significantly affected by such ambi- 
ent conditions. Environmental factors such as temperature, 
moisture content, oxygen, and ultraviolet radiation are signifi- 
cant contributors to material degradation of polymer matrix 
composites and these effects have received substantial attention 
in the literature (Crossman et ai., 1978, 1979; Shen and 
Springer, 1979; Whiteside et al., 1983; Yeow et al., 1979). 
Nonlinear viscoelastic behavior has been observed in laboratory 
tests of polymer matrix composites (Harper and Weitsman, 
1985; Hiel et al., 1984; Lou and Schapery, 1971; Tuttle and 
Brinson, 1986; Walrath, 1991 ). Under elevated load conditions, 
history-dependent effects can also lead to accumulation of resid- 
ual stresses. It is important to examine the dimensional changes 
of the laminate as well as moisture and temperature induced 
stresses as functions of time. Elastic approaches cannot accu- 
rately predict residual stress and strain fields since material 
properties and strengths of polymeric matrix composites are 
strongly time dependent (Dillard and Brinson, 1983; Hiel et 
al., 1983; Lifshiz and Rotem, 1970; Yi, 1993). In composite 
structural design, time-dependent effects of polymer matrix 
composite materials must be considered in order to ensure real- 
istic analysis and the environmental durability over the entire 
life span of composite structures. 

Interlaminar stresses near free edges are mainly responsible 
for delarnination failures. Numerous studies (Brewer and La- 
gace, 1988; Dfivila and Johnson, 1993; Gu and Reddy, 1992; 
Hiel et al., 1991; Hilton and Yi, 1993; Kim and Soni, 1984; 
Lin and Yi, 1991; Lucas and Odegard, 1989; O'Brien, 1982; 
Pipes and Pegano, 1970; Sun and Chen, 1987; Wang and Cross- 
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man, 1977; Wang and Choi, 1982; Yi, 1993) have been under- 
taken to investigate interlaminar stresses and failures of lami- 
nated composites. Hiel et al. (1991) studied the interlaminar 
tensile strength under static and fatigue loads including the 
temperature and moisture effects. Gu and Reddy (1992) studied 
the effect of geometric nonlinearities on free-edge stress fields. 
Ddvila and Johnson (1993) investigated the response and failure 
for dropped-ply laminates tested in flat-end compression. A 
limited number of studies (Hilton and Yi, 1993; Lin and Yi, 
1991; Yi, 1993) have been conducted for rate-dependent inter- 
laminar stresses and delaminations. No work has been reported 
on interlaminar stresses for nonlinear viscoelastic composites. 
(After this paper was submitted and reviewed, Kennedy and 
Wang (1994) presented a three-dimensional finite element anal- 
ysis for anisotropic Schapery-type stress strain relations and 
developed equally efficient recursive relations.) Henriksen 
(1984) has presented a two-dimensional isotropic viscoelastic 
finite element analysis. Lin and Yi ( 1991 ) developed the numer- 
ical procedure to analyze the viscoelastic interlaminar stresses. 
Later Yi ( 1993 ) proposed the modified Quadratic Delamination 
Criterion to account for time-dependent strengths in order to 
predict the delamination initiations in viscoelastic composite 
laminates as functions of time and loading history. Hilton and 
Yi (1993) have shown that the times for delamination onset 
occurrences in composites can be predicted probabilistically. 
Their analysis includes stochastic processes due to combined 
random loads and random delamination failure stresses as well 
as random anisotropic viscoelastic material properties. 

In this study, based on Schapery's nonlinear constitutive rela- 
tions and virtual work principle (Findley et al., 1989; Lambom 
and Schapery, 1993; Lou and Schapery, 1971; Schapery, 1969), 
a numerical procedure is developed for the analysis of nonlinear 
anisotropic viscoelastic in-plane and interlaminar stresses in 
composite laminates during environmental exposure. Numerical 
results have been obtained for [45/-45]s  laminates to demon- 
strate the feasibility of the present approach. Other lay-up orien- 
tations can be conveniently analyzed using the present formula- 
tion. 

Analysis 
Lekhnitskii (1963) was the first to consider an anisotropic 

elastic generalized plane-strain problem. Pipes and Pagano 
(1970) used the following displacement field for symmetric 
laminates under a generalized plane-strain state: 
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u(x,  y, z, t) = x ' e l ( t )  + U(y,  z, t) 

v(y ,  z, t) = V ( y ,  z, t) 

w(y ,  z, t) = W ( y ,  z, t) (1) 

where el(t) is the uniform extensional strain. Small displace- 
ments are considered in order to focus primarily on nonlinear 
material property effects. 

For this case the resulting strains and stresses are independent 
of the x-coordinate and the equilibrium equations in the absence 
of body forces become 

O'x, x -']- Txy,y -'1- '7"xz,z = 0 

Tyz, x + O'y,y + '7"yz, z "~- 0 

Txz,x + rzy,y + O'z, z : 0 (2) 

where a comma denotes partial differentiation. 
Based on the time-temperature superposition principle (Wil- 

liams et al., 1955), the relaxation curves can be shifted and 
master relaxation curves can be obtained at the reference tem- 
perature and humidity, where linear anisotropic viscoelastic re- 
laxation moduli can be represented as 

Q~j( T:, Mf, ;o) = Q~ + AQ~j(T:-, Mf, ~0) (3) 

with no summation on i or j and with the reduced time ~u 
defined by 

;o ~u(t) = au[T(s), M(s)lds (4) 

In the above, i, j = 1, 2 . . . . .  6, T: and M/are the reference 
temperature and moisture content, Q~ and AQ0 are the equilib- 
rium moduli at constant strain and transient components, respec- 
tively, and ~0 are reduced times which are related the shift 
factors a o. The relaxation modulus tensor has nine independent 
constants for a three-dimensional orthotropic material. 

By using a generalized Maxwell model, the relaxation moduli 
can be represented in terms of exponential series such that 
(Hilton and Dong, 1964) 

u~ 0 
Qo(T:, Mf, ~i/) = Qi~ + ~ Qij~o "e-~j/~'°~ (5) 

oO=I 

where how are relaxation times, NT U are the numbers of terms 
used in the series expansion and with no summation on i or j .  

Introduction of the abbreviated notation leads to the following 
relaxation moduli Qq and reduced times ~: 

Qr(T[, My, ~r) = aq(T:, My, ~ij) (6) 

with no summation on i or j and with 

~ = ~ u  r = l  . . . . .  9. 

The transformed relaxation moduli (~y with respect to the 
laminate coordinates can be obtained by appropriate coordinate 
transformations and by using the abbreviated notation they be- 
come 

9 

Ou(t) = ~ A,~Q~(t) (7) 
r = l  

where Aor are the transformation coefficients. 
A general practical constitutive theory for nonlinear visco- 

elastic materials was developed by Schapery (Findley et al., 
1989; Lamborn and Schapery, 1993; Lou and Schapery, 1971; 
Schapery, 1969) from irreversible thermodynamic principles. 
By using free energy and entropy production, nonlinear stress 
relaxation can be expressed in terms of the same time-dependent 
properties obtained by the linear analysis. In the present study, 
Schapery's single integral formulation is extended to account 
for anisotropy and multi-axial stress states. Using the contracted 

notation, the constitutive relations for nonlinear thermo-visco- 
elastic composite materials with respect to the laminate coordi- 
nate can expressed as 

tri(t) = ~ [Ao.rhTQT~i(t ) 
r = l  

+ A~i~h~" AQr[~,.(t) - ~ ( T ) ]  ah~:(7-) dT- (8) 
OT 

with 

~j(t) = ej(t) - ej*(t). (9) 

In the above, a~ are stresses and e: and c~ are total and hygro- 
thermal strains. Q7 and AQ~ are the equilibrium moduli at 
constant strain and transient components defined by linear vis- 
coelasticity. The quantities hT, h~, h~ 2, and ff~ are strain-depen- 
dent material properties. The reduced time ~r can be defined as 
a function of shift factor 

:0 el(t)  = ff,.(T, M, e)ds 

Y0 ~,'.(T) = ff~(r, M, e)ds.  (10) 

The shift functions o-r may depend on strain, temperature, and 
moisture contents. When the nonlinear material parameters h 
are set equal to one, Eq. (9) reduces to the statement of the 
linear Boltzman superposition principle. 

Material parameters of laminated composites are evaluated 
by uniaxial tests. However, under uniaxial test conditions, an 
individual ply within the laminate is in a multiaxial stress state 
and the influence of other stresses on material parameters must 
be considered. Hiel et al. (1984), Tuttle and Brinson (1986), 
and Walrath (1991 ) have introduced the average matrix octahe- 
dral shear stress in order to account for such multiaxial condi- 
tions. Similarly, in this present study, the octahedral shear strain 
e ''°~' is introduced and then nonlinear material parameters can 
be expressed as functions of single invariant 

c ''°~ = ~ttelt . . . . .  - e~') z + (e~' - e q') 2 + (e~' - e'l") 2] (11) 

where e'~, e~, and e~' are principal strains of the matrix. 

Finite Element Formulation 
Using virtual work and the constitutive integral equations, 

finite element equilibrium equations for nonlinear viscoelastic 
composite laminates can now be formulated. In the absence of 
body forces, the virtual work principle for element e becomes 

6~<e~= f v,e, 6"~'~dV<e)- fr~e~ 6d<~)rT~e)aT'<~)=O ( 1 2 )  

where 6¢ is the associated virtual strain tensor, ~r the stress 
tensor, T <e> the boundary tractions, 6d <e~ the virtual displace- 
ment vector, V <e) the body volume, and F ~> is the surface on 
which boundary tractions are prescribed. 

The displacement components U <e), V <~), W ~ in Eq. (1) 
may be approximated as 

V<~)(y, z, t) = [~(e~] {de(t)} (13) 
W(~(y ,  Z, t) 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 219 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



where 

I//1 0 0 "'" ~]l 0 0 0 ] 
[ ~I / (e)] .~. 0 I//1 0 ' ' '  0 ~t I 

0 0 0~ "'" 0 0 ~ 
(14) 

{d (")(t) } = Ld] ~), d~ ~), d~ e) , d~ ~), d~ ~), d(~ e) . . . . .  

d~ ~), dl ~), dle)J r. (15) 

In the above, l is the number of nodes for each element, 
[@ ~')(y, z)] are the isotropic shape functions and {d ~)(t) } is 
the element nodal displacement vector• 

By substituting Eqs. (14) into (1),  the displacements and 
their virtual counterparts within an element can be expressed 
in terms of axial strains and nodal displacements 

{ff(~)} = [L @~)]ILd~)(t)<(t) } (16) 

and 

6{0 -~") } = [ L  ~It (e)] 6{ det(t)(e)(t) Jl 

k .... = QrBj.dydz (20) 

"~' f f  km.~(x, {~ - ~;) = ~., B~mAo/XQr({r- ~,')Bj.dydz 

<ffr,o) B,~A,,r = Z  a '  rw 

X exp[-(¢~- ~,'.)/k~]B~,dydz 
NL 

t (e) t = k ...... " e x p [ - ( ~ r -  ~,)/k~o] 
a)~l 

(no summation over repeated r) (21) 

and 

f ff)(t) = ff,o[~]{t(t)}aydz. (22) 

The residual nodal force vector due to hygrothermal loads 
becomes 

f m (t) = h7 ~) ~, B~.,Ao.r QT~*(t)dydz 
r=I 

where 

{tr ")} = v~*)(t) ? 
w~,(t) J 

+ h~'"' ,~, Bi,nAo.rQtr(~r - ~;) 
=0 

×Oh~{')W(r)Or drdydz] (23) 

~{ ~-(e) } = ~ u ( e ) ( t )  ? 

w(e)(t) J 
(17) 

and 

! L } = L x  o o.I T. 

Differentiating Eq. (17) with respect to x~ results in the fol- 
lowing strain-displacement relationship: 

(:#t} {e(t)} = [B] ) . (18) 

Similar to the stress-strain relationships, finite element equi- 
librium equations for nonlinear viscoelastic bodies can also be 
stated as hereditary integral equations. Substituting Eqs. (18) 
and (19) into the virtual work principle Eq. (13) yields the 
finite element equilibrium equations for each element 

~(e) hT~(~ ~)" km.~ ~.(t) + h~e'(~e~) " k,.,,Ax,'"~ {~ - U) 
r=l  

-1 
ds l  = f ~ ( t )  + f ,~'"(t) (19) 

× Os _1 

with no summation over r and where m, n = 1, 2 . . . . .  3l + 
1. In the above, k~2 is the element stiffness matrix, ff(e~ is the 
vector of element nodal displacements and f ~) and f ~z (e) a r e  
element nodal force vectors due to applied surface tractions or 
uniaxial strain and hygrothermal loadin~ respectively. Nonlin- 

• ~(e) 1 (e) 2 -I ) e ear material parameters h~ , h~ , hr , and ff~ ) can be de- 
scribed as functions of displacements by using strain-displace- 
ment relationship. The element stiffness matrix and the element 
nodal force vectors can be defined as follows: 

where ~ are the transformed free hygrothermal strains• 
Using an exponential series for relaxation moduli, the force 

vector can be rewritten as 

-- ~ [ . ~a(e) T fhm(e)(t) = -- h7 ~ { f  mr "0 (t) + f~,~(~'OH(t)} 
r=l  

+ h~ ~'' f , ' , ~ ' e x p [ - ( ~ r -  ~ ) /k~ , ]  
to= 1 =0 

Oh~°~or(7) 

Or 
e t B(e) r ~ ~" 

+ y .... • e x p t -  (~r - ~')/kr~] 

Oh~"~OH(T)~. d~-] 
× 57 j (24) 

where 

= BimAo.rO~ oljdydz 
(e) 

: ~ ( , 1 =  f f vc ,  BimAi:raT~clydz 

.... = f £  , 
f , ~ , e )  Bi,,,AorQr~ajdydz 

(e ) 

f tB(e) f l u  t - -  .... = BimAorQr~o[3jdydz 
(e) 

(25) 

with no summation on r. Note that ~j and ~ are the transformed 
coefficients of thermal and hygroscopic expansions with respect 
to the xyz coordinate system. 

The global matrices can be assembled from the element matri- 
ces and then the finite element equilibrium equations for the 
global system become 
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h : .  k~.,ff,,(i) + h ) '  k~.,,r[X, ~.(t) 
r = l  

- ~ ( s ) ]  OhZ"ff'(S)os ds] = f , , ( t )  + am.e ;' tt~.. (26) 

Since the above equations are hereditary integrals, a direct 
integration of Eq. (27) requires enormous storage memory and 
computational time. To overcome these difficulties, a numerical 
algorithm similar to that used by Bathe (1982), Lin and Yi 
(1991). Oden (1971), Roy and Reddy (1988), Taylor et al. 
(1970), and Zak (1967) for linear viscoelastic materials is de- 
veloped here for the solution of Eq. (27). The present formula- 
tion requires storage of only the previous time solution instead 
of all the solutions throughout the loading time history. 

Let 

4nr(t) -~ hr 2" ~,( t )  

Or,.(t) = h~ 'Or( t )  

ON(t) = h 2 "On(t) (27) 

then the governing equations can be integrated step by step 
using a finite difference recurrence relationship for approximate 
calculations of derivatives of Eqs. (28). By assuming that the 
~,,r vary linearly over each time step Atj, the variables q,,,. and 
their time derivatives are given by 

1 
4,,r(t) ~ ~ [(tj - t)O,,~(tj_l) + (t - tj_,)4,,,.(ti)] 

O@(t)  = A4,,r(tj) _ Ct,,r(tj) - 4,,r(tj-,) 
- ( 2 8 )  

Ot Atj Atj 

with 

A t j  : tj --  t j - I  t j - i  ~- t -~ tj .  

Similarly the hygrothermal derivatives are defined as 

O0~(t) ~ AOr~(tj) _ O~(tj) - 0,T.(tj_l) 

Ot Atj Atj 

O0~(t) ~ AbHr(tj) = O~r(tj) - b~(tj ~) 
at /xtj Atj 

If no loading is applied at time t < 0 then 

A0~(0) = 0~(0), A0,"(0) = b,"(0). 

(29) 

(3o) 

By using finite difference approximations in Eqs. (29) and 
(30), Eq. (27) can be expressed in a recursive form as 

9 N r r  

{h:k~,,r + h)h 2 ~ k,.,,r~'Sr~,(Atp)}ff.(t,,) 
r = l  w = l  

9 gTr 

=f, ,( te)  + f :7 . ( tp ) -  E h) Z {k,.,,r~ 
r = l  w = l  

× Sr~(Atp)4,,~(t,,-~) - R ~ ( t . ) }  (31) 

with 
9 

h f ,,,(tp) = - ~ [h~ . { f  ~ "oT( tp) 
r=l 

m 
+ f ~P.OU(tp)} + h~ ~ '~ .... • { f  ..... • A0rr(tp) 

w = l  

+ft~r.AOrH(tp)}.  S~(At,)]  (32) 

R,,,~(t,,) = e - z~;~%yx { R,,,rw(tv- l ) 

+ [k, ...... "A4,,r(t._, ) -f~,",~,~'AO~'(t,,_~) 

- f I ~ . A O ~ ( t , , _ , ) ] .  S r ~ ( A l / , - l ) }  (33) 

1 f 'p = exp [ -- A~r(tp)/kr~] d r  Sr~(At,) ~ p  ,,-, 

R , , , , ~ ( 0 )  = o 

S,.oo(O) = 1 (34) 

(no summation over r). 

Note that Eqs. (32) are recursive and that it is possible to 
solve iteratively for the displacements if,, at time tp using only the 
previous solution at time tp_~. In the present study, a modified 
Newton-Raphson technique (Oden, 1971; Taylor et al., 1970) 
was used to solve the above nonlinear equations. 

Numerica l  Results  

A limited number of parametric studies have been constructed 
in order to illustrate the nonlinear time-dependent behavior of 
laminated composites. Consider the laminate under a plane- 
strain condition in the x-direction. The laminate width is 2 cm 
and the laminate width-to-thickness ratio is four. The compos- 
ites consist of T300/5208 graphite/epoxy. Using creep and 
creep recovery tests, the master compliance curves and shift 
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factors corresponding to various loading conditions were ob- 
tained from Tuttle and Brinson (1986). 

In this study, the relaxation moduli were evaluated by Schap- 
ery's nonlinear stress-strain relationship and by relaxation/re- 
laxation recovery analysis as extended to anisotropic relations, 
Eq. (9). Time-dependent Q22 and Q66 are  plotted in Fig. 1. It 
is assumed that time function for Q33 is equal to the one for 
Q22, and that Q66 = 044 = Q55. Qii is taken to be elastic since 
it is generally controlled by fiber properties. Also the time func- 
tions for Q~2, Q~3, and 023 are taken the same as that for Q22. 

Linear viscoelastic interlaminar stresses at t = 0 were com- 
pared with closed-form elastic solutions obtained by Yi (1993). 
Comparison studies between viscoelastic finite element solu- 
tions and the classical lamination solutions were also reported 
by Lin and Yi (1991). In this paper, a comparison study be- 
tween experimental results and the present numerical solution 
was conducted. Creep and creep recovery data for T300/5208 
graphite/epoxy composites were experimentally determined by 
Tuttle and Brinson (1986). At a temperature of 300°F, cr~ = 
13.93 MPa (2020 psi) was applied to the 90 deg laminates. The 
loading was held constant for eight hours and then removed 
in an instantaneous elastic step and after unloading, the creep 
recovery was measured for two hours. 

In the present study, 29-node isoparametric elements were 
used and the in-plane stresses, cry, calculated by the present 
method were compared with experimental results. As shown 
in Figs. 2-4 ,  excellent agreement between these results was 

rOx 

0 . 0  1 0 1  

0.0 10 I 

4.0 101 

3,0 101 

2.0 101 

1.0 101 

0.0 100 

-1.0 101 

010 o 

% " -  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

¢z • 1 ,E -3  

. . . .  ¢ = 2 .E -3  

. . . . . . . .  ~t " 3 ,E -3  
o . . o "  

i i I , i i I i i i I i I i , 

2100 4103 0103 S 100 1104 

Time ( m i n )  

Fig. 5 Time-dependent in-plane stress ¢~ in [451-45], laminate 

obtained. The discrepancies between these two solutions are 
within 3 percent. Similar errors were also observed in the com- 
pliance-relaxation modulus conversion process. The transient 
creep and recovery responses are magnified in Figs. 3-4.  

The nonlinear time-dependent inplane and interlaminar 
stresses in composite laminates were studied as a function of 
time and loading magnitude. T300/5208 laminates with [45/ 
-45]5 lay-ups were considered and nine-node isoparametric 
elements were used. The finite element model consists of 14 × 
4 meshes (56 elements) in the yz cross section with a total of 
784 degrees of freedom. The step-size At is set to 0.5 min 
initially and At increases with time. There are 55 time steps 
involved in the calculation of time-dependent interlaminar 
stresses over a period of 6.3 days. Three axial strain loading 
conditions such as cx = 0.001, ex = 0.002, and ex = 0.003 were 
considered. At isothermal conditions (T = 147°F), the axial 
strains were held constant for 5.3 days and then removed in an 
instantaneous step. The inplane stress ~rx which was obtained 
near the center of laminate was plotted in Fig. 5 and the residual 
stresses were observed after unloading. 

The interlaminar stress distributions along the interface be- 
tween the 45 deg and -45  deg layers are shown in Figs. 6-9. 
Normal interlaminar stresses cr z at t = 0 and 7600 mins are 
depicted in Figs. 6 and 7, respectively. Also transverse shear 
stresses ~'x~ at t = 0 and 7600 mins are plotted in Figs. 8 and 
9, respectively. As shown in Fig. 10, the rate of stress relaxation 
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is greater at higher loading conditions. Over a period of 5.3 
days, the stresses cr z and 7-xz relaxed about 11.6 percent at e, = 
10 3 while at c~ = 3 × 10 .3 those stresses decreased 16.2 

percent and 18.7 percent, respectively. The results show that 
increasing the load significantly increases nonlinear behavior. 

Conclusions 
Based on Schapery's nonlinear constitutive relations and vir- 

tual work principles, it is possible to develop three-dimensional 
nonlinear anisotropic viscoelastic stress-strain relations and an 
attendant finite element analysis, which was applied to the deter- 
mination inplane and interlaminar stresses in composite lami- 
nates during environmental exposures. Numerical results have 
been obtained for [45 / -45] - s  laminates, which demonstrate 
the feasibility of the present formulation. Other lay-up orienta- 
tions can be conveniently analyzed using the present approach. 
The results indicate a strong sensitivity to the nonlinearities of 
the viscoelastic constitutive relations. 

References 
Bathe, K., 1982, Finite Element Procedures in Engineering Analysis, Prentice- 

Hall, New York. 
Brewer, J. C., and Lagace, P. A., 1988, "Quadratic Stress Criterion for Initiation 

of Delamination," Journal of Composite Materials, Vol. 22, pp. 1141 - 1155. 
Crossman, F. W., Mauri, R. E., and Warren, W. J., 1978, "Moisture Altered 

Viscoelastic Response of Graphite/Epoxy Composite," Advanced Composite Ma- 
terials-Environmental Effects, ASTM STP 658, J. R. Vinson, ed., ASTM, Phila- 
delphia, pp. 205-220. 

Crossman, F. W., and Flaggs, D. L., 1979, "Dimensional Stability of Composite 
Laminates During Environmental Exposure," SAMPE Journal, Vol. 15, No. 4, 
pp. 15-20. 

Dillard, D. A., and Brinson, H. F., 1983, "A Numerical Procedure for Predicting 
Creep and Delayed Failure in Laminated Composites," Long-Term Behavior of 
Composites, ASTM STP 813, T. K. O'Brien, ed, ASTM, Philadelphia, pp. 23-  
37. 

D~ivila, C. G., and Johnson, E. R., 1993, "Analysis of Delamination Initiation 
in Postbuckled Dropped-Ply Laminates," AIAA Journal, Vol. 31, No. 4, pp. 721 - 
727. 

Findley, W. N., Lai, J. S., and Onaran, K., 1989, Creep and Relaxation of 
Nonlinear Viscoelastic Materials With an Introduction to Linear Viscoelasticity, 
Dover Publications, New York. 

Gu, Q., and Reddy, J. N., 1992, "Non-linear Analysis of Free-Edge Effects in 
Composite Laminates Subjected to Axial Loads," International Journal of Non- 
Linear Mechanics, Vol. 276, pp. 27-41. 

Harper, B. D., and Weitsman, Y., 1985, "On the Effects of Environmental 
Conditioning on Residual Stresses in Composite Laminates," International Jour- 
nal of Solids and Structures, Vol. 21, pp. 907-926. 

Henriksen, M., 1984, "Nonlinear Viscoelastic Stress Analysis--A Finite Ele- 
ment Approach," Computers & Structures, Vol. 18, pp. 133-138. 

Hiel, C., Cardon, A. H., and Brinson, H. F., 1984, "The Nonlinear Viscoelastic 
Response of Resin Matrix Composite Laminates," NASA Contractor Report 
3772. 

Hiel, C. C., Sumich, M., and ChappeU, D. P., 1991, "A Curved Beam Test 
Specimen for Determining the Interlaminar Tensile Strength of a Laminated Com- 
posite," Journal of Composite Materials, Vol. 25, pp. 854-868. 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 223 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Hilton, H. H., and Dong, S. B., 1964, "An Analogy for Anisotropic, Nonhomo- 
geneous, Linear Viscoelasticity," Developments in Mechanics, Pergamon Press, 
New York, pp. 58-73. 

Hilton, H. H., and Yi, S., 1993, "Stochastic Viscoelastic Delamination Onset 
Failure Analysis of Composites," Journal of Composite Materials, Vol. 27, No. 
11, pp. 1097-1113. 

Kennedy, T. C., and Wang, M., 1994, "Three-Dimensional, Nonlinear Visco- 
elastic Analysis of Laminated Composites," Journal of Composite Materials, 
Vol. 28, pp. 902-925. 

Kim, R. Y., and Soni, S. R., 1984, "Experimental and Analytical Studies On 
the Onset of Delamination in Laminated Composites," Journal of Composite 
Materials, Vol. 18, pp. 70-80. 

Lamborn, M. J., and Schapery, R. A., 1993, "An Investigation of the Existence 
of a Work Potential for Fiber Reinforced Plastic," Journal of Composite Materi- 
als, Vol. 27, pp. 352-382. 

Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Body, Holden- 
Day, San Francisco. 

Lifshitz, J. M., and A. Rotem, 1970, "Time-Dependent Longitudinal Strength 
of Unidirectional Fibrous Composites," Fibre Science and Technology, Vol. 3, 
pp. 1-20. 

Lin, K. Y., and Yi, S., 1991, "Analysis of Interlaminar Stresses in Viscoelastic 
Composites," International Journal of Solids and Structures, Vol. 27, No. 7, pp. 
929-945. 

Lou, Y. C., and Schapery, R. A., 1971, "Viscoelastic Characterization of a 
Nonlinear Fiber-Reinforced Plastic," Journal of Composite Materials, Vol. 5, 
pp. 208-234. 

Lucas, J. P., and Odegard, B. C., 1989, "Moisture Effects on Mode 1 Interlami- 
nar Fracture Toughness of Graphite Fiber Thermoplastic Matrix Composite," 
Advances in Thermoplastic Matrix Composite Materials, ASTM STP 1044, M. 
Newaz, ed., ASTM, Philadelphia, pp. 231-247. 

O'Brien, T. K., 1982, "Characterization of Delamination Onset and Growth in 
a Composite Laminates," Damage in Composite Materials, ASTM STP 775, 
ASTM, Philadelphia, pp. 140-167. 

Oden, J. T., 1971, Finite Elements in Nonlinear Continua, McGraw-Hill, New 
York. 

Pipes, R. B., and Pagano, N. J., 1970, "Interlaminar Stresses in Composite 
Laminates under Uniform Axial Extension," Journal of Composite Materials, 
Vol. 4, pp. 538-548. 

Roy, S., and Reddy, J. N., 1988, "A Finite Element Analysis of Adhesively 
Bonded Composite Joints with Moisture Diffusion and Delayed Failure," Com- 
puters & Structures, Vol. 29, pp. 1011-1031. 

Schapery, R. A., 1969, "On the Characterization of Nonlinear Viscoelastic 
Materials," Polymer Engineering and Science, Vol. 9, No. 4, pp. 295-310. 

Shen, C. H., and Springer, G. S., 1979, "Moisture Absorption of Graphite/ 
Epoxy Composites Immersed in Liquids and in Humid Air," Journal of Compos- 
ite Materials, Vol. 13, pp. 131-147. 

Sun, C. T., and Chen, J. K., 1987, "Effect of Plasticity on Free Edge Stresses 
in Boron-Aluminum Composite Laminates," Journal of Composite Materials, 
Vol. 21, pp. 969-985. 

Taylor, R. L., Pister, K. S., and Goudreau, G. L., 1970, "Thermomechanical 
Analysis of Viscoelastic Solids," International Journal for Numerical Methods 
in Engineering, Vol. 2, pp. 45-59. 

Tuttle, M. E., and Brinson, H. F., 1986, "Prediction of the Long-Term Creep 
Compliance of General Composite Laminates," Experimental Mechanics, Vol. 
26, No. 1, pp. 89-102. 

Walrath, D. E., 1991, "Viscoelastic Response of a Unidirectional Composite 
Containing Two Viscoelastic Constituents," Experimental Mechanics, Vol. 31, 
No. 6, pp. 111-117. 

Wang, A. S. D., and Crossman, F. W., 1977, "Edge Effects on Thermally 
Induced Stresses in Composite Laminates," Journal of Composite Materials, Vol. 
11, pp. 300-301. 

Wang, S. S., and Choi, I., 1982, "Influence of Fiber Orientation and Ply 
Thickness on Hygroscopic Boundary-Layer Stresses in Angle-Ply Composite 
Laminates," Journal of Composite Materials, Vol. 16, pp. 244-256. 

Whiteside, J. B., DeLasi, R. J., and Schulte, R. L., 1983, "Distribution of 
Absorbed Moisture in Graphite/Epoxy Laminates After Real Time Environmental 
Cycling," Long-Term Behavior of Composites, ASTM STP 813, T. K. O'Brien, 
ed., ASTM, Philadelphia, pp. 192-205. 

Williams, M. L., Landel, R. F., and Ferry, J. D., 1955, "The Temperature 
Dependence of Relaxation Mechanism in Amorphous Polymers and Other Glass- 
Liquids," Journal of the American Chemical Society, Vol. 77, pp. 3701-3707. 

Yeow, Y. T., Morris, D. H., and Brinson, H. F., 1979, "Time-Temperature 
Behavior of a Unidirectional Graphite-Epoxy Composite," Composite Materials: 
Testing and Design, Fifth Conference, ASTM STP 674. S. W. Tsai, ed., ASTM, 
Philadelphia, pp. 263-271. 

Yi, S., 1993, "Thermoviscoelastic Analysis of Delamination Onset and Free 
Edge Response in Epoxy Matrix Composite Laminates," AIAA Journal, Vol. 31, 
No. 12, pp. 2320-2328. 

Zak, A. R., 1967, "Structural Analysis of Realistic Solid Propellant Materials," 
J. Spacecraft and Rockets, Vol. 5, pp. 270-275. 

224 / Vol. 63, MARCH 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. A. Kardomateas 
Associate Professor, 

Mem. ASME. 

R. L. Carlson 
Professor Emeritus. 

School of Aerospace Engineering, 
Georgia Institute of Technology, 

Atlanta, GA 30332-0150 

A Micromechanical Model for 
the Fiber Bridging of Macro- 
Cracks in Composite Plates 
Recent experimental studies on the propagation of transverse cracks in composites 
have shown that fiber bridging is frequently present, and can be considered as the 
cause of increased toughness. This paper presents a model that is capable of quantify- 
ing this effect and explaining the decrease in the crack growth rate in either a 
monotonic or a cyclic load profile. Both Modes 1 and H are considered. The model 
is based on the elastic loading of a fiber located on the macro-crack face close to 
the tip and under dominantly plane strain conditions. Two fundamental cases of fiber 
bridging configurations are distinguished, namely when the fiber-matrix interface is 
intact and when the fiber-matrix interface has partially failed. Following the single 
fiber analysis, the model is extended to the case of multiple fibers bridging the faces 
of the macro-crack The analysis is for a generally anisotropic material and the fiber 
lines are at arbitrary angles. Results are presented for the case of an orthotropic 
material with unidirectional fibers perpendicular to the crack faces. Specifically, the 
reduction in the stress intensity factor (relative to the nominal value) is investigated 
for the glass fibers in a glass~epoxy composite system. The effects of fiber debonding 
and pullout with friction as well as fiber breaking are accounted for in the analysis, 
and results with respect to a parameter representing the fiber-matrix interface friction 
are presented. Results are also presented regarding the partial or full fracture of the 
fiber bridging zone. The model can also be used to analyze the phenomenon of fiber 
nesting, which is similar to fiber bridging, and occurs with growing delaminations. 

Introduction 
In many composite structure applications, transverse cracks, 

usually emanating from holes or notches, extend into sizable 
macro-cracks growing across the fibers. Fiber bridging of the 
macro-crack faces has been observed to take place in polymeric 
matrix composites (e.g., Botsis and Shafiq, 1992) and ceramic- 
matrix composites (e.g., Zok et al., 1990). 

The bridging of macro-cracks by fibers only partially pulled 
out is a significant source of toughness. The toughening mecha- 
nism behind the delamination tip is analogous to the contribu- 
tion to the toughness of polymers by bridges between molecular 
chains. Alternatively stated, in plastics, internal stresses are 
transmitted through tangles of chains, and if crosslinks are pres- 
ent, more and more internal resistance to external loading is 
available. 

The toughening roles played by fibers bridging a crack can 
be conceptually described as follows: Close to the crack tip, 
the crack-opening displacement is small enough to be accomo- 
dated by enhanced extension of the fiber located there: typical 
strains to failure are 0.003 for fiberglass and 0.01 for carbon 
fiber. Moving away from the crack tip, the displacement gets 
larger so that fiber pull-out or fiber fracture are required in order 
to accomodate the increasing crack displacement. 

This phenomenon has been exploited in the design of various 
titanium and titanium aluminide alloys which have been rein- 
forced by unidirectional SiC fibers having carbon-rich coatings. 
These fiber coatings contain weak graphitic films, which facili- 
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tate interfacial failure and extensive sliding resisted by friction 
(e.g. Cox et al., 1989). Such weak interfaces are beneficial 
in relatively brittle-matrix composites, especially the titanium 
aluminides, in contrast to the case of the more common ductile 
metal matrix and polymeric composites, in which stronger inter- 
faces are generally believed to optimize macroscopic properties. 

Despite the relatively stronger interfaces of polymetric matrix 
composites, fiber bridging has been observed as a source of 
toughening even in these materials. Moreover, another phenom- 
enon, which is analogous to fiber bridging, appears in polymeric 
matrix composites with growing delaminations. This is the phe- 
nomenon of fiber nesting, which takes place because of the 
fibers which cross adjacent layers due to compression during 
the manufacturing process (Russell and Street, 1988). As the 
delamination extends, these nested (bridged) fibers gradually 
become strained and subsequently divert some of the available 
strain energy away from the crack tip; therefore increasing the 
toughness. 

The fiber bridging effect on the opening of macro-cracks in 
composites is analogous to the effect of discrete asperities in 
the obstruction to crack closure in metallic materials (Beevers 
et al., 1984; Carlson et al., 1991). However, the fiber bridging 
of delaminations in composites affects the loading phase (open- 
ing of the delamination) and hence it can influence both the 
monotonic and cyclic growth behavior, whereas the discrete 
asperities effect in metallic cracks affects the unloading phase 
(closing of the cracks) and hence this phenomenon influences 
primarily the cyclic growth behavior. In both cases, the result 
is a reduced growth rate. In the same context, it can be argued 
that just as the plastic crushing of discrete asperities can result 
in an acceleration of fatigue crack growth in metals following 
a compressive excursion (Kardomateas and Carlson, 1994), the 
fracture of fiber bridges can similarly result in an acceleration 
of crack growth in composites following a tensile overload in 
a cyclic load sequence. Furthermore, it should be noted that 
fatigue crack growth of metals in an inert atmosphere may, 
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during unloading, result in a welding of asperities, which would 
produce an effect similar to the bridging phenomenon discussed 
here (Carlson and Beevers, 1992). 

Several important contributions have appeared on the bridg- 
ing problem, mainly in connection with ceramic matrix compos- 
ites. Specifically, Budiansky and Amazigo (1989) examined 
the effect of fiber bridging on the Mode I stress intensity factor 
in a smeared fiber force model. Rubinstein and Xu (1992) also 
examined the effect of fiber bridging on the Mode I stress 
intensity factor by using a discrete fiber representation in an 
isotropic material and a linear fiber force-displacement relation- 
ship. Nemat-Nasser and Hori (1987) developed asymptotic so- 
lutions for fully or partially bridged cracks. A detailed treatment 
of the fiber debonding with friction was provided by Hutchinson 
and Jensen (1990). 

In the present paper, a different approach is followed, based 
on discrete fibers at arbitrary orientations, with allowance for 
fiber breaking. The analysis allows evaluation for both Mode I 
and II stress intensity factors and is valid for a generally aniso- 
tropic material. Also, by incorporating the capability of treating 
individual fibers, it is possible to examine cases in which single 
fibers are either fractured or have interface failures which are 
very different from their adjacent neighbors; such studies would 
be analogous to examining the effect of imperfections in struc- 
tural systems. Two cases are treated separately here: either the 
fiber-matrix interface remains intact or has failed. For the latter 
case, a general nonlinear fiber force-displacement relationship 
is proposed. 

F o r m u l a t i o n  
Let us first define the basic geometric and material parameters 

that will be used in formulating the model. Consider a fiber at 
an angle ~v and at a distance c from the tip of a macro-crack in 
a composite body of thickness t (Figs. 1 (a ) ,  (b)) .  The length 
of the macro-crack is 2a and the fiber is at a distance b from 
the center. The presence of both externally applied forces and 

Q 

c 

Q 

Fig. l(a) External (global) and crack face (local) loading 
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Fig. 1 (b) A single fiber loading the upper crack face 

crack face forces is illustrated in Fig. 1 (a) ,  whereas the details 
of the proposed model are indicated in Fig. 1 (b).  Only the 
upper crack face is shown with the fiber developing a force 
with components P and Q. 

Let us consider a state of plane strain, i.e., e~ = Yyz - ~  "Yxz  = 

O. In this case, the stress-strain relations for the orthotropic body 
are (Lekhnitskii, 1963): 

o o 2  ° 3  

~YY ~ O~12 Og22 O{23 t~26 / O'yy , 

L'yxy.. I al6 EE26 0L36 0L66 J //L,7-xy 3 

where a~ 2 are the compliance constants (we have used the nota- 
tion 1 -~x,  2 - ~ y ,  3 - ~ z ) .  

Using the condition of plane strain, which requires that ~ = 
O, allows elimination of ~ ,  i.e., 

1 
aZZ - -  (Odl30"xr "1- Ol23l~Tyy). (2) 

Od33 

The Eq. (1) can then be written in the form 

ffYY l = / ~12 ~22 f l26 |  O'yy , ( 3 )  
"~/xy_J L f i I 6  /~26 ~66_1 T x y _ ]  

where 

P~ = aij - ai3cej----2 ( i , j  = 1, 2, 4, 5, 6). (4) 
0133 

Problems of this type can be formulated in terms of two 
complex analytic functions ffk(Zk) (k = 1, 2) of the complex 
variables zk = x + sky,  where &, ~ ,  k = 1, 2 are the roots of 
the algebraic equation 

J~ll S4 -- 2fl16S 3 + (2fl12 + /~66)S 2 -- 2J~26S + fl22 = 0. ( 5 )  

It was proven by Lekhnitskii (1963) that these roots Sl, s2, ~ ,  
are either complex or purely imaginary, i.e., Eq. (5) cannot 

have real roots. 
Now we proceed to the problem of studying the effect of 

discrete loads on a crack face in an anisotropic material. 

I Concentra ted  Equi l ibrat ing  Forces  on the T w o  Faces  
of  a M a c r o - C r a c k  in an Aniso trop ic  Mater ia l .  As  has been 
discussed, following Lekhnitskii (1963), the plane-strain aniso- 
tropic elasticity problem can be reduced to that of determining 
the two complex potentials ~k(Zk) of tWO different complex 
variables, zk = x + shy, k = 1, 2. Notice that if the complex 
potentials ff~k are regarded as functions of the complex variables 
zk, they must be determined not in the region S but in regions 
Sk, obtained from S by the affine transformation 

x~ = x + ceky, Yk = flkY (k = 1,2) ,  (6) 

where & = ak + iflk. 
For a crack of length 2a in the z-plane (Fig. 2), Sih and 

Liebowitz (1968) have shown that/<1 and K~t can be evaluated 
directly from ff)~ (zl) in the limit as z~ ~ a; i.e., 

Kl  + K'z = 2~j2 ( f L ~ 2  ) l im  ~z~ - a,I~ ~ ( zl zl ~a (7) 

In many extensional problems the use of conformal mapping is 
an efficient method for obtaining the stress intensity factors. 

Let the mapping function be defined (with the usual restric- 
tions as to analyticity and single-valuedness) by 

z = w(~) ;  zk = ~k(~k). (8)  

Essentially, we map all three regions S, S~, Sz onto the ~ = 
+ iv plane (Fig. 2). This mapping is effected so that one and 
the same point on the contour of the ~-plane region will corre- 
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Fig. 2(a) The z-plane with the crack in an anisotropic body; (b) the 
transformed, ~-plane 

spond to the points on the contours of the regions S and Sk, 
which are related by the affine transformation (6).  

Then 

• l (z ,)  = d~----2 d~--2 = ( I ) [ ( ~ l )  (9) 
d~, dz, ~oI(;l) 

Now, corresponding to the crack tip z = Zl = a in the z-plane, 
there will be a point ~ = ~ in the t-plane. Thus, Eq. (7) may 
be written 

K~+ K" = 2 ~ / 2 ( ~ 2  s~ ) lim [w,(~,)-  w~(~)] 1/2~{({~) . 
s2 ~ ~, ~ (~)  

(10) 

The above equation illustrates the fact that the stress intensity 
factors may be found simply from a knowledge of ~[(z~) in 
the vicinity of the crack tip, and that ~2 can be ignored if the 
stress intensity factors are the only desired result. 

In the z = x + iy plane, we have the region S in the form of an 
infinite plane with a crack (Fig. 2 ( a ) ) ,  for which the equation is 

x = a c o s S , - ~  < 0 < ~; y =  0. ( l l a )  

Since Zk = X + Sky, the regions S~ and $2 are also planes with 
straight cutouts described by 

X k = X = a c o s 8 , - - T r  < 0 < 7r; Y k = Y =  0, ( k =  1 ,2) .  

( l i b )  

As has been already observed, we map all three regions S, 
S~, $2 onto the lower half of the plane ~ = ~ + irl. This mapping 
is effected so that to all three points on the contours of the 
regions S and Sk corresponds one and the same point on the 
real axis ~ = (. 

a( 1 _~2~. 
z = w(~) = \ 1  + ~a] , Zk = W(~k). (12a) 

The functions reciprocal to the above, are 

( a - z ~  ./2 (a  --zklll2 
~ : \ a + z /  ; ~k= - -  • \ a  + zk/ 

(12b) 

Indeed, when x and y runs along the contour of the crack, taking 
on values x = acos0 and y = 0, then (12b) results in the values 

= ~ k = t a n ( 8 / 2 )  ( k =  1 ,2) .  (13) 

That is, a crack of length 2a in the z-plane is transformed to 
the entire real axis of the t-plane, and the infinite plane to the 
lower half of the t-plane. The crack tip z = a is mapped onto 
the point ~ = 0, and z = - a  is mapped onto the two infinite 
points on the real axis ~ = ± ~ .  Therefore, the upper crack face 
on the z-plane is mapped onto the positive real semi-axis of the 
~-plane and the lower crack face is mapped onto the negative 
real semi-axis. Since one point z in the z-plane corresponds 
to the two points ±~ in the t-plane, a one-to-one, conformal 
transfomaation is established between the z-plane and the lower 
half of the t-plane. 

For a generally anisotropic material, the function ff~(~t) for 
two equilibrating concentrated loads on the half-plane, applied 
at ~ = ±~0, with components P (vertical) and Q (horizontal) 
is (Lekhnitskii, 1963) 

~[(~1)= PSE + Q 1 I 1 1 ] 
~i  (s ,  s 2 - - - - - ~  ( ~ 0 - ~ , )  ( - ~ o : - ~ , )  ' 

Then, upon noting that 

1 i,f2 
lim;~ [~o(~1) - w(0)] ,/2 ~o'(~,------~ = - ~ a '  

and that 

(14) 

lim ___~___ l = ( a  + z.__.__2 ] ~'2 
~l ~0 ;0 - ~l ;0 ~ a  - Zo] 

and using (10) and (14), since z0 = b, we obtain for a generally 
anisotropic body (at the right end of the crack): 

K,+ K,, Ps2+O_(a+b  1'2 
s2 - 7rs2---~a- \a-----bl ' (15a) 

so that the stress intensity factors are given directly as 

, ( a + b ~  '/2 ~ a ( a + b ~ " 2  
K , = ~ a  \ a - ~ ]  ; Ku= \ a -  b] . (15b) 

Hence, the relations (15) give the stress intensity factors for 
an anisotropic infinite sheet with a crack along the x-axis of 
length 2a, centered at the origin, and having two equilibrating 
forces at x = b, one on the upper crack face and the other on 
the lower crack face, with y-component, P, and x-component, 
Q (per unit thickness). 

Notice that since the loads on the crack faces are self- 
equilibrating, the stress intensity factors do not depend on 
the material constants. This observation has also been made 
by Sih et al. (1965); moreover, in analyzing plane center- 
crack problems, Sih et al. (1965) were able to conclude that 
"for  problems involving self-equilibrating loads (on each 
boundary) the stress intensity factors for both the isotropic 
and the anisotropic materials are identical." Only if these 
loads are not self-equilibrating on each boundary, do the 
stress intensity factors depend on the elastic constants. A 
similar statement has been made in connection with the stress 
distribution in multiply connected bodies by Timoshenko and 
Goodier (1970).  Specifically, they concluded that " the stress 
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distribution is independent of the elastic constants of the 
material if the resultant of the forces applied to each boundary 
are zero. The moment of these forces need not be zero."  
Notice that this conclusion is of practical importance in the 
experimental determination of the stress distribution for any 
material by simply applying the optical methods on a trans- 
parent material. 

Sih et al. (1965) treated the problem of a single, unbalanced, 
vertical force, P,  on the upper crack face by using a mapping 
function that transforms the crack in the z-plane into a circular 
hole of unit radius in the t-plane. Since the force was unbal- 
anced, their stress intensity factors included the material con- 
stants; however, if an equilibrating force on the lower crack 
face is included, then their formulas would reduce to the stress 
intensity factors (15), independent of the elastic constants. 

Although the stress intensities are decoupled and independent 
of the elastic constants, the displacement relationships are not, 
as will be shown in the next section which considers the devel- 
opment of the fiber-bridging model. The basic configuration of 
an anisotropic infinite body loaded with remote normal stress 
~ro and in-plane shear To would also exhibit this feature of 
decoupled and independent of the elastic constants stress inten- 
sities, with K~ = cr0ffa and Kn = ~-0~a, but the displacements 
would be coupled (Sih and Chen, 1981). 

Hence, it is re-emphasized that since during fiber bridging 
the loads on the crack faces are self-equilibrating, the stress 
intensity factors do not depend on the elastic constants for either 
the isotropic or the anisotropic material assumption. 

Next, we shall use these relations in the development of the 
fiber bridging model. 

II Development of the Fiber-Bridging Model. In terms 
of the stress intensity factors Ki and Kii, Sih and Liebowitz 
(1968) give relations for the displacement field as 

u~( r,  0) = 2~r R e [  1 [ ( Ktsl  + Kn)pz~cos  0 + sz sin 0 
[ S 1 -- S 2 

- (Krsz + Klx)pl~/cos 0 + sl sin 0 ]}  (16a) 9 

= 2~r Red 1 [(K~sx + Kn)qz~/C0S 0 + s2 sin 0 U y ( F ,  O) 
[ S 1 - -  S 2 

- (K~s2 + Ktl)qt~/cos 0 + sl sin 0]~ (16b) 9 

J 

where 

p~ = 3~s~ + 3,~ - 3~s~; 
B 

qk = /312s~ + '-2"--$2 - / ~ 2 6 ,  k = 1, 2. 
Sk 

(16c) 

At a distance c behind the crack tip, i.e., at 0 = 7r and r = 
c, the displacements become 

u~ = 2~c Im( I 
S 2 - -  S I 

Uy = 2~C Im{ 1 
S2 - -  S t  

) 
[Kl ( s lp2  - s2pl)  + K n ( p z  - P l ) ] ~ ,  

(17a) 

[K1(slq2 - szqt) +Ku(q2 - q l ) ] } .  

(17b) 

The displacements at the lower crack face, i.e., at 0 = - r ,  
are of opposite sign. 

Notice that even if a pure Mode I state of loading exists, i.e., 
Kn = 0, both normal and shear components of the displacement 
field Uy and Ux, respectively, are nonzero for general anistropy. 
This means that the final orientations of the bridging fibers, w~, 

may be slightly different than the initial fiber orientations. They 
will be determined in the process of fiber loading, and are, 
therefore, unknowns to be determined. 

It should also be mentioned that the length of the fiber bridg- 
ing zone is assumed to be small compared to the crack length, 
and confined near the tip of the crack. Therefore, the displace- 
ment relations are expected to be adequate near the crack tip for 
the problem under consideration. In practical cases, at moderate 
distances from the crack tip, the fibers would actually be ex- 
pected to be broken, anyway. A more accurate solution for the 
displacement field, valid at large distances away from the crack 
tip would certainly be desirable; however, it is not available at 
present and our future plans include exploring the theoretical 
aspects of obtaining a more accurate displacement field for an 
anisotropic crack. This would then be directly incorporated into 
our fiber bridging model. Future research could also include 
detailed finite element analyses. Please note that the same as- 
sumptions regarding the displacement field, namely use of the 
asymptoptic near-tip formula, have been adopted in past work 
of other researchers, such as the discrete asperities model in 
metals of Beevers et al. (1984). The discrete asperities model 
has been applied to the closure obstruction problem, and it has 
been found that the features of the model can be used to correlate 
experimental measurements of opening stress intensity factors 
after tensile overloads (Carlson et al., 1991 ). 

Now, let us represent the Mode I and Mode II contribution 
of the global, external load by Kz.ct~ and Kn.oL, respectively. By 
superposition, the total stress intensity factor is 

Ki , I i  = g l , l l ,  local "~- Ki,H, GL. (18) 

Displacement conditions at the fiber sites are needed to deter- 
mine the fiber loads. The displacements at the upper macro- 
crack face, i.e., at 0 = 7r and an arbitrary r, due to both local 
and global loading, is 

g x , y ( r ,  71) = Ux,y,aL + btx,y,local.  (19) 

Moreover, if c = a - b represents the initial distance of the 
fiber load point from the crack tip, this distance on the upper 
crack face is c - 6 I sin a:, and the corresponding distance on 
the lower crack face is c + 6 I, sin co, due to the fiber orientation 
at an angle ~o as shown in Fig. 1 (b).  The quantity 6i represents 
half of the final fiber interference length and will be discussed 
in detail in the following. Hence, including the effect of loading 
both the upper and lower faces of the macro-crack, and using 
the stress intensity factors for the global and the local load 
from (15), we can write the x-component of the displacement 
difference between the upper, 0 = 7r, and lower, 0 = -7r, face 
of the macro-crack at the fiber site, r = c, as follows: 

ux(c ,  7r) = 2 2,~-c Im{s2 -1 Sl [Kl.cL(sjp2 -- s2pl )  

+ K u ,  GL(p2  - -  p, ) ]  } 

. ~ff--[ / Za - c + 6j- s i n  ~))1/2 

+ (2a-c_- sin ) ''2 ] 
\ c + 6 I sin w 

x Im [ 2-5-g~a (sip2 - s2p,) 

F s i n ~  ]} 
+ 2-~-a-a ( p 2 - p , )  , 

(20a) 
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and the y-component of the displacement spread (opening) as 

uy(c, 7r) = 22~c Ira(s2 -1 sl [Ki.cL(s~qz -- s2ql) 

+ KH.cL(q2 -- q , ) ]}  

2a - c + 6:  s i n  l/z 

+ (2a_-_cZ61si__nw) ~/2] 
\ c + 6: s i n  to 

{sz l _ _ ~ l  I F  c o s  w 
× Im [ 27r~a (s,qz - s2q,) 

+ 2--~-a (q2 
(20b) 

Two separate cases of fiber bridging configurations are distin- 
guished now. 

(a) Fiber-Matrix Interface Intact. In this case, which is 
schematically shown in Fig. 3, the displacement at the fiber site 
i s  zero. The fiber is elastically stretched with a force F ,  therefore 
the fiber stress is 

4 F  
cr 7rd~ cr < u,,:, (21a) 

where d: is the fiber diameter. A condition of the fiber stress 
being below the fiber ultimate strength or,: is imposed for valid- 
ity of this model. 

The condition of zero displacement at the fiber site gives 

U x ( C  , ~ 71") = U y ( C ,  ~ 7l") = O. (21b) 

Taking into account (15b), (17), and (18), it is concluded that 
the foregoing two equations, (21b), are two linear equations in 
P and Q. Notice that in this case the fiber can sustain both 
tensile and shear stresses; the force along the fiber axis is F = 
P c o s w  + Q s i n w .  

In this case of an intact fiber-matrix interface, we have very 
effective ligament bridging. However, it is more reasonable, 
common, and an experimentally supported fact, that the fiber 
does not remain perfectly bonded to the matrix and fiber de- 
bonding occurs to some extent. This case is examined next. 

(b) Partial Fiber-Matrix Interface Debonding. In this 
case, which is schematically shown in Fig. 1 (b) ,  the displace- 
ment at the fiber site is nonzero. The characterization of fric- 
tional sliding of a fiber embedded in a matrix is an issue of 
intense current interest. To this extent, Hutchinson and Jensen 

• df 

J 

C ) 

Fig, 3 The case of fiber-matrix interface intact (ligament-bridging) 
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I 

Fig. 4 Schematic of the fiber stress, ~, versus displacement,/~, curve 

(1990) have developed a model that describes the interactions 
between components of a unidirectionally reinforced composite 
which is subject to debonding. The model is designed to include 
the effects of fiber strength, interface bond strength, and the 
friction force which can develop if residual compressive stresses 
act across the interface boundary. 

The form of the fiber stress, ~, versus the pullout displace- 
ment, 6, curve with Coulomb friction is qualitatively illustrated 
in Fig. 4. The fiber stress versus the debond length, l, is similar 
in form. As shown, the debond length and pullout displacement 
are zero until a threshold value of stress, ~j, is achieved. Above 
this value, the curves have decreasing slopes until a limiting, 
unstable value of stress, ~0, is attained. Note that if the fiber 
strength, ~c, is less than v0, the value of v can abruptly decrease 
and then continuously decrease with increasing 6. 

In the following, a~, bl, and ~ are constants that depend on 
the overall modulus of the composite and the elastic properties 
of the fibers and the matrix, and they are given in the Appendix 
of Hutchinson and Jensen (1990). An expression for the debond 
length, l, is given in terms of the coefficient of friction, #, and 
the area fraction of the fiber, p = [d//(d: + s)] z, as follows 

1= d:4l zb, l n [  ~ ° - v i + k l ( ' - ~ i - ~ ) ] ~ o  - ~Y , (22a) 

where 

k= = p(1 - p)-ta3E3/bl. (22b) 

When the fiber is isotropic with u: = u,,,, then a3 = 0 and thus 
kj = 0. 

Moreover, the pullout displacement, 6, is given by Hutchin- 
son and Jensen (1990) in terms of the modulus of the matrix, 
E,,, and the mode II toughness for the debond crack, measured 
by the critical value of the energy release rate, Gc: 

6 = ( b 2 + b 3 ) ( 1 - P  l ( 2 G e l  '/2 

4#b~E,, [e-;,  + 4, - 1] , (22c) 

where ~ = 41.zb~l/d: and or; is the normal stress acting across 
the interface just below the debond tip. For debonding with 
Coulomb friction, 

or; = - p - l ( l  - p)(bt/c3)[ff6 - ai + kl(~o - ~)].  (22d) 

The previous expressions are nonlinear relations for the fiber 
displacement versus fiber stress law, 6 = F (~ ) .  Although it 
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seems that a nonlinear fiber load-displacement relationship 
would provide a more complete description of the fiber debond- 
ing process and better account for the relative sliding between 
the fiber and the matrix, the need for analytically tracking the 
problem easily has led to the use of a linear relationship between 
displacement and fiber load (e.g., Rubinstein and Xu, 1992). 
It is also easier to illustrate the use of our fiber bridging model 
by using a linear law. 

For this purpose, a linear fiber displacement versus fiber stress 
law is adopted by using the initial, almost linear segment the 
curve in Fig. 4, as follows: 

Such an approximation should be adequate as long as we are 
not very close to the saturation stress, ~ro. 

The resulting expressions are much simpler if we assume that 
the fiber is isotropic with u: = v~ (in which case k~ = 0). Under 
this assumption, we obtain from (22a, c) and (23a) 

1 -___e ( 2 ~  "~"~ d: (~ _ ~,); 
= (b2 + b3) pElE3 \ E ~ ]  4/Zbl(V0 - V~) 

forv~ < v < ~ o .  (23b) 

The initiation stress v~ is the stress required to propagate the 
debond crack up the fiber and is given in terms of the axial 
mismatch strain e r by 

era,: e, \emd:,P) e, 

In turn, the saturation stress ~o is given in terms of the radial 
mismatch strain e, r by 

~o = pE:e~/v:. (23d) 

The initiation stress can be negative if the nondimensional 
combination 2Gfl(Edfc~)  is sufficiently small; in such cases, a 
finite length debond zone would be introduced before any over- 
all stress is applied. In the interest of simplicity, let us take ~ 
= 0 (the case of nonzero ~i will be examined in a future 
publication). Furthermore, since we assume that there is a uni- 
form distribution of fibers with spacing s and diameter d: 
through the thickness, there are 1/(d: + s) fibers per unit thick- 
ness, and the effective area per unit thickness is As = 
7rd}/4(d: + s).  Then, (23b) gives the fiber displacement 6z = 
6 in terms of the fiber force F~ = ~rA:, in the form 

6f = - k 4Fi (d: + s) 
wE:d: ' (24a) 

where now k is dimensionless and can be considered as a mea- 
sure of the fiber-matrix friction 

~. = (bz + b3) 1 - p ( 2G~ ~V2 E: (24b) 
pglc'3 \ E ~ ]  4/zb]iYo " 

The minus sign is used because the fiber is under tension loading 
when the crack face is loaded with a force opposite to the one 
in Fig. 2 (a ) ;  the force in Fig. 2 (a )  would generate the local 
stress intensity factors given by (15). 

In the previous relations, d/is  the fiber diameter and s is the 
mean spacing between the fibers. In a representation of the form 
(24a),  the quantity ~ increases for poorer bond quality that 
allows more fiber sliding. This quantity can vary widely de- 
pending on the class of composites under consideration. Spe- 
cifically, brittle (cerarnic)-matrix composites are characterized 
by relatively weak interfaces, in contrast to the case of the more 

common polymeric-matrix composites or the ductile metal-ma- 
trix composites, in which relatively strong interfaces generally 
exist. 

Since 26: is the final interference fiber height, the conditions 
for determining the forces P and Q are the displacements at the 
fiber site 

ux(c, 7r) - ux(c, -7 r )  = 26: sin ~, 

U y ( C ,  71") - -  U y ( C ,  - -71")  = 26: cos w. (25) 

I I I  Multiple F iber  Bridging. The single fiber analysis 
has been used thus far because a clear definition of the working 
quantities was needed. In actual fiber-bridging situations, multi- 
ple fibers are connecting the two faces of the macro-crack. 
Based on the single fiber analysis, an extension to multiple 
fibers can be directly performed. An interesting observation in 
connection with the multiple fiber bridging problem is that the 
load redistribution, which occurs among fiber bridges, as the 
load increases (or the crack propagates) and some fibers break 
in the process, is analogous to the redistribution of stresses 
which occurs due to the development of a crack-tip plastic zone 
in metallic materials. On another note, it can be observed that 
a similar redistribution occurs in the shear lag mechanism of 
load transfer in composites. 

If n fibers at final angles wi and at distances ci behind the 
tip (and b~ from the center) are bridging the faces of the macro- 
crack, then the first set of conditions for determining the forces 
P~ and Q~ are the displacement components equations at each 
of the fiber sites (Fig. 5). A direct extension of Eqs. (20), and 
using (25), gives the first equation from the x-component of 
the displacement spread between the upper and lower crack 
faces as 

6:1 sin w, = ~ Im~ 1 [ K~.cL( s~p2 - &p, )  
L S 2 - -  S 1 

+ K,.cL(P2 - P~)]'~ J 

j=1 L \ cj - 6:: sin w: 

( 2 a  z ~ ~ 6 f j s i n w j )  1/2] 

+ \ q + 6:j sin wj 

{~_~ [Fj cos ~: 
× Im [ - - ~ - ~ - - -  (s,p2 - s2p,) 

+ F: sin wj ] }  
27r~a ( p 2 - p l )  . i =  1 . . . .  n (26a) 

The condition from the y-component of the displacement spread 
is 

i o2 

Z,,= / ~' 

. . . . . . . . . .  S v~af 
. . . . . . . . .  

p F 2  F1  
i ; 9  a 

Fig. 5 Loading of multiple fibers on the upper face of the macro-crack 
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6:,, COS aa, = ~ Im{s2 --1 s, [K1,cL(s,q2 -- s2ql) 

+ KImL(q2 -- q l ) ] }  

+ 
i= ~ L \ cj - 6:~ sin tvj 

( 2 a s  ~ 6 : i s i n w j )  ' /z]  

+ \  cj + 6:~ sinto i 

27r~a (&q2 - s2qj) 

+ L - ~ ( q 2 - - q l  ) , i =  1 . . . .  n. (26b) 

The second set of conditions is the fiber load-displacement 
equations, either (22) for a nonlinear law or (23),  (24) for a 
linear law. 

The quantities to be determined are the final fiber interference 
heights 6:.i and the fiber loads Fi as well as the fiber orientations 
0.) i ; hence there are 3n unknowns. For each fiber there are two 
displacement equations, (26a,  b) ,  and one "fiber constitutive," 
equation; hence we have a total of 3n equations. Therefore, a 
well-posed problem has been formulated. The only complica- 
tion arises from the fact that the system of equations is non- 
linear. 

The problem becomes linear, however, in the more common 
problem of a transverse crack in a zero-degree unidirectional 
orthotropic composite under pure Mode I loading, if the linear 
fiber load-displacement Eq. (24a)  is used (Fig. 6).  Due to 
symmetry, co, = 0, and the x-displacements are zero and the 
corresponding relations (26a)  are automatically satisfied (be- 
cause the quantities in the brackets turn out to be real). Further- 
more, 6 v can be directly expressed in terms of F~ from the linear 
fiber load-displacement law. This leaves us with the n fiber 
loads, F, ,  to be determined from the n linear equations from 
the normal, ur, displacement relations at the fiber sites, (26b).  
The number of loaded fibers, n,  is determined by imposing the 
condition of the fiber loads being below the fiber strength, i.e.: 

4F, (d: + s) 
< u, : ,  i = 1 . . . .  n. (27) 

Hence, n is increased successively, until a state is reached where 
the nth  fiber is under load exceeding the fracture strength. 

1.4 

1.2 

1.0 

0.6 

0.6 

0.4 

0.2 

0.0 

"Nominal"  (Applied) 

s = 3 # m  

I 410 = 810 20 60  100  

Fig. 6 The "effective" stress intensity factor, K~, as a function of k ,  
which expresses the interface friction. Two values of fiber spacing, s ,  
are cons dered KioL is the nominal (applied) stress intensity factor. 

In the general case of an arbitrary fiber orientation, under 
combined Mode I and II loading with the linear fiber load- 
displacement relation, again 6:, can be directly expressed in 
terms of F, .  Furthermore, an initial guess for the final fiber 
orientations is the initial fiber orientations of the parent compos- 
ite, wT. This leaves us with the n fiber loads, Fi ,  to be deter- 
mined from the n linear equations for the normal, uy, displace- 
ments at the fiber sites. An iteration procedure can be employed 
to find the final orientations of the bridging fibers, 0v,, by satis- 
fying the x-displacement equations. Since a neighborhood of 
the roots is identified, standard numerical techniques such as 
the Newton-Raphson, generalized to multiple dimensions, can 
be used (Press et al., 1989). 

Once the fiber loads, F, ,  and the fiber interference lengths, 
6fi , and orientations, w,, are determined, the local stress inten- 
sity factors can be found by using (15b),  as follows: 

" F i c o s w i [ ( 2 a z ~ 6 : i s i n ~ i )  ~'2 
K~,lo~,l = Y__, 2rr'~aa L \ cj - 6:i sin w i 

j = l  

(2o_c _  sin )l'2] 
+ - - - - - -  , (28a) 

cj + 6:i sin toj 

 sin 
K//'l°cal = £ 7 C i - 6:j sin w1 

j = l  

+ ( 2 a - c j - 6 : j s i n ° : i ) ~ / 2 1 .  (28b) 
ci + ~i  sin wj 

Application of the Model 
The model described in the previous section has been used 

to analyze the effect of fiber bridging on a transverse crack in 
a unidirectional orthotropic plate. The linear fiber load-displace- 
ment law, Eq. 24(a ) ,  is used. It will be shown that the effect 
of fiber spacing and the fiber-matrix interface friction can be 
quantified in this model. Moreover, the response due to increas- 
ing magnitudes of tensile loads that may include partial or full 
fracture of the bridging zone will be investigated. 

The composite system considered is a glass/epoxy with glass 
fibers of diameter d: = 11 #m. Two values of spacing are 
considered: one with a fiber spacing of s = 6 /zm and a more 
closely spaced system, s = 3 /zm. Notice that the fibers are at 
distances from the crack tip cj = (d: + s ) j ,  j = 1 . . . .  n. For 
square spacing, this would give fiber volume fractions of V: = 
0.329 and V: = 0.485, respectively, according to the formula 
(e.g., Hull, 1981): (7 )2 

71" S 
+I . 

The glass fibers have a modulus E: = 72.5 GPa and an ultimate 
strength of ~r,,: = 3.5 GPa. The epoxy matrix is assumed to 
have a shear modulus of Gm = 1.35 GPa. 

The moduli in GN/m / and Poisson's ratios used are listed 
below, where 1 is the horizontal (x) direction, 2 is the vertical 
(y),  and 3 the direction through the thickness (z).  

(a) Spacing o f s  = 6 #m: E1 = E3 = 5,1, E2 = 26.2, G12 
= G23 = 2.1, G31 = 1.9, v~2 = 0.068, vz3 = 0.277, v31 = 0.400. 
The characteristic Eq. (5) gives purely imaginary roots: 

sl = 0.297i; sz = 1.609i. 

Furthermore, Eq. (16c)  gives real Pc and purely imaginary qk. 
(b) Spacing of s = 3 /zm: E1 = E3 = 6.5, E2 = 37, Gi2 = 

G23 = 2.6, G31 = 2.4, Poisson's ratios are the same as in system 
(a) .  For this material, the characteristic Eq. (5) gives again 
purely imaginary roots: 
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sl = 0.277i; s2 = 1.641i. 

Furthermore, Eq. (16c)  gives again real Pk and purely imag- 
inary qk. 

In either a center-cracked specimen with a crack of length 
2a or a single-edge crack specimen with a crack of length a 
under a remotely applied normal stress a t ,  the stress intensity 
factor is the same as for an isotropic body (e.g., Sih and Chen, 
1981): 

Kt.ar(Oo) = cr0~a; KH.CL = O. (29) 

A crack length of a = 10 mm and a remotely applied stress 
corresponding to the typical value of fracture toughness of the 
epoxy matrix are assumed, i.e., Ki.aL = 1.25 MN/m 3t2. The 
remotely applied stress, cro = 12.5 MPa, and the crack length 
are also the same as the ones used in the experiments of Botsis 
and Shafiq (1992) and Botsis and Beldica (1994).  Furthermore, 
a fiber bridging zone of 120 #m behind the crack tip is assumed. 
For the spacing of s = 6 #m, a total of 20 fibers would span 
this distance, whereas for the spacing of s = 3 #m, there would 
be a total of 40 fibers in the bridging zone. 

For the unidirectional case, w = 0, the local stress intensity 
factors are given by using (28),  as follows: 

C~)1/2 
K/,iocal ~ ~ ~a  2-- ; K l l , l o c a l : O .  (30) 

j= l  

Although the stress intensity factor K~,GL is applied and consti- 
tutes the nominal quantity indicative of the amount of crack tip 
loading, an "effective" stress intensity factor Ki = Ks.eL + 
Kl.~oo,~, due to the effect of fiber bridging, actually exists at the 
crack tip. This depends strongly of the properties of fiber-matrix 
interface, as is clearly seen in Fig. 6, which shows KdK1.GL as 
a function of the parameter ~, which expresses the interface 
friction. For a larger value of h, i.e., more fiber debonding, the 
effective stress intensity factor is smaller. 

The two curves represent the two cases of fiber spacing con- 
sidered, and it is again clear that the more widely spaced fibers 
show a larger effective stress intensity factor than the more 
closely spaced system. This agrees very nicely with the experi- 
mental observation of Botsis and Shafiq (1992) that the more 
closely spaced system is tougher than the more widely spaced 
one. Specifically, for k = 20, the effective K1 for s = 6 tzm is 
21 percent of the nominal value, whereas for the more closely 
spaced s = 3 #m system, the effective Kt is only 13 percent of 
the nominal value. For a weaker fiber-matrix interface bond, 
= 100, the effective Ki for s = 6 ,am is 59 percent of the 
nominal value, and, by comparison, for the more closely spaced 
s = 3 #m system, the effective Kt is smaller, i.e., 44 percent of 
the nominal value. 

In either case, the fiber stress was below the ultimate fracture 
stress cr,f of the glass fiber, for the entire range of ~?s consid- 
ered; this indicates that for this example only fiber debonding 
and no fiber fracture would occur. Botsis and Shafiq (1992) 
and Botsis and Beldica (1994) considered the same geometrical 
configuration and the same level of applied stress but in a more 
widely spaced glass fiber system and a larger fiber diameter. 
Substituting for their fiber spacing and fiber diameter, the pres- 
ent model would also predict fiber stresses in the bridging zone 
below the ultimate fracture strength of the glass fibers, and this 
would again agree with their experimental results, in which no 
fiber fracture was observed. Hence, fiber bridging can reduce 
significantly the stress intensity factor and hence " toughen"  
the material, but this depends strongly on the fiber-matrix inter- 
face and the fiber spacing. The model presented in this paper 
allows quantifying this important qualitative observation. 

It is conceivable that an increasing remotely applied stress 
~0 would lead to fracture of either some of the most remote 
from the crack tip fibers, or of the entire fiber bridging zone. 

Table 1 Fracture of fiber bridges 

k* ~0/~0 t n~ 

i0.0 8.68 0 
30.0 10.79 3 
40.0 12.ll 6 
50.0 13.16 9 
60.0 14.21 13 
90.0 17.63 16 

100.0 18.68 17 

* From Eq. (24b). 
t G0 is the applied stress corresponding to the fracture toughness of the 
epoxy matrix; ~r0 I is the applied stress that causes fracture of at least 
one of the fiber bridges. 
~: Number of fiber bridges left (out of initially 20). 

This was found to depend strongly on the fiber-matrix interface 
parameter, h, as shown in Table 1. In this table, the value of 
the applied stress, a0s, that first causes fracture of the fiber 
bridges is calculated for the entire range of k's considered, 
along with the number of fiber bridges left, n I. The case of fiber 
spacing s = 6 #m is considered. The fiber bridging zone behind 
the crack tip consists of initially 20 fibers. It can be seen that 
for strong fiber-matrix interfaces, i.e., low values of X, the entire 
fiber bridging zone breaks and no fiber bridges are left, i.e., nf 
= 0. Notice that this implies some kind of unstable process 
since in this case of low X, the maximum stress carried by a 
bridging zone with a smaller number of fibers is higher than 
the corresponding one with the load distributed on a larger 
number of fibers. However, for relatively weak fiber-matrix 
interfaces, that is high values of X, only some of the most remote 
fibers break and as a result, a fiber bridging zone is still left. 
The applied stress that causes fracture of fiber bridges naturally 
increases with weaker fiber-matrix interfaces, i.e., higher values 
of ~. 

Acknowledgment  

The financial support of the Office of Naval Research, Me- 
chanics Division, Grant N00014-9 l-J-1892, and the interest and 
encouragement of the Grant Monitor, Dr. Y. Rajapakse, are 
both gratefully acknowledged. 

References 

Beevers, C. J., Carlson, R. L,  Bell, K., and Starke, E. A., 1984, "A Model for 
Fatigue Crack Closure," Engineering Fracture Mechanics, Vol. 19, pp. 93-100. 

Botsis, J., and Shafiq, A, B., 1992, "Crack Growth Characteristics of an Epoxy 
Reinforced with Long Aligned Glass Fibers," International Journal of Fracture, 
Vol. 58, No. 1, pp. R3-R10. 

Botsis, J., and Beldica, C., 1994, "Strength Characteristics and Fatigue Crack 
Growth in a Composite with Long Aligned Fibers," International Journal of 
Fracture, Vol. 69, pp. 27-50. 

Budiansky, B., and Amazigo, J. C., 1989, "Toughening by Aligned, Frictionally 
Constrained Fibers," Journal of the Mechanics and Physics of Solids, Vol. 37, 
pp. 93-109. 

Carlson, R. L., and Beevers, C. J., 1992, "Effects of Overloads and Mixed 
Modes on Closure," Conference on Theoretical Concepts and Numerical Analysis 
of Fatigue A. Blom and C. J. Beevers, eds., University of Birmingham, UK, 
Engineering Materials Advisory Services Ltd., Warley, UK, pp. 277-297. 

Carlson, R. L., Kardomateas, G. A., and Bates, P. R., 1991, "The Effects of 
Overloads in Fatigue Crack Growth," International Journal of Fatigue, pp. 453-  
460. 

Cox, B. N., James, M. R., Marshall, D. B., Morris, W. L., Rhodes, C. G., and 
Shaw, M., 1989, "Mechanics of Failure in Titanium Aluminide Composites," 
Proceedings, lOth International SAMPE Conference, Birmingham, UK, S. Benson 
et al., eds., Elsevier, Holland. 

Hull, D., 1981, "An Introduction to Composite Materials," Cambridge Solid 
State Science Series, Cambridge University Press, Cambridge, UK. 

Hutchinson, J. W., and Jensen, H. M., 1990, "Mode]s of Fiber Debonding and 
Pullout in Brittle Composites with Friction," Mechanics of Materials, Vol. 9, pp. 
139-162. 

232 / Vol. 63, MARCH 1996 Transactions of the ASME 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Kardomateas, G. A., and Carlson, R. L., 1995, "An Analysis of the Effects of 
Compressive Load Excursions on Fatigue Crack Growth in Metallic Materials," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 62, pp. 240-243. 

Nemat-Nasser, S., and Hori, M., 1987, "Toughening by Partial or Full Bridging 
of Cracks in Ceramics and Fiber Reinforced Composites," Mechanics of Materi- 
als, Vol. 6, pp. 245-269. 

Lekhnitskii, S. G., 1963, Theory of Elasticity of an Anisotropic Elastic Body, 
Holden-Day, San Francisco. 

Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T., 1989, 
Numerical Recipes, Cambridge University Press, Cambridge, U.K. 

Rosen, B. W., 1964, "Tensile Failure of Fibrous Composites," AIAA Journal, 
Vol. 2, No. 11, Nov., pp. 1985-1991. 

Rubinstein, A. A., and Xu, K., 1992, "Micromechanical Model of Crack 
Growth in Fiber-Reinforced Ceramics," Journal of the Mechanics and Physics 
of Solids, Vol. 40, pp. 105-125. 

Russell, A. J., and Street, K. N., 1988, "A Constant LkG Test for Measuring 
Mode I Interlaminar Fatigue Crack Growth Rates," Composite Materials: Testing 
and Design (Eighth Conference), ASTM STP 972, J. D. W hitcomb, ed., American 
Society for Testing and Materials, Philadelphia, pp. 259-277. 

Sih, G. C., and Chen, E. P., 1981, Mechanics of fracture, Vol. 6, Martinus 
Nijhoff Publishers, The Hague, pp. 9-19, 87-99. 

Sih, G. C., and Liebowitz, H., 1968, "Mathematical theories of brittle frac- 
ture," Fracture, Vol. If, H. Liebowitz, ed., Academic Press, New York, pp. 67-  
190. 

Sih, G. C., Paris, P. C., and Irwin, G. R., 1965, "On Cracks in Rectilinearly 
Anisotropic Bodies," Int. J. Fract. Mech., Vol. 1, pp. 189-203. 

Timoshenko, S. P., and Goodier, J. N., 1970, Theory of Elasticity, McGraw- 
Hill, New York, p. 136. 

Zok, F., and Horn, C. L., 1990, "Large Scale Bridging in Brittle Matrix Com- 
posites," Acta Metallargica et Materialia, Vol. 38, No. 10, pp. 1895-1904. 

Journal of Applied Mechanics MARCH 1996, Vol. 63 / 233 

Downloaded 04 May 2010 to 171.66.16.33. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



G. W. Hunt 

A. Blackmore 

Department of Civil Engineering, 
Imperial College of Science, 

Technology and Medicine 
Imperial College Road, 
London SW7 2BU U.K. 

Principles of Localized Buckling 
for a Strut on an Elastoplastic 
Foundation 
Localization theory for long continuous structures is extended to the buckling of a 
thin elastic strut supported by a bilinear elastoplastic medium. It is demonstrated 
that the form of localization has much in common with the buckling of struts on 
linear and nonlinear elastic foundations in that the localized response, which is of  
the greatest practical sign~cance, is accompanied by a myriad of associated less 
significant solutions including periodic ones. Special shooting techniques are devel- 
oped to deal with the problem of finding the localized solutions from amongst all 
competing possibilities. 

1 Introduction 
The strut on elastic foundation has proved a fundamental 

model of structural mechanics (Het6nyi, 1946), in both nonlin- 
ear and linearized forms. Many such problems are well de- 
scribed after a linearization, but the strut on elastic foundation 
is not among them. Important localized buckle patterns are lost 
for example, along with the associated spatial chaos. Even non- 
linear formulations sometimes miss localized solutions in favor 
of their periodic or homogeneous counterparts. In Thompson 
and Hunt ( 1973 ) for example, both linked and continuous struts 
on elastic foundations are analysed in depth for their periodic 
responses; the authors were then unaware that, if such a system 
is long enough (more than about twice the wavelength of the 
buckle for the continuous strut), a localized buckle pattern 
would predominate. 

Softening nonlinearity is an essential ingredient of localiza- 
tion, and can come about either through natural geometric ef- 
fects over large deflections (Hunt et al., 1993), or over small 
deflections with softening introduced into the foundation (Hunt 
and Wadee, 1991). We deal here with the associated problem 
of a linearized strut on a foundation with bilinear stiffness. We 
can take this as being identical to an elastoplastic foundation 
(Tvergaard and Needleman, 1980), provided that, in a natural 
loading sequence from zero compression, elastic unloading fol- 
lowing finite plastic deformation is denied; however unloading 
back down the original elastic loading path is allowed. 

The long strut on the bilinear foundation is characterized by 
the fact that the localized response bifurcates from a finite- 
amplitude periodic shape, rather than the vanishingly small am- 
plitude of the nonlinear elastic foundation (Hunt and Wadee, 
1991 ). Thus, while for the latter the end-shortening grows from 
zero as localization develops, for a bilinear foundation it is finite 
before the periodic form is lost: and the longer the strut, the 
greater this initial end-shortening. This effectively "spring 
loads" the system, providing the rest of the structure with the 
potential to unload elastically into the localized region, and 
gives a characteristic snap-back " C "  shape to the load/end- 
shortening response. In a mechanism which reflects the scaling 
problems known to arise in localization problems in continuum 
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mechanics (BRYant and Cedolin, 1991 ), the longer the strut the 
more severe the snap-back. 

Here we explore the response of the strut on bilinear founda- 
tion entirely in terms of the dynamical phase-space analogy 
(Hunt et al., 1989), that is by running the spatial differential 
equation as though it were in time. At a general point along 
the length the behavior can always be described by a linear 
Hamiltonian differential equation. General solutions are then 
derivable in closed form, and the response can be understood, 
at least locally, in its entirety. Multiple changes of stiffness, as 
might occur in a periodic or near-periodic displacement when 
the elastic limit is exceeded at many points simultaneously, 
introduces a complex sequence of bifurcations that in the limit 
turns out to be chaotic. In a companion paper (Blackmore and 
Hunt, 1996), we apply the approach to the problem of upheaval 
buckling, with lift-off from a stiff elastic bed into a medium 
which provides no restraint. Such problems could possibly enter 
the large-deflection range, and the full nonlinear (elastica) 
bending equation is therefore also included as an option. 

2 Linear Equations 
The full nonlinear differential equation for large deflections 

of a strut of bending stiffness El, under compressive load P, 
resting on a linear foundation of stiffness k, is (Hunt et al., 
1993), 

El[y + 4y3~p(1 - p2)-i  + y3(1 + 3y2)(1 _ p2)-2] 

+ Pp'(1 - 20z) -1/2 + ky(1 - 3~ 2) = 0, ( I )  

where dots denote differentiation with respect to the spatial 
variable x, measured along the length of the strut as shown in 
Fig. 1. The linearized version for small deflections is 

Ely + Pp' + ky = 0. (2) 

This can be nondimensionalized by writing P = p k ~  and 
differentiating with respect to a new spatial variable ~, defined 
by ~ = x ) k ~  (Hunt et al., 1996a), to give 

y + pp" + y = O. (3) 

From this point we shall drop the tilde, it being understood that 
all representations are in the nondimensionalized form. 

To this we add two further parameters which allow discontin- 
uous jumps at the comer of the bilinearity. A stiffness ratio p 
is first added to the third term; for a bilinear foundation of 
initial stiffness k~ and final stiffness k2, inside the elastic limit 
(Y < Y) we thus run the equation with p = 1, changing to some 
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Fig. 1 Strut on a linear elastic foundation 

p = k2/kl < 1 when the elastic limit is exceeded. A constant 
Q is also included, to allow for a lateral side load and/or for 
the sudden shift in the virtual origin of y that comes about with 
the discontinuity in stiffness, as seen later. We thus write the 
fundamental equation 

y +p3~ + py + Q = 0. (4) 

In the sense of the dynamical phase-space analogy (Hunt et al., 
1989), that is by running the equation in a spatial dimension x 
as though it were in time t, this is all that is required to describe 
a strut on a bilinear foundation. We shall be particularly inter- 
ested in passage through the symmetric section y = y = 0, this 
being a key condition for localized responses (Hunt and Wadee, 
1991). 

2.1 Stationary Equilibrium and Linear Eigenvalues. 
For all cases of Eq. (4) there is a flat (fundamental) state of 
equilibrium, where the derivatives of y are zero, namely, 

a 
y = y = - -- (5) 

P 

Invoking the dynamical phase-space analogy, this is like a state 
of stationary equilibrium in time, the eigenvalues of which can 
be used to fully describe the linearized response. The state may 
be unreachable however; it may for instance lie inside the elastic 
limit, y < 9, when the corresponding equation only applies 
outside the limit, or vice versa. 

We are interested here in parameter ranges, 0 < p < pC = 
2 (P  < P1 c = 2 ~ - ~ ) ,  and p <- 1. In the search for closed- 
form solutions to Eq. (4) ,  we start by noting that the characteris- 
tic equation 

k 4 + p k  2 + p = 0  (6) 

dictates four distinct forms, depending on the values of p 
and p. 

2.1.1 Case A: Four Complex Conjugate Eigenvalues (0 < 
fl <- 1, p2 < 4p). Here the eigenvalues k = ± a  _+ ifl have 
both real and imaginary parts, as shown in the complex plane 
in Fig. 2 (a ) ,  and a general solution can be written 

y = e"X(a cos fix + b sin fix) 

+ e-~X(c cos fix + d sin fix) - Q, (7) 

where 

a =  4 '  4 '  
(8) 

and a, b, c, and d are real constants. We note that for the 
differential equation running inside the elastic limit, this case 
holds with p = 1 and Q = 0. 

The signs of the real parts of the eigenvalues indicate that 
the fiat state is a four-dimensional saddle point with a two- 
dimensional stable, and a two-dimensional unstable, manifold 
(Hunt and Wadee, 1991 ). The symmetric section condition, y 
= y = 0, occurs at a length x given by 

x =  4-~ \ ~ ]  = v a r c t a n  ~ c -  bd " (9) 

We see that if c 2 + d 2 < a 2 + b 2, this condition is met at 
negative x. Thus, if a starting position x = 0 has the amplitude 
of the oscillation on the unstable manifold, ~ a  2 + b 2, greater 
than that on the stable manifold, ~ c  2 + d 2, and x is taken as 
positive, passage through the symmetric section is impossible; 
divergence has taken hold, and oscillations of y must grow 
exponentially with x. 

2.1.2 Case B: Four hnaginary Eigenvalues (0 < p ~ 1, 
p2 > 4p). If p = 1, as p approaches pC from below the 
eigenvalues converge onto the imaginary axis as shown in Fig. 
2 (b) .  For p > pC, the eigenvalues then split but remain with 
no real parts, as shown in Fig. 2 (c ) .  The same situation can be 
found after a sudden drop in p as the elastic limit is exceeded. 
The effective pC also drops, and we can now have p2 > 4p, 
leading to the general solution 

y = a c o s k ~ x  + b s i n  k,x + c c o s  k2x 

where 

+ d sin )k2X - -  Q/p, (10) 

(11) 

and a, b, c, and d are again real constants. This is shown in 
the complex plane in Fig. 2(c) .  

Equation (10) has the form of a quasi-periodic solution, and 
describes a trajectory on a two-dimensional toms in phase space. 
The symmetric section condition gives 

1 
x = k-~ arctan = ~ arctan (12) 

which, from a geometrical point of view, represents the condi- 
tion that the peaks of both harmonic components in Eq. (10) 
coincide. 

• • 

R I, t I IR I - R 

(a) (b) (c) (d) (e) 

Fig. 2 Complex conjugate eigenvalues for linearized Eq. (4): (a) Case A; (b) 
Transitional case; (c) Case B; (d) Case D; (e) Case C 
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2.1.3 Case C: Two Real  Two Imaginary Eigenvalues ( p < 
O, p < 2). For the case where p < 0 and the foundation 
has negative stiffness, there are two real and two imaginary 
eigenvalues, as shown in Fig. 2(d) (Hunt et al., 1989), with 
the general solution 

y = ae x,x + be -~,x + c c o s  )k2x -1- d sin h2x --  Q/p,  (13) 

where 

p p / Z  ~1/2 
Xl= - ~ +  - p ) , 

k2 = + - p , (14) 

and a, b, c, and d are real constants. 
This corresponds to the combination of a two-dimensional 

saddle and a two-dimensional center. For the symmetric section 
condition we have 

2kt ~2 arctan , (15) 

which indicates coincidence of a peak of the harmonic compo- 
nent of Eq. (13) with the peak of the exponential component. 

2.1.4 Case D: Two Zero, Two Imaginary Eigenvalues (p 
= O, p < 2). The case where p -- 0 provides another distinct 
solution to Eq. (4). The characteristic Eq. (6) reduces to 

)~4 .+ pX2 = 0, (16) 

which has two imaginary and two coincident zero eigenvalues, 
and we get the general solution 

y = a  + bx + ccos~ppx + d s i n ~ p x -  ( Q / 2 p ) x  2, (17) 

where a, b, c, and d are real constants. For the symmetric 
section condition we have 

x = Q ~p arctan , (18) 

which represents a peak of the harmonic component of Eq. (17) 
coinciding with the peak of the parabolic component. 

This case is of particular practical significance, being an im- 
portant ingredient of the buckling of a strut on an elastic-per- 
fectly plastic foundation, and the upheaval problem of our com- 
panion paper (Blackmore and Hunt, 1996). 

2.2 Spatial Energies: Lagrangian and Hamiltonian. 
The Lagrange equation for a conservative mechanical system 
running in time is 

d OT OV 
- - - - + - - = 0 ,  (19) 
dt Oqi Oqi 

where T is the kinetic energy, V is the potential energy, and q~ 
is a typical generalized coordinate. If we replace time t with 
our spatial coordinate x, we can write 

1 .2  T = py" + ~py , 

V = ½(py2 _ 29.2) + ay  + Vo, (20) 

where V0 is a constant to be determined later. We interpret qi 
first as y, leading to the fundamental Eq. (4), and secondly as 
y, giving the identity y = y. T and V thus provide spatial forms 
of kinetic and potential energy, respectively. Unlike a typical 
mechanical system, however, T is an indefinite quadratic form. 
But the system is Hamiltonian and we have a constant of the 

motion .7( = T + V = const, which in this analogy is a statement 
of conservation of spatial energy. 

3 Bilinear Equations 
For the strut on the bilinear foundation it is now just a case 

of applying the appropriate equations and conditions from above 
to track the response as the strut repeatedly crosses the elastic 
limit. Let us suppose that, for y < 29, Eq. (3) governs, meaning 
that the initial elastic foundation stiffness k~ is positive. If we 
measure y from the fiat fundamental equilibrium state (5) where 
all derivatives vanish, Q = 0. As the response crosses the elastic 
limit at y = 29, continuity in y and its derivatives must be 
maintained: The left-hand sides of Eqs. (3) and (4) must match 
at y = 29. This gives 

Q = 3~(1 - p) (21) 

for y > 29, and Eq. (5) then fixes the corresponding flat state 
at 

y -  Q -  f ( l  - p). (22) 
P P 

In a similar manner, to ensure continuity between the two forms 
for the spatial potential energy V, we must have 

V0 = - ½fi2(1 - p) (23) 

for y > 29. We note that V0 = 0 inside the elastic limit, giving 
,07C = T + V = 0 in the corresponding flat fundamental state. 
Continuity of T is always ensured, the expression of Eq. (20) 
undergoing no change as the elastic limit is passed. 

The values of y and its derivatives at the elastic limit can 
also be used to calculate the constants a, b, c, and d for the 
appropriate general solution. Applying the associated symmetric 
section condition we can then predict when we reach the elastic 
limit whether a symmetric section condition (localization) will 
occur in the next "loop." The aretangent functions of condi- 
tions (9), (12), (15), and (18) admit an infinite number of 
solutions (separated by multiples of 7r ) which enables prediction 
and classification of localized solutions, as seen later. 

3.1 Elastic-Hardening Foundation. Let us consider a 
strut on a bilinear foundation with initial stiffness k~ > 0 and 
final stiffness 0 < k2 < k~, conventionally referred to as a 
hardening foundation, as shown in Fig. 3(a),  in whichf (y)  is 

f ( Y )  

i pe, k t I l Y 

(a) 
Y 

0.05 

. . . . .  = 7 - - 7 ~ - 1 ~ . ~ . . . , ,  . . . . . . . . . . . .  
- V ' V -  x 

25 50 
0.05 

- v ~ s v  - 50 x 

0.05.  

25 50 

(b) 

Fig. 3 (a) Bilinear foundation characteristics; (b) Examples of localized 
m o d e s  (El = k l  = 1, k2 = 0 . 1 , 9  = 0.01, P = 1.6) 
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the resisting force per unit length. Inside the elastic limit (y < 
29) Eq. (3) governs, and for P < P f  = 2 k l ~  (p < pC = 2) 
general solution (7) of case A applies. Invoking the dynamical 
phase-space analogy, we start from close to the fiat equilibrium 
state y = 0 and trace the response with positive x. Wherever 
the starting condition lies with respect to the stable and unstable 
manifolds, it can be taken that on reaching the elastic limit 
the system is in a state of divergence, with a more dominant 
destabilizing than stabilizing component to the general solution. 

Outside the elastic limit governing Eq. (4) holds, with 0 < 
p < 1, and Q given by Eq. (21). The corresponding position 
of the fiat fundamental state of Eq. (22) is inside the elastic 
limit ( y <  29) and therefore unreachable. Depending on the value 
of load P there are two possibilities: 

• If P < P2 c = 2 k 2 ~ ,  p2 < 4p and case A holds. Since 
Y < 29 the response will continue to be dominated by the unstable 
part of the general solution, divergence will be maintained albeit 
at a different rate, and passage through the symmetric section 
and hence localization are not possible. 

* If P > Pz c = 2 k z ~ ,  p2 > 4p and case B holds. The 
quasi-periodic form allows passage through the symmetric sec- 
tion, and consequently localization is possible. 

The linear eigenvalue problem hence suggests that only a 
periodic solution exists at P = P f ,  but localized solutions can 
exist over the range between P f  and P2 c. Multiple crossing of 
the elastic limit provides a variety of possible modeforms, three 
of the simplest, identified by the search routine described later 
in Section 4.2, being shown in Fig. 3(b) .  

Figure 4 shows the variation of maximum amplitude y .... and 
end-shortening A with load P for the top example of Fig. 3 (b);  
at the given load this form exits the elastic limit only once 
before the symmetric section is reached, although at the extreme 
of the post-buckling curve, close to the critical load P f ,  it tends 
to evolve into forms involving more than one exit. Other curves 
exist for the other modes, but over the range of displacements 
illustrated here it appears that the illustrated curve represents 
the least energy, most likely solution in practice. The form of 
Fig. 4(b)  becomes length dependent close to P f ,  the eigenvec- 
tor in the critical state being periodic, and end-shortening for a 
periodic buckle depending on both amplitude and length while 
that for a localized buckle depends only on amplitude. For long 
struts this gives a characteristic snap-back " C "  shape to the 
post-buckling response, seen in the closeup of Fig. 4(b) .  A 
typical loading sequence for a perfect inextensional strut, 
brought about by controlling end-shortening displacement A, 
is then as follows. 

Inextensibility implies that the immediate application of a 
small A induces buckling, the load rising instantly to P f .  Fur- 
ther application then produces a periodic buckle pattern, the 
value of A growing accordingly along the corresponding "neu- 
tral" equilibrium path at constant load, until the amplitude 
reaches 29; the longer the strut, the greater the corresponding 
"triggering" value of A. There is then an immediate snap 
downwards at constant A (sometimes called snap-back), to a 
lower position on the " C "  curve where the buckle pattern is 
localized, here with much the same shape as seen at the top of 
Fig. 3(b) .  

One consequence of this loading history is that, for a system 
free from imperfections, permanent plastic deformation is 
avoided. Unloading occurs suddenly as a "spring-loaded" 
buckled periodic form with amplitude 29 evolves into a localized 
post-buckled state. The elastic unloading that occurs outside the 
region of localization is always back down the original loading 
path of Fig. 3(a) .  

3.2 Elastic-Perfectly Plastic Foundation. The case of k2 
= 0 is of particular interest, as it models the case of upheaval 
from an elastic bed seen in the related companion paper (Black- 

~ a x  
0.i 0.2 0.3 

Fig. 4(a) Load versus maximum buckle amplitude 

P 

P 

C 

A 
0.01 0.02 

Fig. 4(b) Load versus end-shortening, with close-up showing charac- 
teristic snap-back "C" shape 

Fig. 4 Primary mode post-buckling response (E/= kt = 1, k~ = 0.1, 9 = 
0.01 ) 

more and Hunt, 1996). Inside the elastic limit case A holds as 
before, while outside the strut is assumed to have lifted from 
the bed and case D applies. Passage through the symmetric 
section, and hence localization, are now possible over the range 
0 < P < pC. We see from Eq. (5) that the fiat fundamental 
state for k2 = 0 is at y = ± ~ .  

3.3 Elastic-Softening Foundation. If k~ is positive but k2 
is negative we have a so-called softening foundation. The elastic 
limit y = 29 now marks a change in the form of general solution 
from case A to case C, and passage through the symmetric 
section, and localization, are again possible. Equation (22) 
shows that the fiat fundamental state for k2 < 0 lies outside the 
elastic limit and is thus physically realizable. 

4 Numerical Experimentation 
The linearized solutions developed above allow limited pre- 

diction of the displacement "history," in the sense of the dy- 
namical phase-space analogy, of a strut on a bilinear foundation. 
It is of course possible to track any particular solution by 
piecewise application of the specific general solutions given 
above, but only for one set of starting conditions at a time. For 
the system as a whole we turn to numerical runs of Eq. (4)  
using a fourth-order symplectic (volume-preserving) Runge- 
Kutta scheme (Sanz-Serua, 1988; Hunt and Wadee, 1991). 
When the load varies along the length, as in the application to 
uplift buckling with friction of Blackmore and Hunt (1996), 
there is no readily available general solution but the dynamical 
analogy accommodates the change without difficulty. 
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A new feature to the numerical runs is the introduction of a 
st epsize adjustment routine as the elastic limit is crossed, to 
ensure that the stiffness change is invoked tolerably close to 
the correct position. This is similar to the problem of landing 
exactly on a Poincar6 section when using numerical integration 
techniques to compute Poincar6 maps (Htnon,  1982). Succes- 
sively smaller and smaller step sizes are used to home in, to a 
specifiable degree of accuracy, on the elastic limit itself. 

4.1 Blanket  Runs.  In assessing the global behavior of 
such fourth-order autonomous systems, much can be learnt from 
blanketing a two-dimensional space of starts, as shown in Fig. 
5. The phase space is of course four dimensional, but we can 
assume two of these dimensions to be fixed a priori by two 
(starting) boundary conditions. All allowable states of the sys- 
tem then appear in a two-dimensional space of starts spanning 
perhaps two of y and its first three derivatives: Figure 5 shows 
a portion of this space in the two starting variables Y0 and j0. 
Because localized or homoclinic solutions start at, or at least 
close to, the flat fundamental state at y = y, we have confined 
ourselves to starts over a small region (radius 0.0001 ) enclosing 
this state, which itself is found at the center of each plot. 

These plots, drawn specifically for E1 = k~ = i,  k2 = 0.1, P 
= 1.8, emphasize that the localized solutions exist within a 
spiral structure: as we move in towards the center along each 
spiral, the same localized form is merely shifted outwards along 
the length. Cutting across the spiral formation reveals the large 
number of different waveforms that can appear, some of which 
are illustrated in Fig. 6. Localized modes are detected by pas- 
sage through the symmetric section y = y = 0; reversibility 
suggests that this acts as a mirror (Champneys and Toland, 
1993), and starts from close to the fiat state thence retrace the 
solution in reverse to end up at the fiat state again. With k2 as 
positive, localization involves case B solutions outside the elas- 
tic limit, and condition (12) on exit from this limit thereby 
defines passage through the symmetric section precisely; simi- 
larly, on subsequent reentry, a second set of symmetric-section 
solutions is defined by the case A condition (9).  

The multiplicity of possible solutions is apparent from Fig. 5, 
which represent in turn passage through the symmetric section 
following the first exit, first reentry, second exit, etc., of the 
elastic limit. For the left-hand set, solutions for which 

YO 

Fig. 5 B lanke t  runs  in t he  (Yo, Yo) s p a c e  o f  s tar ts ,  s h o w i n g  inc reas ing l y  
complex behavior as the s t ru t  leaves and re -en te rs  the foundation. IEI 
= k l  = 1, k= = 0.1, 9 = 0.01, P = 1.8).  

Y 
. 0 5 ,  

.05 

.05 

Y 

- v . v -  
3 2  6 4  x 

...... _-A-A-A- . . . . . . . . . . .  
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. . . . . .  -aA-A#-A-A . . . . . . .  ,*,-, 
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Fig. 6 Mu l t i p le  poss ib le  equilibrium solutions (El = kt  = 1, k= = 0.1, # = 
0.01, P = 1.8).  The primary mode, shown at the top left ,  is t h e  least  
energy,  m o s t  l i ke ly  so lu t i on  f o r  p rac t i ca l  c i r c u m s t a n c e s .  

k2 arctan (b/a) - k~ arctan (d/c) > O, (24) 

after the first, second, etc., exit from the elastic limit are plotted 
in black, while those not satisfying this criterion are shown in 
white. For the right-hand set, those satisfying 

(c2 + d2~ (ad + bc] 
/3 In \ ~ - - 7 . ~ . ~ j  - 2c~ arctan c~c - bdJ > 0 (25) 

are marked in black, and those not satisfying in white. In each 
case, passage through the symmetric section itself is thus 
marked by the border between black and white, which, in com- 
mon with other examples of localization and spatial chaos (Hunt 
and Wadee, 1991; Champneys and Toland, 1993; Hunt et al., 
1996b), has in the limit an infinitely broken fractal structure. 

4.2 Localized Modes and  Search Routines.  Some of the 
infinite variety of allowable buckling modes for the strut on an 
elastoplastic foundation are shown in Fig. 6, where the broken 
horizontal line drawn at y = .f indicates the elastic limit. We 
emphasize that not all of the modes depicted here represent 
realistic buckling situations; they merely indicate the number 
and variety of solutions available to a set of valid equilibrium 
equations, however these happen to be solved. From a practical 
point of view, the minimum energy state is found in the mode 
at the top left of the figure, which thus represents the most 
likely form in practice. 

The modes are found by starting initial-value runs for Eq. (4) 
from close to the fiat state y = 0, and searching systematically in 
the same two-dimensional space of starts as the blanket runs of 
Fig. 5 for positions where the appropriate symmetric section 
condition, either (24) or (25) depending on whether the evolu- 
tion in x is exiting or entering the elastic zone, is an equality 
rather than an inequality. Of course this is only possible to 
within some numerical tolerance, but with double-precision real 
variables and focusing as accurately as possible, near perfect 
symmetry about the center of the localization is obtained in all 
cases shown in Fig. 6. These systematic search procedures are 
described in earlier publications (see, for example, Hunt and 
Wadee, 1991 ). 

5 Concluding Remarks 
Application of the dynamical phase-space analogy, which in 

essence means making constructive use of shooting techniques 
while maintaining an awareness of the underlying character 
of the dynamics, has advantages when it comes to numerical 
modeling of localization phenomena. Further nonlinearities like 
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complicated bedding relations or elastoplasticity of the strut 
material generate no real extra difficulty; modified equations 
can simply be run in x, with very much the same kind of 
questions being asked. Initial value problems remain unfettered 
by boundary constraints at the far end, and this frees the ap- 
proach from the sort of assumptions--periodicity, constraint to 
certain wavelengths, and even of active length i tself-- that  are 
often part of boundary value approaches but can hamper appli- 
cability (see, for example, Thompson and Hunt, 1973; Tver- 
gaard and Needleman, 1980). These advantages are apparent 
in the application to upheaval buckling in subsea pipelines 
(Blackmore and Hunt, 1996). Under an active pressure or tem- 
perature rise, frictional restraint between the bed and the pipe 
causes the load to vary along the length, as well as restricting 
the length of pipe that is able to unload into the buckled regime. 
Both effects would be awkward to model in a boundary value 
formulation, but the first is simply accounted for by allowing 
an appropriate variation for p in the differential equation, while 
the second is handled with a straightforward modification to the 
search routine of Section 4.2. This underlines the importance 
of the dynamical analogy, closed-form solutions to the boundary 
value problem being significantly more difficult, if not impossi- 
ble, to handle for a differential equation with a nonconstant 
coefficient. 

The multiplicity of possible equilibrium states at any load, 
or indeed under any applied end displacement, apparently avail- 
able to such spatially chaotic localization problems means that 
extra physical interpretation is required beyond just equilibrium 
considerations; we need somehow to select the most likely state 
from all competing possibilities, many of which may be stable 
in the sense of being local energy minima. For such systems, 
it seems that the Maxwell criterion of stability, which suggests 
that as a result of external disturbances a system will tend to 
settle in its global energy minimum, may be more realistic than 
any locally defined criterion; this may be particularly true when, 
as here, snap-back behavior is likely (Baker and Hunt, 1994). 
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D i s c u s s i o n  

A T r e a t m e n t  o f  In terna l ly  C o n s t r a i n e d  
Mater ia l s  i 

J. Casey 2 and M. M. Carroll a. 

An interesting point, not addressed by the author, arises in 
regard to invariance requirements. Recall that in continuum 
mechanics it is usually stated that under an arbitrary superposed 
rigid motion of the continuum, the Cauchy stress tensor T trans- 
forms as 

T + = QTQ r, (1) 

where the proper orthogonal tensor Q (depending on time only) 
represents the rotation in the superposed motion. Correspond- 
ingly, the symmetric Piola-Kirchhoff stress tensor S transforms 
a s  

S + = S. (2) 

If one is considering a material in which the stress T is uniquely 
determined by the history of the deformation of the body, the 
transformation law (1) can be argued on the physical grounds 
that a superposed motion leaves unaltered the distance between 
every pair of particles of the body, always resulting in the same 
Lagrangian strain field E. For materials with internal con- 
straints, however, only part of the stress tensor is determined 
by the motion of the body. For the determinate part of the stress, 
the argument given above leads to a transformation law of type 
( 1 ). But, can we say anything about how the indeterminate part 
of the stress should transform? 

To pursue this question, we first recall that for a material 
subject to an internal constraint of the form 

~b(E) = 0, (3) 

the stress S is given by 

s = g + x  &b a--E' (4) 

where h is a Lagrange multiplier and the portion S is prescribed 
by a constitutive equation. In terms of Cauchy stress, (4) may 
be written as 

T = T + hF,  (5) 
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where 

T = - I F s F r ,  F = - I F 0 q ~ F  T. (6) 
J J 0E 

Now, under_supetposed rigid motions of the constrained body, 
the tensors T and S transform as 

+ = Q ~ Q r ,  g+ = g .  (7) 

Further, since the constraint itself applies to all motions (includ- 
ing in particular those differing from a given motion by a super- 
posed rigid motion), we have 

+ = r + = Q r o  T. 
0__~_ 

aE/ 0E' 

But, however tempting it may be, we have no grounds for 
asserting that the value of the Lagrange multiplier is necessarily 
the same for the given motion and for all motions that differ 
from it by a rigid motion. Indeed, the essential arbitrariness in 
the definition of the multiplier would surely preclude such an 
assumption. We conclude therefore that for a constrained mate- 
rial, the stress tensors T and S do not necessarily transform by 
(1) and (2),  respectively. 

The case of a rigid body furnishes a nice illustration. The 
Cauchy stress tensor in a rigid body is completely indeterminate. 
For such a body, any pair of motions resulting from two arbi- 
trarily different external force systems still differ by a rigid 
motion. It is evident that the internal stress states in these two 
motions are completely independent of one another, and hence 
do not satisfy (1).  

In closing, we remark that for researchers who prefer to use 
the Principle of Material Frame-Indifference rather than invafi- 
ance requirements under superposed rigid motions, caution must 
be exercised in dealing with constrained materials. In the case 
of rigid bodies, for example, might not two observers looking 
at a single motion be expected to relate their Cauchy stress 
tensors by (1)?4 In this connection, it is interesting to note that 
Trnesdell and Noll (1965, p. 44), in their statement of the 
Principle of Material Frame-Indifference, say: "Constitutive 
equations must be invariant under changes of frame of refer- 
ence." Only if one applies the principle to the part of the stress 
which is supplied through a constitutive equation can an absur- 
dity be avoided. 
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4 It may be mentioned that in accordance with the Principle of Material Frame- 
Indifference, the tensor Q is permitted to belong to the full orthogonal group, 
although that point is not at issue here 
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